Search results for: intermediate temperature solid oxide fuel cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13318

Search results for: intermediate temperature solid oxide fuel cells

88 Evaluation of Microstructure, Mechanical and Abrasive Wear Response of in situ TiC Particles Reinforced Zinc Aluminum Matrix Alloy Composites

Authors: Mohammad M. Khan, Pankaj Agarwal

Abstract:

The present investigation deals with the microstructures, mechanical and detailed wear characteristics of in situ TiC particles reinforced zinc aluminum-based metal matrix composites. The composites have been synthesized by liquid metallurgy route using vortex technique. The composite was found to be harder than the matrix alloy due to high hardness of the dispersoid particles therein. The former was also lower in ultimate tensile strength and ductility as compared to the matrix alloy. This could be explained to be due to the use of coarser size dispersoid and larger interparticle spacing. Reasonably uniform distribution of the dispersoid phase in the alloy matrix and good interfacial bonding between the dispersoid and matrix was observed. The composite exhibited predominantly brittle mode of fracture with microcracking in the dispersoid phase indicating effective easy transfer of load from matrix to the dispersoid particles. To study the wear behavior of the samples three different types of tests were performed namely: (i) sliding wear tests using a pin on disc machine under dry condition, (ii) high stress (two-body) abrasive wear tests using different combinations of abrasive media and specimen surfaces under the conditions of varying abrasive size, traversal distance and load, and (iii) low-stress (three-body) abrasion tests using a rubber wheel abrasion tester at various loads and traversal distances using different abrasive media. In sliding wear test, significantly lower wear rates were observed in the case of base alloy over that of the composites. This has been attributed to the poor room temperature strength as a result of increased microcracking tendency of the composite over the matrix alloy. Wear surfaces of the composite revealed the presence of fragmented dispersoid particles and microcracking whereas the wear surface of matrix alloy was observed to be smooth with shallow grooves. During high-stress abrasion, the presence of the reinforcement offered increased resistance to the destructive action of the abrasive particles. Microcracking tendency was also enhanced because of the reinforcement in the matrix. The negative effect of the microcracking tendency was predominant by the abrasion resistance of the dispersoid. As a result, the composite attained improved wear resistance than the matrix alloy. The wear rate increased with load and abrasive size due to a larger depth of cut made by the abrasive medium. The wear surfaces revealed fine grooves, and damaged reinforcement particles while subsurface regions revealed limited plastic deformation and microcracking and fracturing of the dispersoid phase. During low-stress abrasion, the composite experienced significantly less wear rate than the matrix alloy irrespective of the test conditions. This could be explained to be due to wear resistance offered by the hard dispersoid phase thereby protecting the softer matrix against the destructive action of the abrasive medium. Abraded surfaces of the composite showed protrusion of dispersoid phase. The subsurface regions of the composites exhibited decohesion of the dispersoid phase along with its microcracking and limited plastic deformation in the vicinity of the abraded surfaces.

Keywords: abrasive wear, liquid metallurgy, metal martix composite, SEM

Procedia PDF Downloads 124
87 Gas Chromatographic: Mass Spectroscopic Analysis of Citrus reticulata Fruit Peel, Zingiber officinale Rhizome, and Sesamum indicum Seed Ethanolic Extracts Possessing Antioxidant Activity and Lipid Profile Effects

Authors: Samar Saadeldin Abdelmotalab Omer, Ikram Mohamed Eltayeb Elsiddig, Saad Mohammed Hussein Ayoub

Abstract:

A variety of herbal medicinal plants are known to confer beneficial effects in regards to modification of cardiovascular ri’=sk factors. The anti-hypercholesterolaemic and antioxidant activities of the crude ethanolic extracts of Citrus reticulate fruit peel, Zingiber officinale rhizome and Sesamum indicum seed extracts have been demonstrated. These plants are assumed to possess biologically active principles, which impart their pharmacologic activities. GC-MS analysis of the ethanolic extracts was carried out to identify the active principles and their percentages of occurrence in the analytes. Analysis of the extracts was carried out using (GS-MS QP) type Schimadzu 2010 equipped with a capillary column RTX-50 (restec), (length 30mm, diameter 0.25mm, and thickness 0.25mm). Helium was used as a carrier gas, the temperature was programmed at 200°C for 5 minutes at a rate of 15ml/minute, and the extracts were injected using split injection mode. The identification of different components was achieved from their Mass Spectra and Retention time, compared with those in the NIST library. The results revealed the presence of 80 compounds in Sudanese locally grown C. reticulata fruit peel extract, most of which were monoterpenoid compounds including Limonene (3.03%), Alpha & Gamma - terpinenes (2.61%), Linalool (1.38%), Citral (1.72%) which are known to have profound antioxidant effects. The Sesquiterpenoids Humulene (0.26%) and Caryophyllene (1.97%) were also identified, the latter known to have profound anti-anxiety and anti-depressant activity in addition to the beneficiary effects in lipid regulation. The analysis of the locally grown S. indicum oily and water soluble portions of seed extract revealed the presence of a total of 64 compounds with considerably high percentage of the mono-unsaturated fatty acid ester methyl oleate (66.99%) in addition to methyl stearate (9.35%) and palmitate (15.71%) of oil portion, whereas, plant sterols including Gamma-sitosterol (13.5%), fucosterol (2.11%) and stigmasterol (1.95%) in addition to gamma-tocopherol (1.16%) were detected in extract water-soluble portion. The latter indicate various principles known to have valuable pharmacological benefits including antioxidant activities and beneficiary effects on intestinal cholesterol absorption and regulation of serum cholesterol levels. Z. officinale rhizome extract analysis revealed the presence of 93 compounds, the most abundant were alpha-zingeberine (16.5%), gingerol (9.25%), alpha-sesquiphellandrene (8.3%), zingerone (6.78%), beta-bisabolene (4.19%), alpha-farnesene (3.56%), ar-curcumene (3.29%), gamma-elemene (1.25%) and a variety of other compounds. The presence of these active principles reflected on the activity of the extract. Activity could be assigned to a single or a combination of two or more extract components. GC-MS analysis concluded the occurrence of compounds known to possess antioxidant activity and lipid profile effects.

Keywords: gas chromatography, indicum, officinale, reticulata

Procedia PDF Downloads 342
86 Analysis of Fish Preservation Methods for Traditional Fishermen Boat

Authors: Kusno Kamil, Andi Asni, Sungkono

Abstract:

According to a report of the World Food and Agriculture Agency (FAO): the post-harvest fish losses in Indonesia reaches 30 percent from 170 trillion rupiahs of marine fisheries reserves, then the potential loss reaches 51 trillion rupiahs (end of 2016 data). This condition is caused by traditionally vulnerable fish catches damaged due to disruption of the cold chain of preservation. The physical and chemical changes in fish flesh increase rapidly, especially if exposed to the scorching heat in the middle of the sea, exacerbated by the low awareness of catch hygiene; many unclean catches which contain blood are often treated without special attention and mixed with freshly caught fish, thereby increasing the potential for faster fish spoilage. This background encourages research on traditional fisherman catch preservation methods that aim to find the best and most affordable methods and/or combinations of fish preservation methods so that they can help fishermen increase their fishing duration without worrying that their catch will be damaged, thereby reducing their economic value when returning to the beach to sell their catches. This goal is expected to be achieved through experimental methods of treatment of fresh fish catches in containers with the addition of anti-bacterial copper, liquid smoke solution, and the use of vacuum containers. The other three treatments combined the three previous treatment variables with an electrically powered cooler (temperature 0~4 ᵒC). As a control specimen, the untreated fresh fish (placed in the open air and in the refrigerator) were also prepared for comparison for 1, 3, and 6 days. To test the level of freshness of fish for each treatment, physical observations were used, which were complemented by tests for bacterial content in a trusted laboratory. The content of copper (Cu) in fish meat (which is suspected of having a negative impact on consumers) was also part of the examination on the 6th day of experimentation. The results of physical observations on the test specimens (organoleptic method) showed that preservation assisted by the use of coolers was still better for all treatment variables. The specimens, without cooling, sequentially showed that the best preservation effectiveness was the addition of copper plates, the use of vacuum containers, and then liquid smoke immersion. Especially for liquid smoke, soaking for 6 days of preservation makes the fish meat soft and easy to crumble, even though it doesn't have a bad odor. The visual observation was then complemented by the results of testing the amount of growth (or retardation) of putrefactive bacteria in each treatment of test specimens within similar observation periods. Laboratory measurements report that the minimum amount of putrefactive bacteria achieved by preservation treatment combining cooler with liquid smoke (sample A+), then cooler only (D+), copper layer inside cooler (B+), vacuum container inside cooler (C+), respectively. Other treatments in open air produced a hundred times more putrefactive bacteria. In addition, treatment of the copper layer contaminated the preserved fresh fish more than a thousand times bigger compared to the initial amount, from 0.69 to 1241.68 µg/g.

Keywords: fish, preservation, traditional, fishermen, boat

Procedia PDF Downloads 49
85 Use of Sewage Sludge Ash as Partial Cement Replacement in the Production of Mortars

Authors: Domagoj Nakic, Drazen Vouk, Nina Stirmer, Mario Siljeg, Ana Baricevic

Abstract:

Wastewater treatment processes generate significant quantities of sewage sludge that need to be adequately treated and disposed. In many EU countries, the problem of adequate disposal of sewage sludge has not been solved, nor is determined by the unique rules, instructions or guidelines. Disposal of sewage sludge is important not only in terms of satisfying the regulations, but the aspect of choosing the optimal wastewater and sludge treatment technology. Among the solutions that seem reasonable, recycling of sewage sludge and its byproducts reaches the top recommendation. Within the framework of sustainable development, recycling of sludge almost completely closes the cycle of wastewater treatment in which only negligible amounts of waste that requires landfilling are being generated. In many EU countries, significant amounts of sewage sludge are incinerated, resulting in a new byproduct in the form of ash. Sewage sludge ash is three to five times less in volume compared to stabilized and dehydrated sludge, but it also requires further management. The combustion process also destroys hazardous organic components in the sludge and minimizes unpleasant odors. The basic objective of the presented research is to explore the possibilities of recycling of the sewage sludge ash as a supplementary cementitious material. This is because of the main oxides present in the sewage sludge ash (SiO2, Al2O3 and Cao, which is similar to cement), so it can be considered as latent hydraulic and pozzolanic material. Physical and chemical characteristics of ashes, generated by sludge collected from different wastewater treatment plants, and incinerated in laboratory conditions at different temperatures, are investigated since it is a prerequisite of its subsequent recycling and the eventual use in other industries. Research was carried out by replacing up to 20% of cement by mass in cement mortar mixes with different obtained ashes and examining characteristics of created mixes in fresh and hardened condition. The mixtures with the highest ash content (20%) showed an average drop in workability of about 15% which is attributed to the increased water requirements when ash was used. Although some mixes containing added ash showed compressive and flexural strengths equivalent to those of reference mixes, generally slight decrease in strength was observed. However, it is important to point out that the compressive strengths always remained above 85% compared to the reference mix, while flexural strengths remained above 75%. Ecological impact of innovative construction products containing sewage sludge ash was determined by analyzing leaching concentrations of heavy metals. Results demonstrate that sewage sludge ash can satisfy technical and environmental criteria for use in cementitious materials which represents a new recycling application for an increasingly important waste material that is normally landfilled. Particular emphasis is placed on linking the composition of generated ashes depending on its origin and applied treatment processes (stage of wastewater treatment, sludge treatment technology, incineration temperature) with the characteristics of the final products. Acknowledgement: This work has been fully supported by Croatian Science Foundation under the project '7927 - Reuse of sewage sludge in concrete industry – from infrastructure to innovative construction products'.

