Search results for: optimization limit
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4741

Search results for: optimization limit

3451 Dual Biometrics Fusion Based Recognition System

Authors: Prakash, Vikash Kumar, Vinay Bansal, L. N. Das

Abstract:

Dual biometrics is a subpart of multimodal biometrics, which refers to the use of a variety of modalities to identify and authenticate persons rather than just one. We limit the risks of mistakes by mixing several modals, and hackers have a tiny possibility of collecting information. Our goal is to collect the precise characteristics of iris and palmprint, produce a fusion of both methodologies, and ensure that authentication is only successful when the biometrics match a particular user. After combining different modalities, we created an effective strategy with a mean DI and EER of 2.41 and 5.21, respectively. A biometric system has been proposed.

Keywords: multimodal, fusion, palmprint, Iris, EER, DI

Procedia PDF Downloads 145
3450 Influence of Fermentation Conditions on Humic Acids Production by Trichoderma viride Using an Oil Palm Empty Fruit Bunch as the Substrate

Authors: F. L. Motta, M. H. A. Santana

Abstract:

Humic Acids (HA) were produced by a Trichoderma viride strain under submerged fermentation in a medium based on the oil palm Empty Fruit Bunch (EFB) and the main variables of the process were optimized by using response surface methodology. A temperature of 40°C and concentrations of 50g/L EFB, 5.7g/L potato peptone and 0.11g/L (NH4)2SO4 were the optimum levels of the variables that maximize the HA production, within the physicochemical and biological limits of the process. The optimized conditions led to an experimental HA concentration of 428.4±17.5 mg/L, which validated the prediction from the statistical model of 412.0mg/L. This optimization increased about 7–fold the HA production previously reported in the literature. Additionally, the time profiles of HA production and fungal growth confirmed our previous findings that HA production preferably occurs during fungal sporulation. The present study demonstrated that T. viride successfully produced HA via the submerged fermentation of EFB and the process parameters were successfully optimized using a statistics-based response surface model. To the best of our knowledge, the present work is the first report on the optimization of HA production from EFB by a biotechnological process, whose feasibility was only pointed out in previous works.

Keywords: empty fruit bunch, humic acids, submerged fermentation, Trichoderma viride

Procedia PDF Downloads 305
3449 Optimization of Cacao Fermentation in Davao Philippines Using Sustainable Method

Authors: Ian Marc G. Cabugsa, Kim Ryan Won, Kareem Mamac, Manuel Dee, Merlita Garcia

Abstract:

An optimized cacao fermentation technique was developed for the cacao farmers of Davao City Philippines. Cacao samples with weights ranging from 150-250 kilograms were collected from various cacao farms in Davao City and Zamboanga City Philippines. Different fermentation techniques were used starting with design of the sweat box, prefermentation conditionings, number of days for fermentation and number of turns. As the beans are being fermented, its temperature was regularly monitored using a digital thermometer. The resultant cacao beans were assessed using physical and chemical means. For the physical assessment, the bean cut test, bean count tests, and sensory test were used. Quantification of theobromine, caffeine, and antioxidants in the form of equivalent quercetin was used for chemical assessment. Both the theobromine and caffeine were analyzed using HPLC method while the antioxidant was analyzed spectrometrically. To come up with the best fermentation procedure, the different assessment were given priority coefficients wherein the physical tests – taste test, cut, and bean count tests were given priority over the results of the chemical test. The result of the study was an optimized fermentation protocol that is readily adaptable and transferable to any cacao cooperatives or groups in Mindanao or even Philippines as a whole.

Keywords: cacao, fermentation, HPLC, optimization, Philippines

Procedia PDF Downloads 448
3448 Optimal Design of InGaP/GaAs Heterojonction Solar Cell

Authors: Djaafar F., Hadri B., Bachir G.

Abstract:

We studied mainly the influence of temperature, thickness, molar fraction and the doping of the various layers (emitter, base, BSF and window) on the performances of a photovoltaic solar cell. In a first stage, we optimized the performances of the InGaP/GaAs dual-junction solar cell while varying its operation temperature from 275°K to 375 °K with an increment of 25°C using a virtual wafer fabrication TCAD Silvaco. The optimization at 300°K led to the following result Icc =14.22 mA/cm2, Voc =2.42V, FF =91.32 %, η = 22.76 % which is close with those found in the literature. In a second stage ,we have varied the molar fraction of different layers as well their thickness and the doping of both emitters and bases and we have registered the result of each variation until obtaining an optimal efficiency of the proposed solar cell at 300°K which was of Icc=14.35mA/cm2,Voc=2.47V,FF=91.34,and η =23.33% for In(1-x)Ga(x)P molar fraction( x=0.5).The elimination of a layer BSF on the back face of our cell, enabled us to make a remarkable improvement of the short-circuit current (Icc=14.70 mA/cm2) and a decrease in open circuit voltage Voc and output η which reached 1.46V and 11.97% respectively. Therefore, we could determine the critical parameters of the cell and optimize its various technological parameters to obtain the best performance for a dual junction solar cell. This work opens the way with new prospects in the field of the photovoltaic one. Such structures will thus simplify the manufacturing processes of the cells; will thus reduce the costs while producing high outputs of photovoltaic conversion.