Keywords: cement mortar, recycling, sewage sludge ash, sludge disposal

Procedia PDF Downloads 227
84 Model-Based Global Maximum Power Point Tracking at Photovoltaic String under Partial Shading Conditions Using Multi-Input Interleaved Boost DC-DC Converter

Authors: Seyed Hossein Hosseini, Seyed Majid Hashemzadeh

Abstract:

Solar energy is one of the remarkable renewable energy sources that have particular characteristics such as unlimited, no environmental pollution, and free access. Generally, solar energy can be used in thermal and photovoltaic (PV) types. The cost of installation of the PV system is very high. Additionally, due to dependence on environmental situations such as solar radiation and ambient temperature, electrical power generation of this system is unpredictable and without power electronics devices, there is no guarantee to maximum power delivery at the output of this system. Maximum power point tracking (MPPT) should be used to achieve the maximum power of a PV string. MPPT is one of the essential parts of the PV system which without this section, it would be impossible to reach the maximum amount of the PV string power and high losses are caused in the PV system. One of the noticeable challenges in the problem of MPPT is the partial shading conditions (PSC). In PSC, the output photocurrent of the PV module under the shadow is less than the PV string current. The difference between the mentioned currents passes from the module's internal parallel resistance and creates a large negative voltage across shaded modules. This significant negative voltage damages the PV module under the shadow. This condition is called hot-spot phenomenon. An anti-paralleled diode is inserted across the PV module to prevent the happening of this phenomenon. This diode is known as the bypass diode. Due to the performance of the bypass diode under PSC, the P-V curve of the PV string has several peaks. One of the P-V curve peaks that makes the maximum available power is the global peak. Model-based Global MPPT (GMPPT) methods can estimate the optimal point with higher speed than other GMPPT approaches. Centralized, modular, and interleaved DC-DC converter topologies are the significant structures that can be used for GMPPT at a PV string. there are some problems in the centralized structure such as current mismatch losses at PV sting, loss of power of the shaded modules because of bypassing by bypass diodes under PSC, needing to series connection of many PV modules to reach the desired voltage level. In the modular structure, each PV module is connected to a DC-DC converter. In this structure, by increasing the amount of demanded power from the PV string, the number of DC-DC converters that are used at the PV system will increase. As a result, the cost of the modular structure is very high. We can implement the model-based GMPPT through the multi-input interleaved boost DC-DC converter to increase the power extraction from the PV string and reduce hot-spot and current mismatch error in a PV string under different environmental condition and variable load circumstances. The interleaved boost DC-DC converter has many privileges than other mentioned structures, such as high reliability and efficiency, better regulation of DC voltage at DC link, overcome the notable errors such as module's current mismatch and hot spot phenomenon, and power switches voltage stress reduction.

Keywords: solar energy, photovoltaic systems, interleaved boost converter, maximum power point tracking, model-based method, partial shading conditions

Procedia PDF Downloads 104
83 Ordered Mesoporous Carbons of Different Morphology for Loading and Controlled Release of Active Pharmaceutical Ingredients

Authors: Aleksander Ejsmont, Aleksandra Galarda, Joanna Goscianska

Abstract:

Smart porous carriers with defined structure and physicochemical properties are required for releasing the therapeutic drug with precise control of delivery time and location in the body. Due to their non-toxicity, ordered structure, chemical, and thermal stability, mesoporous carbons can be considered as modern carriers for active pharmaceutical ingredients (APIs) whose effectiveness needs frequent dosing algorithms. Such an API-carrier system, if programmed precisely, may stabilize the pharmaceutical and increase its dissolution leading to enhanced bioavailability. The substance conjugated with the material, through its prior adsorption, can later be successfully applied internally to the organism, as well as externally if the API release is feasible under these conditions. In the present study, ordered mesoporous carbons of different morphologies and structures, prepared by hard template method, were applied as carriers in the adsorption and controlled release of active pharmaceutical ingredients. In the first stage, the carbon materials were synthesized and functionalized with carboxylic groups by chemical oxidation using ammonium persulfate solution and then with amine groups. Materials obtained were thoroughly characterized with respect to morphology (scanning electron microscopy), structure (X-ray diffraction, transmission electron microscopy), characteristic functional groups (FT-IR spectroscopy), acid-base nature of surface groups (Boehm titration), parameters of the porous structure (low-temperature nitrogen adsorption) and thermal stability (TG analysis). This was followed by a series of tests of adsorption and release of paracetamol, benzocaine, and losartan potassium. Drug release experiments were performed in the simulated gastric fluid of pH 1.2 and phosphate buffer of pH 7.2 or 6.8 at 37.0 °C. The XRD patterns in the small-angle range and TEM images revealed that functionalization of mesoporous carbons with carboxylic or amine groups leads to the decreased ordering of their structure. Moreover, the modification caused a considerable reduction of the carbon-specific surface area and pore volume, but it simultaneously resulted in changing their acid-base properties. Mesoporous carbon materials exhibit different morphologies, which affect the host-guest interactions during the adsorption process of active pharmaceutical ingredients. All mesoporous carbons show high adsorption capacity towards drugs. The sorption capacity of materials is mainly affected by BET surface area and the structure/size matching between adsorbent and adsorbate. Selected APIs are linked to the surface of carbon materials mainly by hydrogen bonds, van der Waals forces, and electrostatic interactions. The release behavior of API is highly dependent on the physicochemical properties of mesoporous carbons. The release rate of APIs could be regulated by the introduction of functional groups and by changing the pH of the receptor medium. Acknowledgments—This research was supported by the National Science Centre, Poland (project SONATA-12 no: 2016/23/D/NZ7/01347).

Keywords: ordered mesoporous carbons, sorption capacity, drug delivery, carbon nanocarriers

Procedia PDF Downloads 152
82 Improved Elastoplastic Bounding Surface Model for the Mathematical Modeling of Geomaterials

Authors: Andres Nieto-Leal, Victor N. Kaliakin, Tania P. Molina

Abstract:

The nature of most engineering materials is quite complex. It is, therefore, difficult to devise a general mathematical model that will cover all possible ranges and types of excitation and behavior of a given material. As a result, the development of mathematical models is based upon simplifying assumptions regarding material behavior. Such simplifications result in some material idealization; for example, one of the simplest material idealization is to assume that the material behavior obeys the elasticity. However, soils are nonhomogeneous, anisotropic, path-dependent materials that exhibit nonlinear stress-strain relationships, changes in volume under shear, dilatancy, as well as time-, rate- and temperature-dependent behavior. Over the years, many constitutive models, possessing different levels of sophistication, have been developed to simulate the behavior geomaterials, particularly cohesive soils. Early in the development of constitutive models, it became evident that elastic or standard elastoplastic formulations, employing purely isotropic hardening and predicated in the existence of a yield surface surrounding a purely elastic domain, were incapable of realistically simulating the behavior of geomaterials. Accordingly, more sophisticated constitutive models have been developed; for example, the bounding surface elastoplasticity. The essence of the bounding surface concept is the hypothesis that plastic deformations can occur for stress states either within or on the bounding surface. Thus, unlike classical yield surface elastoplasticity, the plastic states are not restricted only to those lying on a surface. Elastoplastic bounding surface models have been improved; however, there is still need to improve their capabilities in simulating the response of anisotropically consolidated cohesive soils, especially the response in extension tests. Thus, in this work an improved constitutive model that can more accurately predict diverse stress-strain phenomena exhibited by cohesive soils was developed. Particularly, an improved rotational hardening rule that better simulate the response of cohesive soils in extension. The generalized definition of the bounding surface model provides a convenient and elegant framework for unifying various previous versions of the model for anisotropically consolidated cohesive soils. The Generalized Bounding Surface Model for cohesive soils is a fully three-dimensional, time-dependent model that accounts for both inherent and stress induced anisotropy employing a non-associative flow rule. The model numerical implementation in a computer code followed an adaptive multistep integration scheme in conjunction with local iteration and radial return. The one-step trapezoidal rule was used to get the stiffness matrix that defines the relationship between the stress increment and the strain increment. After testing the model in simulating the response of cohesive soils through extensive comparisons of model simulations to experimental data, it has been shown to give quite good simulations. The new model successfully simulates the response of different cohesive soils; for example, Cardiff Kaolin, Spestone Kaolin, and Lower Cromer Till. The simulated undrained stress paths, stress-strain response, and excess pore pressures are in very good agreement with the experimental values, especially in extension.

Keywords: bounding surface elastoplasticity, cohesive soils, constitutive model, modeling of geomaterials

Procedia PDF Downloads 293
81 Experimental and Modelling Performances of a Sustainable Integrated System of Conditioning for Bee-Pollen

Authors: Andrés Durán, Brian Castellanos, Marta Quicazán, Carlos Zuluaga-Domínguez

Abstract:

Bee-pollen is an apicultural-derived food product, with a growing appreciation among consumers given the remarkable nutritional and functional composition, in particular, protein (24%), dietary fiber (15%), phenols (15 – 20 GAE/g) and carotenoids (600 – 900 µg/g). These properties are given by the geographical and climatic characteristics of the region where it is collected. There are several countries recognized by their pollen production, e.g. China, United States, Japan, Spain, among others. Beekeepers use traps in the entrance of the hive where bee-pollen is collected. After the removal of foreign particles and drying, this product is ready to be marketed. However, in countries located along the equator, the absence of seasons and a constant tropical climate throughout the year favors a more rapid spoilage condition for foods with elevated water activity. The climatic conditions also trigger the proliferation of microorganisms and insects. This, added to the factor that beekeepers usually do not have adequate processing systems for bee-pollen, leads to deficiencies in the quality and safety of the product. In contrast, the Andean region of South America, lying on equator, typically has a high production of bee-pollen of up to 36 kg/year/hive, being four times higher than in countries with marked seasons. This region is also located in altitudes superior to 2500 meters above sea level, having extremes sun ultraviolet radiation all year long. As a mechanism of defense of radiation, plants produce more secondary metabolites acting as antioxidant agents, hence, plant products such as bee-pollen contain remarkable more phenolics and carotenoids than collected in other places. Considering this, the improvement of bee-pollen processing facilities by technical modifications and the implementation of an integrated cleaning and drying system for the product in an apiary in the area was proposed. The beehives were modified through the installation of alternative bee-pollen traps to avoid sources of contamination. The processing facility was modified according to considerations of Good Manufacturing Practices, implementing the combined use of a cabin dryer with temperature control and forced airflow and a greenhouse-type solar drying system. Additionally, for the separation of impurities, a cyclone type system was implemented, complementary to a screening equipment. With these modifications, a decrease in the content of impurities and the microbiological load of bee-pollen was seen from the first stages, principally with a reduction of the presence of molds and yeasts and in the number of foreign animal origin impurities. The use of the greenhouse solar dryer integrated to the cabin dryer allowed the processing of larger quantities of product with shorter waiting times in storage, reaching a moisture content of about 6% and a water activity lower than 0.6, being appropriate for the conservation of bee-pollen. Additionally, the contents of functional or nutritional compounds were not affected, even observing an increase of up to 25% in phenols content and a non-significant decrease in carotenoids content and antioxidant activity.