Keywords: modeling, simulation, multijunction, optimization, silvaco ATLAS

Procedia PDF Downloads 617
3447 Improve Closed Loop Performance and Control Signal Using Evolutionary Algorithms Based PID Controller

Authors: Mehdi Shahbazian, Alireza Aarabi, Mohsen Hadiyan

Abstract:

Proportional-Integral-Derivative (PID) controllers are the most widely used controllers in industry because of its simplicity and robustness. Different values of PID parameters make different step response, so an increasing amount of literature is devoted to proper tuning of PID controllers. The problem merits further investigation as traditional tuning methods make large control signal that can damages the system but using evolutionary algorithms based tuning methods improve the control signal and closed loop performance. In this paper three tuning methods for PID controllers have been studied namely Ziegler and Nichols, which is traditional tuning method and evolutionary algorithms based tuning methods, that are, Genetic algorithm and particle swarm optimization. To examine the validity of PSO and GA tuning methods a comparative analysis of DC motor plant is studied. Simulation results reveal that evolutionary algorithms based tuning method have improved control signal amplitude and quality factors of the closed loop system such as rise time, integral absolute error (IAE) and maximum overshoot.

Keywords: evolutionary algorithm, genetic algorithm, particle swarm optimization, PID controller

Procedia PDF Downloads 479
3446 Optimization of Alkali Assisted Microwave Pretreatments of Sorghum Straw for Efficient Bioethanol Production

Authors: Bahiru Tsegaye, Chandrajit Balomajumder, Partha Roy

Abstract:

The limited supply and related negative environmental consequence of fossil fuels are driving researcher for finding sustainable sources of energy. Lignocellulose biomass like sorghum straw is considered as among cheap, renewable and abundantly available sources of energy. However, lignocellulose biomass conversion to bioenergy like bioethanol is hindered due to the reluctant nature of lignin in the biomass. Therefore, removal of lignin is a vital step for lignocellulose conversion to renewable energy. The aim of this study is to optimize microwave pretreatment conditions using design expert software to remove lignin and to release maximum possible polysaccharides from sorghum straw for efficient hydrolysis and fermentation process. Sodium hydroxide concentration between 0.5-1.5%, v/v, pretreatment time from 5-25 minutes and pretreatment temperature from 120-2000C were considered to depolymerize sorghum straw. The effect of pretreatment was studied by analyzing the compositional changes before and after pretreatments following renewable energy laboratory procedure. Analysis of variance (ANOVA) was used to test the significance of the model used for optimization. About 32.8%-48.27% of hemicellulose solubilization, 53% -82.62% of cellulose release, and 49.25% to 78.29% lignin solubilization were observed during microwave pretreatment. Pretreatment for 10 minutes with alkali concentration of 1.5% and temperature of 1400C released maximum cellulose and lignin. At this optimal condition, maximum of 82.62% of cellulose release and 78.29% of lignin removal was achieved. Sorghum straw at optimal pretreatment condition was subjected to enzymatic hydrolysis and fermentation. The efficiency of hydrolysis was measured by analyzing reducing sugars by 3, 5 dinitrisylicylic acid method. Reducing sugars of about 619 mg/g of sorghum straw were obtained after enzymatic hydrolysis. This study showed a significant amount of lignin removal and cellulose release at optimal condition. This enhances the yield of reducing sugars as well as ethanol yield. The study demonstrates the potential of microwave pretreatments for enhancing bioethanol yield from sorghum straw.