Keywords: beekeeping, drying, food processing, food safety

Procedia PDF Downloads 82
80 Office Workspace Design for Policewomen in Assam, India: Applications for Developing Countries

Authors: Shilpi Bora, Abhirup Chatterjee, Debkumar Chakrabarti

Abstract:

Organizations of all the sectors around the world are increasingly revisiting their workplace strategies with due concern for women working therein. Limited office space and rigid work arrangements contribute to lesser job satisfaction and greater work impoundments for any organization. Flexible workspace strategies are indispensable to accommodate the progressive rise of modular workstations and involvement of women. Today’s generation of employees deserves malleable office environments with employee-friendly job conditions and strategies. The workplace nowadays stands on rapid organizational changes in progressive and flexible work culture. Occupational well-being practices need to keep pace with the rapid changes in office-based work. Working at the office (workspace) with awkward postures or for long periods can cause pain, discomfort, and injury. The world is stirring towards the era of globalization and progress. The 4000 women police personnel constitute less than one per cent of the total police strength of India. Lots of innovative fields are growing fast, and it is important that we should accommodate women in those arenas. The timeworn trends should be set apart to set out for fresh opportunities and possibilities of development and success through more involvement of women in the workplace. The notion of women policing is gaining position throughout the world, and various countries are putting solemn efforts to mainstream women in policing. As the role of women policing in a society is budding, and thus it is also notable that the accessibility of women at general police stations should be considered. Accordingly, the impact of workspace at police station on the employee productivity has been widely deliberated as a crucial contributor to employee satisfaction leading to better functional motivation. Thus the present research aimed to look into the office workstation design of police station with reference to womanhood specific issues to uplift occupational wellbeing of the policewomen. Personal interview and individual responses collected through administering to a subjective assessment questionnaire on thirty women police as well as to have their views on these issues by purposive non-probability sampling of women police personnel of different ranks posted in Guwahati, Assam, India. Scrutiny of the collected data revealed that office design has a substantial impact on the policewomen job satisfaction in the police station. In this study, the workspace was designed in such a way that the set of factors would impact on the individual to ensure increased productivity. Office design such as furniture, noise, temperature, lighting and spatial arrangement were considered. The primary feature which affected the productivity of policewomen was the furniture used in the workspace, which was found to disturb the everyday and overall productivity of policewomen. Therefore, it was recommended to have proper and adequate ergonomics design intervention to improve the office design for better performance. This type of study is today’s need-of-the-hour to empower women and facilitate their inner talent to come up in service of the nation. The office workspace design also finds critical importance at several other occupations also – where office workstation needs further improvement.

Keywords: office workspace design, policewomen, womanhood concerns at workspace, occupational wellbeing

Procedia PDF Downloads 208
79 Formulation of Lipid-Based Tableted Spray-Congealed Microparticles for Zero Order Release of Vildagliptin

Authors: Hend Ben Tkhayat , Khaled Al Zahabi, Husam Younes

Abstract:

Introduction: Vildagliptin (VG), a dipeptidyl peptidase-4 inhibitor (DPP-4), was proven to be an active agent for the treatment of type 2 diabetes. VG works by enhancing and prolonging the activity of incretins which improves insulin secretion and decreases glucagon release, therefore lowering blood glucose level. It is usually used with various classes, such as insulin sensitizers or metformin. VG is currently only marketed as an immediate-release tablet that is administered twice daily. In this project, we aim to formulate an extended-release with a zero-order profile tableted lipid microparticles of VG that could be administered once daily ensuring the patient’s convenience. Method: The spray-congealing technique was used to prepare VG microparticles. Compritol® was heated at 10 oC above its melting point and VG was dispersed in the molten carrier using a homogenizer (IKA T25- USA) set at 13000 rpm. VG dispersed in the molten Compritol® was added dropwise to the molten Gelucire® 50/13 and PEG® (400, 6000, and 35000) in different ratios under manual stirring. The molten mixture was homogenized and Carbomer® amount was added. The melt was pumped through the two-fluid nozzle of the Buchi® Spray-Congealer (Buchi B-290, Switzerland) using a Pump drive (Master flex, USA) connected to a silicone tubing wrapped with silicone heating tape heated at the same temperature of the pumped mix. The physicochemical properties of the produced VG-loaded microparticles were characterized using Mastersizer, Scanning Electron Microscope (SEM), Differential Scanning Calorimeter (DSC) and X‐Ray Diffractometer (XRD). VG microparticles were then pressed into tablets using a single punch tablet machine (YDP-12, Minhua pharmaceutical Co. China) and in vitro dissolution study was investigated using Agilent Dissolution Tester (Agilent, USA). The dissolution test was carried out at 37±0.5 °C for 24 hours in three different dissolution media and time phases. The quantitative analysis of VG in samples was realized using a validated High-Pressure Liquid Chromatography (HPLC-UV) method. Results: The microparticles were spherical in shape with narrow distribution and smooth surface. DSC and XRD analyses confirmed the crystallinity of VG that was lost after being incorporated into the amorphous polymers. The total yields of the different formulas were between 70% and 80%. The VG content in the microparticles was found to be between 99% and 106%. The in vitro dissolution study showed that VG was released from the tableted particles in a controlled fashion. The adjustment of the hydrophilic/hydrophobic ratio of excipients, their concentration and the molecular weight of the used carriers resulted in tablets with zero-order kinetics. The Gelucire 50/13®, a hydrophilic polymer was characterized by a time-dependent profile with an important burst effect that was decreased by adding Compritol® as a lipophilic carrier to retard the release of VG which is highly soluble in water. PEG® (400,6000 and 35 000) were used for their gelling effect that led to a constant rate delivery and achieving a zero-order profile. Conclusion: Tableted spray-congealed lipid microparticles for extended-release of VG were successfully prepared and a zero-order profile was achieved.

Keywords: vildagliptin, spray congealing, microparticles, controlled release

Procedia PDF Downloads 102
78 Effect of Natural and Urban Environments on the Perception of Thermal Pain – Experimental Research Using Virtual Environments

Authors: Anna Mucha, Ewa Wojtyna, Anita Pollak

Abstract:

The environment in which an individual resides and observes may play a meaningful role in well-being and related constructs. Contact with nature may have a positive influence of natural environments on individuals, impacting mood and psychophysical sensations, such as pain relief. Conversely, urban settings, dominated by concrete elements, might lead to mood decline and heightened stress levels. Similarly, the situation may appear in the case of the perception of virtual environments. However, this is a topic that requires further exploration, especially in the context of relationships with pain. The aforementioned matters served as the basis for formulating and executing the outlined experimental research within the realm of environmental psychology, leveraging new technologies, notably virtual reality (VR), which is progressively gaining prominence in the domain of mental health. The primary objective was to investigate the impact of a simulated virtual environment, mirroring a natural setting abundant in greenery, on the perception of acute pain induced by thermal stimuli (high temperature) – encompassing intensity, unpleasantness, and pain tolerance. Comparative analyses were conducted between the virtual natural environment (intentionally constructed in the likeness of a therapeutic garden), virtual urban environment, and a control group devoid of virtual projections. Secondary objectives aimed to determine the mutual relationships among variables such as positive and negative emotions, preferences regarding virtual environments, sense of presence, and restorative experience in the context of the perception of presented virtual environments and induced thermal pain. The study encompassed 126 physically healthy Polish adults, distributing 42 individuals across each of the three comparative groups. Oculus Rift VR technology and the TSA-II neurosensory analyzer facilitated the experiment. Alongside demographic data, participants' subjective feelings concerning virtual reality and pain were evaluated using the Visual Analogue Scale (VAS), the original Restorative Experience in the Virtual World questionnaire (Doświadczenie Regeneracji w Wirtualnym Świecie), and an adapted Slater-Usoh-Steed (SUS) questionnaire. Results of statistical and psychometric analyses, such as Kruskal-Wallis tests, Wilcoxon tests, and contrast analyses, underscored the positive impact of the virtual natural environment on individual pain perception and mood. The virtual natural environment outperformed the virtual urban environment and the control group without virtual projection, particularly in subjective pain components like intensity and unpleasantness. Variables such as restorative experience, sense of presence and virtual environment preference also proved pivotal in pain perception and pain tolerance threshold alterations, contingent on specific conditions. This implies considerable application potential for virtual natural environments across diverse realms of psychology and related fields, among others as a supportive analgesic approach and a form of relaxation following psychotherapeutic sessions.

Keywords: environmental psychology, nature, acute pain, emotions, vitrual reality, virtual environments

Procedia PDF Downloads 38
77 Performance Assessment of Ventilation Systems for Operating Theatres

Authors: Clemens Bulitta, Sasan Sadrizadeh, Sebastian Buhl

Abstract:

Introduction: Ventilation technology in operating theatres (OT)is internationally regulated by dif-ferent standards, which define basic specifications for technical equipment and many times also the necessary operating and performance parameters. This confronts the operators of healthcare facilities with the question of finding the best ventilation and air conditioning system for the OT in order to achieve the goal of a large and robust surgicalworkzone with appropriate air quality and climate for patient safety and occupational health. Additionally, energy consumption and the potential need for clothing that limits transmission of bacteria must be considered as well as the total life cycle cost. However, the evaluation methodology of ventilation systems regarding these matters are still a topic of discussion. To date, there are neither any uniform standardized specifications nor any common validation criteria established. Thus, this study aimed to review data in the literature and add ourown research results to compare and assess the performance of different ventilations systems regarding infection preventive effects, energy efficiency, and staff comfort. Methods: We have conducted a comprehensive literature review on OT ventilation-related topics to understand the strengths and limitations of different ventilation systems. Furthermore, data from experimental assessments on OT ventilation systems at the University of Amberg-Weidenin Germany were in-cluded to comparatively assess the performance of Laminar Airflow (LAF), Turbulent Mixing Air-flow(TMA), and Temperature-controlled Airflow (TcAF) with regards to patient and occupational safety as well as staff comfort including indoor climate.CFD simulations from the Royal Institute of Technology in Sweden (KTH) were also studied to visualize the differences between these three kinds of ventilation systems in terms of the size of the surgical workzone, resilience to obstacles in the airflow, and energy use. Results: A variety of ventilation concepts are in use in the OT today. Each has its advantages and disadvantages, and thus one may be better suited than another depend-ing on the built environment and clinical workflow. Moreover, the proper functioning of OT venti-lation is also affected by multiple external and internal interfering factors. Based on the available data TcAF and LAF seem to provide the greatest effects regarding infection control and minimizing airborne risks for surgical site infections without the need for very tight surgical clothing systems. Resilience to obstacles, staff comfort, and energy efficiency seem to be favourable with TcAF. Conclusion: Based on literature data in current publications and our studies at the Technical Uni-versity of Applied Sciences Amberg-Weidenand the Royal Institute of Technoclogy, LAF and TcAF are more suitable for minimizing the risk for surgical site infections leading to improved clin-ical outcomes. Nevertheless, regarding the best management of thermal loads, atmosphere, energy efficiency, and occupational safety, overall results and data suggest that TcAF systems could pro-vide the economically most efficient and clinically most effective solution under routine clinical conditions.

Keywords: ventilation systems, infection control, energy efficiency, operating theatre, airborne infection risks

Procedia PDF Downloads 77
76 Epigastric Pain in Emergency Room: Median Arcuate Ligament Syndrome

Authors: Demet Devrimsel Dogan, Ecem Deniz Kirkpantur, Muharrem Dogan, Ahmet Aykut, Ebru Unal Akoglu, Ozge Ecmel Onur

Abstract:

Introduction: Median Arcuate Ligament Syndrome (MALS) is a rare cause of chronic abdominal pain due to external compression of the celiac trunk by a fibrous arch that unites diaphragmatic crura on each side of the aortic hiatus. While 10-24% of the population may suffer from compression of celiac trunk, it rarely causes patients to develop symptoms. The typical clinical triad of symptoms includes postprandial epigastric pain, weight loss and vomiting. The diagnosis can be made using thin section multi-detector computed tomography (CT) scans which delineate the ligament and the compressed vessel. The treatment of MALS is aimed at relieving the compression of the celiac artery to restore adequate blood flow through the vessel and neurolysis to address chronic pain. Case: A 68-year-old male presented to our clinic with acute postprandial epigastric pain. This was patients’ first attack, and the pain was the worst pain of his life. The patient did not have any other symptoms like nausea, vomiting, chest pain or dyspnea. In his medical history, the patient has had an ischemic cerebrovascular stroke 5 years ago which he recovered with no sequel, and he was using 75 mg clopidogrel and 100 mg acetylsalicylic acid. He was not using any other medication and did not have a story of cardiovascular disease. His vital signs were stable (BP:113/72 mmHg, Spo2:97, temperature:36.3°C, HR:90/bpm). In his electrocardiogram, there was ST depression in leads II, III and AVF. In his physical examination, there was only epigastric tenderness, other system examinations were normal. Physical examination through his upper gastrointestinal system showed no bleeding. His laboratory results were as follows: creatinine:1.26 mg/dL, AST:42 U/L, ALT:17 U/L, amylase:78 U/L, lipase:26 U/L, troponin:10.3 pg/ml, WBC:28.9 K/uL, Hgb:12.7 gr/dL, Plt:335 K/uL. His serial high-sensitive troponin levels were also within normal limits, his echocardiography showed no segmental wall motion abnormalities, an acute myocardial infarction was excluded. In his abdominal ultrasound, no pathology was founded. Contrast-enhanced abdominal CT and CT angiography reported ‘thickened diaphragmatic cruras are compressing and stenosing truncus celiacus superior, this is likely compatible with MALS’. The patient was consulted to general surgery, and they admitted the patient for laparoscopic ligament release. Results: MALS is a syndrome that causes postprandial pain, nausea and vomiting as its most common symptoms. Affected patients are normally young, slim women between the ages of 30 and 50 who have undergone extensive examinations to find the source of their symptoms. To diagnose MALS, other underlying pathologies should initially be excluded. The gold standard is aortic angiography. Although diagnosis and treatment of MALS are unclear, symptom resolution has been achieved with multiple surgical modalities, including open, laparoscopic or robotic ligament release as well as celiac ganglionectomy, which often requires celiac artery revascularisation.

Keywords: differential diagnosis, epigastric pain, median arcuate ligament syndrome, celiac trunk

Procedia PDF Downloads 233
75 Automated End of Sprint Detection for Force-Velocity-Power Analysis with GPS/GNSS Systems

Authors: Patrick Cormier, Cesar Meylan, Matt Jensen, Dana Agar-Newman, Chloe Werle, Ming-Chang Tsai, Marc Klimstra

Abstract:

Sprint-derived horizontal force-velocity-power (FVP) profiles can be developed with adequate validity and reliability with satellite (GPS/GNSS) systems. However, FVP metrics are sensitive to small nuances in data processing procedures such that minor differences in defining the onset and end of the sprint could result in different FVP metric outcomes. Furthermore, in team-sports, there is a requirement for rapid analysis and feedback of results from multiple athletes, therefore developing standardized and automated methods to improve the speed, efficiency and reliability of this process are warranted. Thus, the purpose of this study was to compare different methods of sprint end detection on the development of FVP profiles from 10Hz GPS/GNSS data through goodness-of-fit and intertrial reliability statistics. Seventeen national team female soccer players participated in the FVP protocol which consisted of 2x40m maximal sprints performed towards the end of a soccer specific warm-up in a training session (1020 hPa, wind = 0, temperature = 30°C) on an open grass field. Each player wore a 10Hz Catapult system unit (Vector S7, Catapult Innovations) inserted in a vest in a pouch between the scapulae. All data were analyzed following common procedures. Variables computed and assessed were the model parameters, estimated maximal sprint speed (MSS) and the acceleration constant τ, in addition to horizontal relative force (F₀), velocity at zero (V₀), and relative mechanical power (Pmax). The onset of the sprints was standardized with an acceleration threshold of 0.1 m/s². The sprint end detection methods were: 1. Time when peak velocity (MSS) was achieved (zero acceleration), 2. Time after peak velocity drops by -0.4 m/s, 3. Time after peak velocity drops by -0.6 m/s, and 4. When the integrated distance from the GPS/GNSS signal achieves 40-m. Goodness-of-fit of each sprint end detection method was determined using the residual sum of squares (RSS) to demonstrate the error of the FVP modeling with the sprint data from the GPS/GNSS system. Inter-trial reliability (from 2 trials) was assessed utilizing intraclass correlation coefficients (ICC). For goodness-of-fit results, the end detection technique that used the time when peak velocity was achieved (zero acceleration) had the lowest RSS values, followed by -0.4 and -0.6 velocity decay, and 40-m end had the highest RSS values. For intertrial reliability, the end of sprint detection techniques that were defined as the time at (method 1) or shortly after (method 2 and 3) when MSS was achieved had very large to near perfect ICC and the time at the 40 m integrated distance (method 4) had large to very large ICCs. Peak velocity was reached at 29.52 ± 4.02-m. Therefore, sport scientists should implement end of sprint detection either when peak velocity is determined or shortly after to improve goodness of fit to achieve reliable between trial FVP profile metrics. Although, more robust processing and modeling procedures should be developed in future research to improve sprint model fitting. This protocol was seamlessly integrated into the usual training which shows promise for sprint monitoring in the field with this technology.

Keywords: automated, biomechanics, team-sports, sprint

Procedia PDF Downloads 94
74 Feasibility of Washing/Extraction Treatment for the Remediation of Deep-Sea Mining Trailings

Authors: Kyoungrean Kim

Abstract:

Importance of deep-sea mineral resources is dramatically increasing due to the depletion of land mineral resources corresponding to increasing human’s economic activities. Korea has acquired exclusive exploration licenses at four areas which are the Clarion-Clipperton Fracture Zone in the Pacific Ocean (2002), Tonga (2008), Fiji (2011) and Indian Ocean (2014). The preparation for commercial mining of Nautilus minerals (Canada) and Lockheed martin minerals (USA) is expected by 2020. The London Protocol 1996 (LP) under International Maritime Organization (IMO) and International Seabed Authority (ISA) will set environmental guidelines for deep-sea mining until 2020, to protect marine environment. In this research, the applicability of washing/extraction treatment for the remediation of deep-sea mining tailings was mainly evaluated in order to present preliminary data to develop practical remediation technology in near future. Polymetallic nodule samples were collected at the Clarion-Clipperton Fracture Zone in the Pacific Ocean, then stored at room temperature. Samples were pulverized by using jaw crusher and ball mill then, classified into 3 particle sizes (> 63 µm, 63-20 µm, < 20 µm) by using vibratory sieve shakers (Analysette 3 Pro, Fritsch, Germany) with 63 µm and 20 µm sieve. Only the particle size 63-20 µm was used as the samples for investigation considering the lower limit of ore dressing process which is tens to 100 µm. Rhamnolipid and sodium alginate as biosurfactant and aluminum sulfate which are mainly used as flocculant were used as environmentally friendly additives. Samples were adjusted to 2% liquid with deionized water then mixed with various concentrations of additives. The mixture was stirred with a magnetic bar during specific reaction times and then the liquid phase was separated by a centrifugal separator (Thermo Fisher Scientific, USA) under 4,000 rpm for 1 h. The separated liquid was filtered with a syringe and acrylic-based filter (0.45 µm). The extracted heavy metals in the filtered liquid were then determined using a UV-Vis spectrometer (DR-5000, Hach, USA) and a heat block (DBR 200, Hach, USA) followed by US EPA methods (8506, 8009, 10217 and 10220). Polymetallic nodule was mainly composed of manganese (27%), iron (8%), nickel (1.4%), cupper (1.3 %), cobalt (1.3%) and molybdenum (0.04%). Based on remediation standards of various countries, Nickel (Ni), Copper (Cu), Cadmium (Cd) and Zinc (Zn) were selected as primary target materials. Throughout this research, the use of rhamnolipid was shown to be an effective approach for removing heavy metals in samples originated from manganese nodules. Sodium alginate might also be one of the effective additives for the remediation of deep-sea mining tailings such as polymetallic nodules. Compare to the use of rhamnolipid and sodium alginate, aluminum sulfate was more effective additive at short reaction time within 4 h. Based on these results, sequencing particle separation, selective extraction/washing, advanced filtration of liquid phase, water treatment without dewatering and solidification/stabilization may be considered as candidate technologies for the remediation of deep-sea mining tailings.