Keywords: cellulose, hydrolysis, lignocellulose, optimization

Procedia PDF Downloads 269
3445 Finite Element Modeling of Mass Transfer Phenomenon and Optimization of Process Parameters for Drying of Paddy in a Hybrid Solar Dryer

Authors: Aprajeeta Jha, Punyadarshini P. Tripathy

Abstract:

Drying technologies for various food processing operations shares an inevitable linkage with energy, cost and environmental sustainability. Hence, solar drying of food grains has become imperative choice to combat duo challenges of meeting high energy demand for drying and to address climate change scenario. But performance and reliability of solar dryers depend hugely on sunshine period, climatic conditions, therefore, offer a limited control over drying conditions and have lower efficiencies. Solar drying technology, supported by Photovoltaic (PV) power plant and hybrid type solar air collector can potentially overpower the disadvantages of solar dryers. For development of such robust hybrid dryers; to ensure quality and shelf-life of paddy grains the optimization of process parameter becomes extremely critical. Investigation of the moisture distribution profile within the grains becomes necessary in order to avoid over drying or under drying of food grains in hybrid solar dryer. Computational simulations based on finite element modeling can serve as potential tool in providing a better insight of moisture migration during drying process. Hence, present work aims at optimizing the process parameters and to develop a 3-dimensional (3D) finite element model (FEM) for predicting moisture profile in paddy during solar drying. COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Furthermore, optimization of process parameters (power level, air velocity and moisture content) was done using response surface methodology in design expert software. 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed and validated with experimental data. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Furthermore, optimized process parameters for drying paddy were found to be 700 W, 2.75 m/s at 13% (wb) with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product. PV-integrated hybrid solar dryers can be employed as potential and cutting edge drying technology alternative for sustainable energy and food security.

Keywords: finite element modeling, moisture migration, paddy grain, process optimization, PV integrated hybrid solar dryer

Procedia PDF Downloads 149
3444 Non-Centrifugal Cane Sugar Production: Heat Transfer Study to Optimize the Use of Energy

Authors: Fabian Velasquez, John Espitia, Henry Hernadez, Sebastian Escobar, Jader Rodriguez

Abstract:

Non-centrifuged cane sugar (NCS) is a concentrated product obtained through the evaporation of water contain from sugarcane juice inopen heat exchangers (OE). The heat supplied to the evaporation stages is obtained from the cane bagasse through the thermochemical process of combustion, where the thermal energy released is transferred to OE by the flue gas. Therefore, the optimization of energy usage becomes essential for the proper design of the production process. For optimize the energy use, it is necessary modeling and simulation of heat transfer between the combustion gases and the juice and to understand the major mechanisms involved in the heat transfer. The main objective of this work was simulated heat transfer phenomena between the flue gas and open heat exchangers using Computational Fluid Dynamics model (CFD). The simulation results were compared to field measured data. Numerical results about temperature profile along the flue gas pipeline at the measurement points are in good accordance with field measurements. Thus, this study could be of special interest in design NCS production process and the optimization of the use of energy.

Keywords: mathematical modeling, design variables, computational fluid dynamics, overall thermal efficiency

Procedia PDF Downloads 123
3443 Bi-objective Network Optimization in Disaster Relief Logistics

Authors: Katharina Eberhardt, Florian Klaus Kaiser, Frank Schultmann

Abstract:

Last-mile distribution is one of the most critical parts of a disaster relief operation. Various uncertainties, such as infrastructure conditions, resource availability, and fluctuating beneficiary demand, render last-mile distribution challenging in disaster relief operations. The need to balance critical performance criteria like response time, meeting demand and cost-effectiveness further complicates the task. The occurrence of disasters cannot be controlled, and the magnitude is often challenging to assess. In summary, these uncertainties create a need for additional flexibility, agility, and preparedness in logistics operations. As a result, strategic planning and efficient network design are critical for an effective and efficient response. Furthermore, the increasing frequency of disasters and the rising cost of logistical operations amplify the need to provide robust and resilient solutions in this area. Therefore, we formulate a scenario-based bi-objective optimization model that integrates pre-positioning, allocation, and distribution of relief supplies extending the general form of a covering location problem. The proposed model aims to minimize underlying logistics costs while maximizing demand coverage. Using a set of disruption scenarios, the model allows decision-makers to identify optimal network solutions to address the risk of disruptions. We provide an empirical case study of the public authorities’ emergency food storage strategy in Germany to illustrate the potential applicability of the model and provide implications for decision-makers in a real-world setting. Also, we conduct a sensitivity analysis focusing on the impact of varying stockpile capacities, single-site outages, and limited transportation capacities on the objective value. The results show that the stockpiling strategy needs to be consistent with the optimal number of depots and inventory based on minimizing costs and maximizing demand satisfaction. The strategy has the potential for optimization, as network coverage is insufficient and relies on very high transportation and personnel capacity levels. As such, the model provides decision support for public authorities to determine an efficient stockpiling strategy and distribution network and provides recommendations for increased resilience. However, certain factors have yet to be considered in this study and should be addressed in future works, such as additional network constraints and heuristic algorithms.