Keywords: deep-sea mining tailings, heavy metals, remediation, extraction, additives

Procedia PDF Downloads 136
73 Structural Molecular Dynamics Modelling of FH2 Domain of Formin DAAM

Authors: Rauan Sakenov, Peter Bukovics, Peter Gaszler, Veronika Tokacs-Kollar, Beata Bugyi

Abstract:

FH2 (formin homology-2) domains of several proteins, collectively known as formins, including DAAM, DAAM1 and mDia1, promote G-actin nucleation and elongation. FH2 domains of these formins exist as oligomers. Chain dimerization by ring structure formation serves as a structural basis for actin polymerization function of FH2 domain. Proper single chain configuration and specific interactions between its various regions are necessary for individual chains to form a dimer functional in G-actin nucleation and elongation. FH1 and WH2 domain-containing formins were shown to behave as intrinsically disordered proteins. Thus, the aim of this research was to study structural dynamics of FH2 domain of DAAM. To investigate structural features of FH2 domain of DAAM, molecular dynamics simulation of chain A of FH2 domain of DAAM solvated in water box in 50 mM NaCl was conducted at temperatures from 293.15 to 353.15K, with VMD 1.9.2, NAMD 2.14 and Amber Tools 21 using 2z6e and 1v9d PDB structures of DAAM was obtained on I-TASSER webserver. Calcium and ATP bound G-actin 3hbt PDB structure was used as a reference protein with well-described structural dynamics of denaturation. Topology and parameter information of CHARMM 2012 additive all-atom force fields for proteins, carbohydrate derivatives, water and ions were used in NAMD 2.14 and ff19SB force field for proteins in Amber Tools 21. The systems were energy minimized for the first 1000 steps, equilibrated and produced in NPT ensemble for 1ns using stochastic Langevin dynamics and the particle mesh Ewald method. Our root-mean square deviation (RMSD) analysis of molecular dynamics of chain A of FH2 domains of DAAM revealed similar insignificant changes of total molecular average RMSD values of FH2 domain of these formins at temperatures from 293.15 to 353.15K. In contrast, total molecular average RMSD values of G-actin showed considerable increase at 328K, which corresponds to the denaturation of G-actin molecule at this temperature and its transition from native, ordered, to denatured, disordered, state which is well-described in the literature. RMSD values of lasso and tail regions of chain A of FH2 domain of DAAM exhibited higher than total molecular average RMSD at temperatures from 293.15 to 353.15K. These regions are functional in intra- and interchain interactions and contain highly conserved tryptophan residues of lasso region, highly conserved GNYMN sequence of post region and amino acids of the shell of hydrophobic pocket of the salt bridge between Arg171 and Asp321, which are important for structural stability and ordered state of FH2 domain of DAAM and its functions in FH2 domain dimerization. In conclusion, higher than total molecular average RMSD values of lasso and post regions of chain A of FH2 domain of DAAM may explain disordered state of FH2 domain of DAAM at temperatures from 293.15 to 353.15K. Finally, absence of marked transition, in terms of significant changes in average molecular RMSD values between native and denatured states of FH2 domain of DAAM at temperatures from 293.15 to 353.15K, can make it possible to attribute these formins to the group of intrinsically disordered proteins rather than to the group of intrinsically ordered proteins such as G-actin.

Keywords: FH2 domain, DAAM, formins, molecular modelling, computational biophysics

Procedia PDF Downloads 108
72 Creation of a Test Machine for the Scientific Investigation of Chain Shot

Authors: Mark McGuire, Eric Shannon, John Parmigiani

Abstract:

Timber harvesting increasingly involves mechanized equipment. This has increased the efficiency of harvesting, but has also introduced worker-safety concerns. One such concern arises from the use of harvesters. During operation, harvesters subject saw chain to large dynamic mechanical stresses. These stresses can, under certain conditions, cause the saw chain to fracture. The high speed of harvester saw chain can cause the resulting open chain loop to fracture a second time due to the dynamic loads placed upon it as it travels through space. If a second fracture occurs, it can result in a projectile consisting of one-to-several chain links. This projectile is referred to as a chain shot. It has speeds similar to a bullet but typically has greater mass and is a significant safety concern. Numerous examples exist of chain shots penetrating bullet-proof barriers and causing severe injury and death. Improved harvester-cab barriers can help prevent injury however a comprehensive scientific understanding of chain shot is required to consistently reduce or prevent it. Obtaining this understanding requires a test machine with the capability to cause chain shot to occur under carefully controlled conditions and accurately measure the response. Worldwide few such test machine exist. Those that do focus on validating the ability of barriers to withstand a chain shot impact rather than obtaining a scientific understanding of the chain shot event itself. The purpose of this paper is to describe the design, fabrication, and use of a test machine capable of a comprehensive scientific investigation of chain shot. The capabilities of this machine are to test all commercially-available saw chains and bars at chain tensions and speeds meeting and exceeding those typically encountered in harvester use and accurately measure the corresponding key technical parameters. The test machine was constructed inside of a standard shipping container. This provides space for both an operator station and a test chamber. In order to contain the chain shot under any possible test conditions, the test chamber was lined with a base layer of AR500 steel followed by an overlay of HDPE. To accommodate varying bar orientations and fracture-initiation sites, the entire saw chain drive unit and bar mounting system is modular and capable of being located anywhere in the test chamber. The drive unit consists of a high-speed electric motor with a flywheel. Standard Ponsse harvester head components are used to bar mounting and chain tensioning. Chain lubrication is provided by a separate peristaltic pump. Chain fracture is initiated through ISO standard 11837. Measure parameters include shaft speed, motor vibration, bearing temperatures, motor temperature, motor current draw, hydraulic fluid pressure, chain force at fracture, and high-speed camera images. Results show that the machine is capable of consistently causing chain shot. Measurement output shows fracture location and the force associated with fracture as a function of saw chain speed and tension. Use of this machine will result in a scientific understanding of chain shot and consequently improved products and greater harvester operator safety.

Keywords: chain shot, safety, testing, timber harvesters

Procedia PDF Downloads 126
71 Tectonics of Out-of-Sequence Thrusting in NW Himachal Himalaya, India

Authors: Rajkumar Ghosh

Abstract:

Jhakri Thrust (JT), Sarahan Thrust (ST), and Chaura Thrust (CT) are the three OOST along Jakhri-Chaura segment along the Sutlej river valley in Himachal Pradesh. CT is deciphered only by Apatite Fission Track dating. Such geochronological information is not currently accessible for the Jhakri and Sarahan thrusts. JT was additionally validated as OOST without any dating. The described rock types include ductile sheared gneisses and upper greenschist-amphibolite facies metamorphosed schists. Locally, the Munsiari (Jutogh) Thrust is referred to as the JT. Brittle shear, the JT, borders the research area's southern and ductile shear, the CT, and its northern margins. The JT has a 50° western dip and is south-westward verging. It is 15–17 km deep. A progressive rise in strain towards the JT zone based on microstructural tests was observed by previous researchers. The high-temperature ranges of the MCT root zone are cited in the current work as supportive evidence for the ductile nature of the OOST. In Himachal Pradesh, the lithological boundaries for OOST are not set. In contrast, the Sarahan thrust is NW-SE striking and 50-80 m wide. ST and CT are probably equivalent and marked by a sheared biotite-chlorite matrix with a top-to-SE kinematic indicator. It is inferred from cross-section balancing that the CT is folded with this anticlinorium. These thrust systems consist of several branches, some of which are still active. The thrust system exhibits complex internal geometry consisting of box folds, boudins, scar folds, crenulation cleavages, kink folds, and tension gashes. Box folds are observed on the hanging wall of the Chaura thrust. The ductile signature of CT represents steepen downward of the thrust. After the STDSU stopped deformation, out-of-sequence thrust was initiated in some sections of the Higher Himalaya. A part of GHC and part of the LH is thrust southwestward along the Jutogh Thrust/Munsiari Thrust/JT as also the Jutogh Nappe. The CT is concealed beneath Jutogh Thrust sheet hence the basal part of GHC is unexposed to the surface in Sutlej River section. Fieldwork and micro-structural studies of the Greater Himalayan Crystalline (GHC) along the Sutlej section reveal (a) initial top-to-SW sense of ductile shearing (CT); (b) brittle-ductile extension (ST); and (c) uniform top-to-SW sense of brittle shearing (JT). A group of samples of schistose rock from Jutogh Group of Greater Himalayan Crystalline and Quartzite from Rampur Group of Lesser Himalayan Crystalline were analyzed. No such physiographic transition in that area is to determine a break in the landscape due to OOST. OOSTs from GHC are interpreted mainly from geochronological studies to date, but proper field evidence is missing. Apart from minimal documentation in geological mapping for OOST, there exists a lack of suitable exposure of rock to generalize the features of OOST in the field in NW Higher Himalaya. Multiple sets of thrust planes may be activated within this zone or a zone along which OOST is engaged.

Keywords: out-of-sequence thrust, main central thrust, grain boundary migration, South Tibetan detachment system, Jakhri Thrust, Sarahan Thrust, Chaura Thrust, higher Himalaya, greater Himalayan crystalline

Procedia PDF Downloads 54
70 Characterizing the Spatially Distributed Differences in the Operational Performance of Solar Power Plants Considering Input Volatility: Evidence from China

Authors: Bai-Chen Xie, Xian-Peng Chen

Abstract:

China has become the world's largest energy producer and consumer, and its development of renewable energy is of great significance to global energy governance and the fight against climate change. The rapid growth of solar power in China could help achieve its ambitious carbon peak and carbon neutrality targets early. However, the non-technical costs of solar power in China are much higher than at international levels, meaning that inefficiencies are rooted in poor management and improper policy design and that efficiency distortions have become a serious challenge to the sustainable development of the renewable energy industry. Unlike fossil energy generation technologies, the output of solar power is closely related to the volatile solar resource, and the spatial unevenness of solar resource distribution leads to potential efficiency spatial distribution differences. It is necessary to develop an efficiency evaluation method that considers the volatility of solar resources and explores the mechanism of the influence of natural geography and social environment on the spatially varying characteristics of efficiency distribution to uncover the root causes of managing inefficiencies. The study sets solar resources as stochastic inputs, introduces a chance-constrained data envelopment analysis model combined with the directional distance function, and measures the solar resource utilization efficiency of 222 solar power plants in representative photovoltaic bases in northwestern China. By the meta-frontier analysis, we measured the characteristics of different power plant clusters and compared the differences among groups, discussed the mechanism of environmental factors influencing inefficiencies, and performed statistical tests through the system generalized method of moments. Rational localization of power plants is a systematic project that requires careful consideration of the full utilization of solar resources, low transmission costs, and power consumption guarantee. Suitable temperature, precipitation, and wind speed can improve the working performance of photovoltaic modules, reasonable terrain inclination can reduce land cost, and the proximity to cities strongly guarantees the consumption of electricity. The density of electricity demand and high-tech industries is more important than resource abundance because they trigger the clustering of power plants to result in a good demonstration and competitive effect. To ensure renewable energy consumption, increased support for rural grids and encouraging direct trading between generators and neighboring users will provide solutions. The study will provide proposals for improving the full life-cycle operational activities of solar power plants in China to reduce high non-technical costs and improve competitiveness against fossil energy sources.

Keywords: solar power plants, environmental factors, data envelopment analysis, efficiency evaluation

Procedia PDF Downloads 61
69 Isolation and Identification of Low-Temperature Tolerant-Yeast Strains from Apple with Biocontrol Activity

Authors: Lachin Mikjtarnejad, Mohsen Farzaneh

Abstract:

Various microbes, such as fungi and bacteria species, are naturally found in the fruit microbiota, and some of them act as a pathogen and result in fruit rot. Among non-pathogenic microbes, yeasts (single-celled microorganisms belonging to the fungi kingdom) can colonize fruit tissues and interact with them without causing any damage to them. Although yeasts are part of the plant microbiota, there is little information about their interactions with plants in comparison with bacteria and filamentous fungi. According to several existing studies, some yeasts can colonize different plant species and have the biological control ability to suppress some of the plant pathogens. It means those specific yeast-colonized plants are more resistant to some plant pathogens. The major objective of the present investigation is to isolate yeast strains from apple fruit and screen their ability to control Penicillium expansum, the causal agent of blue mold of fruits. In the present study, psychrotrophic and epiphytic yeasts were isolated from apple fruits that were stored at low temperatures (0–1°C). Totally, 42 yeast isolates were obtained and identified by molecular analysis based on genomic sequences of the D1/D2 and ITS1/ITS4 regions of their rDNA. All isolated yeasts were primarily screened by' in vitro dual culture assay against P. expansum by measuring the fungus' relative growth inhibition after 10 days of incubation. The results showed that the mycelial growth of P. expansum was reduced between 41–53% when challenged by promising yeast strains. The isolates with the strongest antagonistic activity belonged to Metschnikowia pulcherrima A13, Rhodotorula mucilaginosa A41, Leucosporidium Scottii A26, Aureobasidium pullulans A19, Pichia guilliermondii A32, Cryptococcus flavescents A25, and Pichia kluyveri A40. The results of seven superior isolates to inhibit blue mold decay on fruit showed that isolates A. pullulans A19, L. scottii A26, and Pi. guilliermondii A32 could significantly reduce the fruit rot and decay with 26 mm, 22 mm and 20 mm zone diameter, respectively, compared to the control sample with 43 mm. Our results show Pi. guilliermondii strain A13 was the most effective yeast isolates in inhibiting P. expansum on apple fruits. In addition, various biological control mechanisms of promising biological isolates against blue mold have been evaluated to date, including competition for nutrients and space, production of volatile metabolites, reduction of spore germination, production of siderophores and production of extracellular lytic enzymes such as chitinase and β-1,3-glucanase. However, the competition for nutrients and the ability to inhibit P. expansum spore growth have been introduced as the prevailing mechanisms among them. Accordingly, in our study, isolates A13, A41, A40, A25, A32, A19 and A26 inhibited the germination of P. expansum, whereas isolates A13 and A19 were the strongest inhibitors of P. expansum mycelia growth, causing 89.13% and 81.75 % reduction in the mycelial surface, respectively. All the promising isolates produced chitinase and β-1,3-glucanase after 3, 5 and 7 days of cultivation. Finally, based on our findings, we are proposing that, Pi. guilliermondiias as an effective biocontrol agent and alternative to chemical fungicides to control the blue mold of apple fruit.

Keywords: yeast, yeast enzymes, biocontrol, post harvest diseases

Procedia PDF Downloads 93
68 Numerical Simulation of the Production of Ceramic Pigments Using Microwave Radiation: An Energy Efficiency Study Towards the Decarbonization of the Pigment Sector

Authors: Pedro A. V. Ramos, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

Global warming mitigation is one of the main challenges of this century, having the net balance of greenhouse gas (GHG) emissions to be null or negative in 2050. Industry electrification is one of the main paths to achieving carbon neutrality within the goals of the Paris Agreement. Microwave heating is becoming a popular industrial heating mechanism due to the absence of direct GHG emissions, but also the rapid, volumetric, and efficient heating. In the present study, a mathematical model is used to simulate the production using microwave heating of two ceramic pigments, at high temperatures (above 1200 Celsius degrees). The two pigments studied were the yellow (Pr, Zr)SiO₂ and the brown (Ti, Sb, Cr)O₂. The chemical conversion of reactants into products was included in the model by using the kinetic triplet obtained with the model-fitting method and experimental data present in the Literature. The coupling between the electromagnetic, thermal, and chemical interfaces was also included. The simulations were computed in COMSOL Multiphysics. The geometry includes a moving plunger to allow for the cavity impedance matching and thus maximize the electromagnetic efficiency. To accomplish this goal, a MATLAB controller was developed to automatically search the position of the moving plunger that guarantees the maximum efficiency. The power is automatically and permanently adjusted during the transient simulation to impose stationary regime and total conversion, the two requisites of every converged solution. Both 2D and 3D geometries were used and a parametric study regarding the axial bed velocity and the heat transfer coefficient at the boundaries was performed. Moreover, a Verification and Validation study was carried out by comparing the conversion profiles obtained numerically with the experimental data available in the Literature; the numerical uncertainty was also estimated to attest to the result's reliability. The results show that the model-fitting method employed in this work is a suitable tool to predict the chemical conversion of reactants into the pigment, showing excellent agreement between the numerical results and the experimental data. Moreover, it was demonstrated that higher velocities lead to higher thermal efficiencies and thus lower energy consumption during the process. This work concludes that the electromagnetic heating of materials having high loss tangent and low thermal conductivity, like ceramic materials, maybe a challenge due to the presence of hot spots, which may jeopardize the product quality or even the experimental apparatus. The MATLAB controller increased the electromagnetic efficiency by 25% and global efficiency of 54% was obtained for the titanate brown pigment. This work shows that electromagnetic heating will be a key technology in the decarbonization of the ceramic sector as reductions up to 98% in the specific GHG emissions were obtained when compared to the conventional process. Furthermore, numerical simulations appear as a suitable technique to be used in the design and optimization of microwave applicators, showing high agreement with experimental data.

Keywords: automatic impedance matching, ceramic pigments, efficiency maximization, high-temperature microwave heating, input power control, numerical simulation

Procedia PDF Downloads 114
67 Avoidance of Brittle Fracture in Bridge Bearings: Brittle Fracture Tests and Initial Crack Size

Authors: Natalie Hoyer

Abstract:

Bridges in both roadway and railway systems depend on bearings to ensure extended service life and functionality. These bearings enable proper load distribution from the superstructure to the substructure while permitting controlled movement of the superstructure. The design of bridge bearings, according to Eurocode DIN EN 1337 and the relevant sections of DIN EN 1993, increasingly requires the use of thick plates, especially for long-span bridges. However, these plate thicknesses exceed the limits specified in the national appendix of DIN EN 1993-2. Furthermore, compliance with DIN EN 1993-1-10 regulations regarding material toughness and through-thickness properties necessitates further modifications. Consequently, these standards cannot be directly applied to the selection of bearing materials without supplementary guidance and design rules. In this context, a recommendation was developed in 2011 to regulate the selection of appropriate steel grades for bearing components. Prior to the initiation of the research project underlying this contribution, this recommendation had only been available as a technical bulletin. Since July 2023, it has been integrated into guideline 804 of the German railway. However, recent findings indicate that certain bridge-bearing components are exposed to high fatigue loads, which necessitate consideration in structural design, material selection, and calculations. Therefore, the German Centre for Rail Traffic Research called a research project with the objective of defining a proposal to expand the current standards in order to implement a sufficient choice of steel material for bridge bearings to avoid brittle fracture, even for thick plates and components subjected to specific fatigue loads. The results obtained from theoretical considerations, such as finite element simulations and analytical calculations, are validated through large-scale component tests. Additionally, experimental observations are used to calibrate the calculation models and modify the input parameters of the design concept. Within the large-scale component tests, a brittle failure is artificially induced in a bearing component. For this purpose, an artificially generated initial defect is introduced at the previously defined hotspot into the specimen using spark erosion. Then, a dynamic load is applied until the crack initiation process occurs to achieve realistic conditions in the form of a sharp notch similar to a fatigue crack. This initiation process continues until the crack length reaches a predetermined size. Afterward, the actual test begins, which requires cooling the specimen with liquid nitrogen until a temperature is reached where brittle fracture failure is expected. In the next step, the component is subjected to a quasi-static tensile test until failure occurs in the form of a brittle failure. The proposed paper will present the latest research findings, including the results of the conducted component tests and the derived definition of the initial crack size in bridge bearings.

Keywords: bridge bearings, brittle fracture, fatigue, initial crack size, large-scale tests

Procedia PDF Downloads 9
66 Modelling Pest Immigration into Rape Seed Crops under Past and Future Climate Conditions

Authors: M. Eickermann, F. Ronellenfitsch, J. Junk

Abstract:

Oilseed rape (Brassica napus L.) is one of the most important crops throughout Europe, but pressure due to pest insects and pathogens can reduce yield amount substantially. Therefore, the usage of pesticide applications is outstanding in this crop. In addition, climate change effects can interact with phenology of the host plant and their pests and can apply additional pressure on the yield. Next to the pollen beetle, Meligethes aeneus L., the seed-damaging pest insects, cabbage seed weevil (Ceutorhynchus obstrictus Marsham) and the brassica pod midge (Dasineura brassicae Winn.) are of main economic impact to the yield. While females of C. obstrictus are infesting oilseed rape by depositing single eggs into young pods, the females of D. brassicae are using this local damage in the pod for their own oviposition, while depositing batches of 20-30 eggs. Without a former infestation by the cabbage seed weevil, a significant yield reduction by the brassica pod midge can be denied. Based on long-term, multisided field experiments, a comprehensive data-set on pest migration to crops of B. napus has been built up in the last ten years. Five observational test sides, situated in different climatic regions in Luxembourg were controlled between February until the end of May twice a week. Pest migration was recorded by using yellow water pan-traps. Caught insects were identified in the laboratory according to species specific identification keys. By a combination of pest observations and corresponding meteorological observations, the set-up of models to predict the migration periods of the seed-damaging pests was possible. This approach is the basis for a computer-based decision support tool, to assist the farmer in identifying the appropriate time point of pesticide application. In addition, the derived algorithms of that decision support tool can be combined with climate change projections in order to assess the future potential threat caused by the seed-damaging pest species. Regional climate change effects for Luxembourg have been intensively studied in recent years. Significant changes to wetter winters and drier summers, as well as a prolongation of the vegetation period mainly caused by higher spring temperature, have also been reported. We used the COSMO-CLM model to perform a time slice experiment for Luxembourg with a spatial resolution of 1.3 km. Three ten year time slices were calculated: The reference time span (1991-2000), the near (2041-2050) and the far future (2091-2100). Our results projected a significant shift of pest migration to an earlier onset of the year. In addition, a prolongation of the possible migration period could be observed. Because D. brassiace is depending on the former oviposition activity by C. obstrictus to infest its host plant successfully, the future dependencies of both pest species will be assessed. Based on this approach the future risk potential of both seed-damaging pests is calculated and the status as pest species is characterized.

Keywords: CORDEX projections, decision support tool, Brassica napus, pests

Procedia PDF Downloads 350
65 Emergency Department Utilisation of Older People Presenting to Four Emergency Departments

Authors: M. Fry, L. Fitzpatrick, Julie Considine, R. Z. Shaban, Kate Curtis

Abstract:

Introduction: The vast majority of older Australians lives independently and are self-managing at home, despite a growing number living with a chronic illness that requires health intervention. Evidence shows that between 50% and 80% of people presenting to the emergency department (ED) are in pain. Australian EDs manage 7.2 million attendances every year and 1.4 million of these are people aged 65 years or more. Research shows that 28% of ED patients aged 65 years or more have Cognitive impairment (CI) associated with dementia, delirium and neurological conditions. Background: Traditional ED service delivery may not be suitable for older people who present with multiple, complex and ongoing illnesses. Likewise, ED clinical staff often perceive that their role should be focused more on immediate and potential lifethreatening illness and conditions which are episodic in nature. Therefore, the needs of older people and their family/carers may not be adequately addressed in the context of an ED presentation. Aim: We aimed to explore the utilisation and characteristics of older people presenting to four metropolitan EDs. Method: The findings being presented are part of a program of research exploring pain management practices for older persons with long bone fractures. The study was conducted across four metropolitan emergency departments of older patients (65years and over) and involved a 12-month randomised medical record audit (n=255). Results: ED presentations across four ED sites in 2012 numbered 168021, with 44778 (26.6%) patients aged 65 and over. Of the 44778 patients, the average age was 79.1 years (SD 8.54). There were more females 23932 (53.5%). The majority (26925: 85.0%) of older persons self-referred to the ED and lived independently. The majority arrived by ambulance (n=18553: 41.4%) and were allocated triage category was 3 (n=19,507:43.65%) or Triage category 4 at (n=15,389: 34.43%). The top five triage symptom presentations involved pain (n=8088; 18.25%), dyspnoea (n=4735; 10.7%), falls (n=4032; 9.1%), other (n=3984; 9.0%), cardiac (n=2987; 6.7%). The top five system based diagnostic presentations involved musculoskeletal (n=8902; 20.1%), cardiac (n=6704:15.0%), respiratory (n=4933; 11.0%), neurological (n=4909; 11.0%), gastroenterology (n=4321; 9.7%). On review of one tertiary hospital database the vital signs on average at time triage: Systolic Blood Pressure 143.6mmHg. Heart Rate 83.4 beats/minute; Respiratory Rate 18.5 breaths/ minute; Oxygen saturation 97.0% and Tympanic temperature 36.7 and Blood Glucose Level 7.4mmols/litre. The majority presented with a Glasgow Coma Score of 14 or higher. On average the older person stayed in the ED 4:56 (SD 3:28minutes).The average time to be seen was 39 minutes (SD 48 minutes). The majority of older persons were admitted (n=27562: 61.5%), did not wait for treatment (n= 8879: 0.02%) discharged home (n=16256: 36.0%). Conclusion: The vast majority of older persons are living independently, although many require admission on arrival to the ED. Many arrived in pain and with musculoskeletal injuries and or conditions. New models of care need to be considered, which may better support self-management and independent living of the older person and the National Emergency Access Targets.

Keywords: chronic, older person, aged care, emergency department

Procedia PDF Downloads 208
64 Solar Photovoltaic Driven Air-Conditioning for Commercial Buildings: A Case of Botswana

Authors: Taboka Motlhabane, Pradeep Sahoo

Abstract:

The global demand for cooling has grown exponentially over the past century to meet economic development and social needs, accounting for approximately 10% of the global electricity consumption. As global temperatures continue to rise, the demand for cooling and heating, ventilation and air-conditioning (HVAC) equipment is set to rise with it. The increased use of HVAC equipment has significantly contributed to the growth of greenhouse gas (GHG) emissions which aid the climate crisis- one of the biggest challenges faced by the current generation. The need to address emissions caused directly by HVAC equipment and electricity generated to meet the cooling or heating demand is ever more pressing. Currently, developed countries account for the largest cooling and heating demand, however developing countries are anticipated to experience a huge increase in population growth in 10 years, resulting in a shift in energy demand. Developing countries, which are projected to account for nearly 60% of the world's GDP by 2030, are rapidly building infrastructure and economies to meet their growing needs and meet these projections. Cooling, a very energy-intensive process that can account for 20 % to 75% of a building's energy, depending on the building's use. Solar photovoltaic (PV) driven air-conditioning offers a great cost-effective alternative for adoption in both residential and non-residential buildings to offset grid electricity, particularly in countries with high irradiation, such as Botswana. This research paper explores the potential of a grid-connected solar photovoltaic vapor-compression air-conditioning system for the Peter-Smith herbarium at the Okavango Research Institute (ORI) University of Botswana campus in Maun, Botswana. The herbarium plays a critical role in the collection and preservation of botanical data, dating back over 100 years, with pristine collection from the Okavango Delta, a UNESCO world heritage site and serves as a reference and research site. Due to the herbarium’s specific needs, it operates throughout the day and year in an attempt to maintain a constant herbarium temperature of 16°?. The herbarium model studied simulates a variable-air-volume HVAC system with a system rating of 30 kW. Simulation results show that the HVAC system accounts for 68.9% of the building's total electricity at 296 509.60 kWh annually. To offset the grid electricity, a 175.1 kWp nominal power rated PV system requiring 416 modules to match the required power, covering an area of 928 m2 is used to meet the HVAC system annual needs. An economic assessment using PVsyst found that for an installation priced with average solar PV prices in Botswana totalled to be 787 090.00 BWP, with annual operating costs of 30 500 BWP/year. With self-project financing, the project is estimated to have recouped its initial investment within 6.7 years. At an estimated project lifetime of 20 years, the Net Present Value is projected at 1 565 687.00 BWP with a ROI of 198.9%, with 74 070.67 tons of CO2 saved at the end of the project lifetime. This study investigates the performance of the HVAC system to meet the indoor air comfort requirements, the annual PV system performance, and the building model has been simulated using DesignBuilder Software.

Keywords: vapor compression refrigeration, solar cooling, renewable energy, herbarium

Procedia PDF Downloads 105
63 Biotite from Contact-Metamorphosed Rocks of the Dizi Series of the Greater Caucasus

Authors: Irakli Javakhishvili, Tamara Tsutsunava, Giorgi Beridze

Abstract:

The Caucasus is a component of the Mediterranean collision belt. The Dizi series is situated within the Greater Caucasian region of the Caucasus and crops out in the core of the Svaneti anticlinorium. The series was formed in the continental slope conditions on the southern passive margin of the small ocean basin. The Dizi series crops out on about 560 square km with the thickness 2000-2200 m. The rocks are faunally dated from the Devonian to the Triassic inclusive. The series is composed of terrigenous phyllitic schists, sandstones, quartzite aleurolites and lenses and interlayers of marbleized limestones. During the early Cimmerian orogeny, they underwent regional metamorphism of chlorite-sericite subfacies of greenschist facies. Typical minerals of metapelites are chlorite, sericite, augite, quartz, and tourmaline, but of basic rocks - actinolite, fibrolite, prehnite, calcite, and chlorite are developed. Into the Dizi series, polyphase intrusions of gabbros, diorites, quartz-diorites, syenite-diorites, syenites, and granitoids are intruded. Their K-Ar age dating (176-165Ma) points out that their formation corresponds to the Bathonian orogeny. The Dizi series is well-studied geologically, but very complicated processes of its regional and contact metamorphisms are insufficiently investigated. The aim of the authors was a detailed study of contact metamorphism processes of the series rocks. Investigations were accomplished applying the following methodologies: finding of key sections, a collection of material, microscopic study of samples, microprobe and structural analysis of minerals and X-ray determination of elements. The Dizi series rocks formed under the influence of the Bathonian magmatites on metapelites and carbonate-enriched rocks. They are represented by quartz, biotite, sericite, graphite, andalusite, muscovite, plagioclase, corundum, cordierite, clinopyroxene, hornblende, cummingtonite, actinolite, and tremolite bearing hornfels, marbles, and skarns. The contact metamorphism aureole reaches 350 meters. Biotite is developed only in contact-metamorphosed rocks and is a rather informative index mineral. In metapelites, biotite is formed as a result of the reaction between phengite, chlorite, and leucoxene, but in basites, it replaces actinolite or actinolite-hornblende. To study the compositional regularities of biotites, they were investigated from both - metapelites and metabasites. In total, biotite from the basites is characterized by an increased of titanium in contrast to biotite from metapelites. Biotites from metapelites are distinguished by an increased amount of aluminum. In biotites an increased amount of titanium and aluminum is observed as they approximate the contact, while their magnesia content decreases. Metapelite biotites are characterized by an increased amount of alumina in aluminum octahedrals, in contrast to biotite of the basites. In biotites of metapelites, the amount of tetrahedric aluminum is 28–34%, octahedral - 15–26%, and in basites tetrahedral aluminum is 28–33%, and octahedral 7–21%. As a result of the study of minerals, including biotite, from the contact-metamorphosed rocks of the Dizi series three exocontact zones with corresponding mineral assemblages were identified. It was established that contact metamorphism in the aureole of the Dizi series intrusions is going on at a significantly higher temperature and lower pressure than the regional metamorphism preceding the contact metamorphism.

Keywords: biotite, contact metamorphism, Dizi series, the Greater Caucasus

Procedia PDF Downloads 113
62 “SockGEL/PLUG” Injectable Smart/Intelligent and Bio-Inspired Sol-Gel Nanomaterials for Simple and Complex Oro-Dental and Cranio-Maxillo-Facial Interventional Applications

Authors: Ziyad S. Haidar

Abstract:

Millions of teeth are removed annually, and dental extraction is one of the most commonly performed surgical procedures globally. Whether due to caries, periodontal disease or trauma, exodontia and the ensuing wound healing and bone remodeling processes of the resultant socket (hole in the jaw bone) usually result in serious deformities of the residual alveolar osseous ridge and surrounding soft tissues (reduced height/width). Such voluminous changes render the placement of a proper conventional bridge, denture or even an implant-supported prosthesis extremely challenging. Further, most extractions continue to be performed with no regard for preventing the onset of alveolar osteitis (also known as dry socket, a painful and difficult-to-treat/-manage condition post-exodontia). Hence, such serious resorptive morphological changes often result in significant facial deformities and a negative impact on the overall Quality of Life (QoL) of patients (and oral health-related QoL), alarming, particularly for the geriatric with compromised healing and in light of the thriving longevity statistics. Opportunity: Despite advances in tissue/wound grafting, serious limitations continue to exist, including efficacy and clinical outcome predictability, cost, treatment time, expertise and risk of immune reactions. For cases of dry sockets, specifically, the commercially-available and often-prescribed home remedies are highly lacking. Indeed, most are not recommended for use anymore. Alveogyl is a fine example. Hence, there is a great market demand and need for alternative solutions. Solution: Herein, SockGEL/PLUG (patent pending), an all-natural, drug-free and injectable stimuli-responsive hydrogel, was designed, formulated, characterized and evaluated as an osteogenic, angiogenic, anti-microbial and pain-soothing suture-free intra-alveolar dressing, safe and efficacious for use in several oro-dental and cranio-maxillo-facial interventional applications; for example: in fresh dental extraction sockets, immediately post-exodontia. It is composed of FDA-approved, biocompatible and biodegradable polymers, self-assembled electro-statically to formulate a scaffolding matrix to (a) prevent the onset of alveolar osteitis via securing the fibrin-clot in situ and protecting/sealing the socket from contamination/infection; and (b) endogenously promote/accelerate wound healing and bone remodeling to preserve the volume of the alveolus. Findings: The intrinsic properties of the SockGEL/PLUG hydrogel were evaluated physico-chemico-mechanically for safety (cell viability), viscosity, rheology, bio-distribution and essentially, capacity to induce wound healing and osteogenesis (small defect, in vivo) without any signaling cues from exogenous cells, growth factors or drugs. The performed animal model of cranial critical-sized and non-vascularized bone defects shall provide vitally critical insights into the role and mechanism of the employed natural bio-polymer blend and gel product in endogenous reparative regeneration of soft tissues and bone morphogenesis. Alongside, the fine-tuning of our modified formulation method will further tackle appropriateness, reproducibility, scalability, ease and speed in producing stable, biodegradable and sterilizable stimuli (thermo-sensitive and photo-responsive) matrices (3-dimensional interpenetrating yet porous polymeric network) suitable for an intra-socket application, and beyond. Conclusions and Perspective: Findings are anticipated to provide sufficient evidence to translate into pilot clinical trials and validate the bionanomaterial before engaging the market for feasibility, acceptance and cost-effectiveness studies. The SockGEL/PLUG platform is patent pending: SockGEL is a bio-inspired drug-free hydrogel; SockPLUG is a drug-loaded hydrogel designed for complex indications.

Keywords: hydrogel, injectable, dentistry, craniomaxillofacial complex, bioinspired, nanobiotechnology, biopolymer, sol-gel, stimuli-responsive, matrix, tissue engineering, regenerative medicine

Procedia PDF Downloads 45
61 Protected Cultivation of Horticultural Crops: Increases Productivity per Unit of Area and Time

Authors: Deepak Loura

Abstract:

The most contemporary method of producing horticulture crops both qualitatively and quantitatively is protected cultivation, or greenhouse cultivation, which has gained widespread acceptance in recent decades. Protected farming, commonly referred to as controlled environment agriculture (CEA), is extremely productive, land- and water-wise, as well as environmentally friendly. The technology entails growing horticulture crops in a controlled environment where variables such as temperature, humidity, light, soil, water, fertilizer, etc. are adjusted to achieve optimal output and enable a consistent supply of them even during the off-season. Over the past ten years, protected cultivation of high-value crops and cut flowers has demonstrated remarkable potential. More and more agricultural and horticultural crop production systems are moving to protected environments as a result of the growing demand for high-quality products by global markets. By covering the crop, it is possible to control the macro- and microenvironments, enhancing plant performance and allowing for longer production times, earlier harvests, and higher yields of higher quality. These shielding features alter the environment of the plant while also offering protection from wind, rain, and insects. Protected farming opens up hitherto unexplored opportunities in agriculture as the liberalised economy and improved agricultural technologies advance. Typically, the revenues from fruit, vegetable, and flower crops are 4 to 8 times higher than those from other crops. If any of these high-value crops are cultivated in protected environments like greenhouses, net houses, tunnels, etc., this profit can be multiplied. Vegetable and cut flower post-harvest losses are extremely high (20–0%), however sheltered growing techniques and year-round cropping can greatly minimize post-harvest losses and enhance yield by 5–10 times. Seasonality and weather have a big impact on the production of vegetables and flowers. The variety of their products results in significant price and quality changes for vegetables. For the application of current technology in crop production, achieving a balance between year-round availability of vegetables and flowers with minimal environmental impact and remaining competitive is a significant problem. The future of agriculture will be protected since population growth is reducing the amount of land that may be held. Protected agriculture is a particularly profitable endeavor for tiny landholdings. Small greenhouses, net houses, nurseries, and low tunnel greenhouses can all be built by farmers to increase their income. Protected agriculture is also aided by the rise in biotic and abiotic stress factors. As a result of the greater productivity levels, these technologies are not only opening up opportunities for producers with larger landholdings, but also for those with smaller holdings. Protected cultivation can be thought of as a kind of precise, forward-thinking, parallel agriculture that covers almost all aspects of farming and is rather subject to additional inspection for technical applicability to circumstances, farmer economics, and market economics.

Keywords: protected cultivation, horticulture, greenhouse, vegetable, controlled environment agriculture

Procedia PDF Downloads 54
60 Synthesis by Mechanical Alloying and Characterization of FeNi₃ Nanoalloys

Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz

Abstract:

There is a growing interest on the synthesis and characterization of nanoalloys since the unique chemical, and physical properties of nanoalloys can be tuned and, consequently, new structural motifs can be created by varying the type of constituent elements, atomic and magnetic ordering, as well as size and shape of the nanoparticles. Due to the fine size effects, magnetic nanoalloys have considerable attention with their enhanced mechanical, electrical, optical and magnetic behavior. As an important magnetic nanoalloy, the novel application area of Fe-Ni based nanoalloys is expected to be widened in the chemical, aerospace industry and magnetic biomedical applications. Noble metals have been using in biomedical applications for several years because of their surface plasmon properties. In this respect, iron-nickel nanoalloys are promising materials for magnetic biomedical applications because they show novel properties such as superparamagnetism and surface plasmon resonance property. Also, there is great attention for the usage Fe-Ni based nanoalloys as radar absorbing materials in aerospace and stealth industry due to having high Curie temperature, high permeability and high saturation magnetization with good thermal stability. In this study, FeNi₃ bimetallic nanoalloys were synthesized by mechanical alloying in a planetary high energy ball mill. In mechanical alloying, micron size powders are placed into the mill with milling media. The powders are repeatedly deformed, fractured and alloyed by high energy collision under the impact of balls until the desired composition and particle size is achieved. The experimental studies were carried out in two parts. Firstly, dry mechanical alloying with high energy dry planetary ball milling was applied to obtain FeNi₃ nanoparticles. Secondly, dry milling was followed by surfactant-assisted ball milling to observe the surfactant and solvent effect on the structure, size, and properties of the FeNi₃ nanoalloys. In the first part, the powder sample of iron-nickel was prepared according to the 1:3 iron to nickel ratio to produce FeNi₃ nanoparticles and the 1:10 powder to ball weight ratio. To avoid oxidation during milling, the vials had been filled with Ar inert gas before milling started. The powders were milled for 80 hours in total and the synthesis of the FeNi₃ intermetallic nanoparticles was succeeded by mechanical alloying in 40 hours. Also, regarding the particle size, it was found that the amount of nano-sized particles raised with increasing milling time. In the second part of the study, dry milling of the Fe and Ni powders with the same stoichiometric ratio was repeated. Then, to prevent agglomeration and to obtain smaller sized nanoparticles with superparamagnetic behavior, surfactants and solvent are added to the system, after 40-hour milling time, with the completion of the mechanical alloying. During surfactant-assisted ball milling, heptane was used as milling medium, and as surfactants, oleic acid and oleylamine were used in the high energy ball milling processes. The characterization of the alloyed particles in terms of microstructure, morphology, particle size, thermal and magnetic properties with respect to milling time was done by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, vibrating-sample magnetometer, and differential scanning calorimetry.

Keywords: iron-nickel systems, magnetic nanoalloys, mechanical alloying, nanoalloy characterization, surfactant-assisted ball milling

Procedia PDF Downloads 152
59 Nanocomposite Effect Based on Silver Nanoparticles and Anemposis Californica Extract as Skin Restorer

Authors: Maria Zulema Morquecho Vega, Fabiola CarolinaMiranda Castro, Rafael Verdugo Miranda, Ignacio Yocupicio Villegas, Ana lidia Barron Raygoza, Martin enrique MArquez Cordova, Jose Alberto Duarte Moller

Abstract:

Background: Anemopsis californica, also called (tame grass) belongs to the Saururaceae family small, green plant. The blade is long and wide. Gives a white flower. The plant population is only found in humid, swampy habitats, it grows where there is water, along the banks of streams and water holes. In the winter, it dries up. The leaves, rhizomes, or roots of this plant have been used to treat a range of diseases. Some of its healing properties are used to treat wounds, cold and flu symptoms, spasmodic cough, infection, pain and inflammation, burns, swollen feet, as well as lung ailments, asthma, circulatory problems (varicose veins), rheumatoid arthritis, purifies blood, helps in urinary and digestive tract diseases, sores and healing, for headache, sore throat, diarrhea, kidney pain. The tea made from the leaves and roots is used to treat uterine cancer, womb cancer, relieves menstrual pain and stops excessive bleeding after childbirth. It is also used as a gynecological treatment for infections, hemorrhoids, candidiasis and vaginitis. Objective: To study the cytotoxicity of gels prepared with silver nanoparticles in AC extract combined with chitosan, collagen and hyaluronic acid as an alternative therapy for skin conditions. Methods: The Ag NPs were synthesized according to the following method. A 0.3 mg/mL solution is prepared in 10 ml of deionized water, adjust to pH 12 with NaOH, stirring is maintained constant magnetic and a temperature of 80 °C. Subsequently, 100 ul of a 0.1 M AgNO3 solution and kept stirring constantly for 15 min. Once the reaction is complete, measurements are performed by UV-Vis. A gel was prepared in a 5% solution of acetic acid with the respective nanoparticles and AC extract of silver in the extract of AC. Chitosan is added until the process begins to occur gel. At that time, collagen will be added in a ratio of 3 to 5 drops, and later, hyaluronic acid in 2% of the total compound formed. Finally, after resting for 24 hours, the cytotoxic effect of the gels was studied. in the presence of highly positive bacteria Staphylococcus aureus and highly negative for Escherichia coli. Cultures will be incubated for 24 hours in the presence of the compound and compared with the reference. Results: Silver nanoparticles obtained had a spherical shape and sizes among 20 and 30 nm. UV-Vis spectra confirm the presence of silver nanoparticles showing a surface plasmon around 420 nm. Finally, the test in presence of bacteria yield a good antibacterial property of this nanocompound and tests in people were successful. Conclusion: Gel prepared by biogenic synthesis shown beneficious effects in severe acne, acne vulgaris and wound healing with diabetic patients.

Keywords: anemopsis californica, nanomedicina, biotechnology, biomedicine

Procedia PDF Downloads 67