Keywords: humanitarian logistics, bi-objective optimization, pre-positioning, last mile distribution, decision support, disaster relief networks

Procedia PDF Downloads 79
3442 Intelligent Control of Doubly Fed Induction Generator Wind Turbine for Smart Grid

Authors: Amal A. Hassan, Faten H. Fahmy, Abd El-Shafy A. Nafeh, Hosam K. M. Youssef

Abstract:

Due to the growing penetration of wind energy into the power grid, it is very important to study its interactions with the power system and to provide good control technique in order to deliver high quality power. In this paper, an intelligent control methodology is proposed for optimizing the controllers’ parameters of doubly fed induction generator (DFIG) based wind turbine generation system (WTGS). The genetic algorithm (GA) and particle swarm optimization (PSO) are employed and compared for the parameters adaptive tuning of the proposed proportional integral (PI) multiple controllers of the back to back converters of the DFIG based WTGS. For this purpose, the dynamic model of WTGS with DFIG and its associated controllers is presented. Furthermore, the simulation of the system is performed using MATLAB/SIMULINK and SIMPOWERSYSTEM toolbox to illustrate the performance of the optimized controllers. Finally, this work is validated to 33-bus test radial system to show the interaction between wind distributed generation (DG) systems and the distribution network.

Keywords: DFIG wind turine, intelligent control, distributed generation, particle swarm optimization, genetic algorithm

Procedia PDF Downloads 265
3441 A Hybrid Feature Selection Algorithm with Neural Network for Software Fault Prediction

Authors: Khalaf Khatatneh, Nabeel Al-Milli, Amjad Hudaib, Monther Ali Tarawneh

Abstract:

Software fault prediction identify potential faults in software modules during the development process. In this paper, we present a novel approach for software fault prediction by combining a feedforward neural network with particle swarm optimization (PSO). The PSO algorithm is employed as a feature selection technique to identify the most relevant metrics as inputs to the neural network. Which enhances the quality of feature selection and subsequently improves the performance of the neural network model. Through comprehensive experiments on software fault prediction datasets, the proposed hybrid approach achieves better results, outperforming traditional classification methods. The integration of PSO-based feature selection with the neural network enables the identification of critical metrics that provide more accurate fault prediction. Results shows the effectiveness of the proposed approach and its potential for reducing development costs and effort by detecting faults early in the software development lifecycle. Further research and validation on diverse datasets will help solidify the practical applicability of the new approach in real-world software engineering scenarios.

Keywords: feature selection, neural network, particle swarm optimization, software fault prediction

Procedia PDF Downloads 93
3440 Optimization of Feeder Bus Routes at Urban Rail Transit Stations Based on Link Growth Probability

Authors: Yu Song, Yuefei Jin

Abstract:

Urban public transportation can be integrated when there is an efficient connection between urban rail lines, however, there are currently no effective or quick solutions being investigated for this connection. This paper analyzes the space-time distribution and travel demand of passenger connection travel based on taxi track data and data from the road network, excavates potential bus connection stations based on potential connection demand data, and introduces the link growth probability model in the complex network to solve the basic connection bus lines in order to ascertain the direction of the bus lines that are the most connected given the demand characteristics. Then, a tree view exhaustive approach based on constraints is suggested based on graph theory, which can hasten the convergence of findings while doing chain calculations. This study uses WEI QU NAN Station, the Xi'an Metro Line 2 terminal station in Shaanxi Province, as an illustration, to evaluate the model's and the solution method's efficacy. According to the findings, 153 prospective stations have been dug up in total, the feeder bus network for the entire line has been laid out, and the best route adjustment strategy has been found.

Keywords: feeder bus, route optimization, link growth probability, the graph theory

Procedia PDF Downloads 74
3439 Application of Box-Behnken Response Surface Design for Optimization of Essential Oil Based Disinfectant on Mixed Species Biofilm

Authors: Anita Vidacs, Robert Rajko, Csaba Vagvolgyi, Judit Krisch

Abstract:

With the optimization of a new disinfectant the number of tests could be decreased and the cost of processing too. Good sanitizers are eco-friendly and allow no resistance evolvement of bacteria. The essential oils (EOs) are natural antimicrobials, and most of them have the Generally Recognized As Safe (GRAS) status. In our study, the effect of the EOs cinnamon, marjoram, and thyme was investigated against mixed species bacterial biofilms of Escherichia coli, Listeria monocytogenes, Pseudomonas putida, and Staphylococcus aureus. The optimal concentration of EOs, disinfection time and level of pH were evaluated with the aid of Response Surface Box-Behnken Design (RSD) on 1 day and 7 days old biofilms on metal, plastic, and wood surfaces. The variable factors were in the range of 1-3 times of minimum bactericide concentration (MBC); 10-110 minutes acting time and 4.5- 7.5 pH. The optimized EO disinfectant was compared to industrial used chemicals (HC-DPE, Hypo). The natural based disinfectants were applicable; the acting time was below 30 minutes. EOs were able to eliminate the biofilm from the used surfaces except from wood. The disinfection effect of the EO based natural solutions was in most cases equivalent or better compared to chemical sanitizers used in food industry.

Keywords: biofilm, Box-Behnken design, disinfectant, essential oil

Procedia PDF Downloads 218
3438 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study

Authors: Kasim Görenekli, Ali Gülbağ

Abstract:

This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.

Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management

Procedia PDF Downloads 14
3437 Enhance Concurrent Design Approach through a Design Methodology Based on an Artificial Intelligence Framework: Guiding Group Decision Making to Balanced Preliminary Design Solution

Authors: Loris Franchi, Daniele Calvi, Sabrina Corpino

Abstract:

This paper presents a design methodology in which stakeholders are assisted with the exploration of a so-called negotiation space, aiming to the maximization of both group social welfare and single stakeholder’s perceived utility. The outcome results in less design iterations needed for design convergence while obtaining a higher solution effectiveness. During the early stage of a space project, not only the knowledge about the system but also the decision outcomes often are unknown. The scenario is exacerbated by the fact that decisions taken in this stage imply delayed costs associated with them. Hence, it is necessary to have a clear definition of the problem under analysis, especially in the initial definition. This can be obtained thanks to a robust generation and exploration of design alternatives. This process must consider that design usually involves various individuals, who take decisions affecting one another. An effective coordination among these decision-makers is critical. Finding mutual agreement solution will reduce the iterations involved in the design process. To handle this scenario, the paper proposes a design methodology which, aims to speed-up the process of pushing the mission’s concept maturity level. This push up is obtained thanks to a guided negotiation space exploration, which involves autonomously exploration and optimization of trade opportunities among stakeholders via Artificial Intelligence algorithms. The negotiation space is generated via a multidisciplinary collaborative optimization method, infused by game theory and multi-attribute utility theory. In particular, game theory is able to model the negotiation process to reach the equilibria among stakeholder needs. Because of the huge dimension of the negotiation space, a collaborative optimization framework with evolutionary algorithm has been integrated in order to guide the game process to efficiently and rapidly searching for the Pareto equilibria among stakeholders. At last, the concept of utility constituted the mechanism to bridge the language barrier between experts of different backgrounds and differing needs, using the elicited and modeled needs to evaluate a multitude of alternatives. To highlight the benefits of the proposed methodology, the paper presents the design of a CubeSat mission for the observation of lunar radiation environment. The derived solution results able to balance all stakeholders needs and guaranteeing the effectiveness of the selection mission concept thanks to its robustness in valuable changeability. The benefits provided by the proposed design methodology are highlighted, and further development proposed.

Keywords: concurrent engineering, artificial intelligence, negotiation in engineering design, multidisciplinary optimization

Procedia PDF Downloads 136
3436 Practical Software for Optimum Bore Hole Cleaning Using Drilling Hydraulics Techniques

Authors: Abdulaziz F. Ettir, Ghait Bashir, Tarek S. Duzan

Abstract:

A proper well planning is very vital to achieve any successful drilling program on the basis of preventing, overcome all drilling problems and minimize cost operations. Since the hydraulic system plays an active role during the drilling operations, that will lead to accelerate the drilling effort and lower the overall well cost. Likewise, an improperly designed hydraulic system can slow drill rate, fail to clean the hole of cuttings, and cause kicks. In most cases, common sense and commercially available computer programs are the only elements required to design the hydraulic system. Drilling optimization is the logical process of analyzing effects and interactions of drilling variables through applied drilling and hydraulic equations and mathematical modeling to achieve maximum drilling efficiency with minimize drilling cost. In this paper, practical software adopted in this paper to define drilling optimization models including four different optimum keys, namely Opti-flow, Opti-clean, Opti-slip and Opti-nozzle that can help to achieve high drilling efficiency with lower cost. The used data in this research from vertical and horizontal wells were recently drilled in Waha Oil Company fields. The input data are: Formation type, Geopressures, Hole Geometry, Bottom hole assembly and Mud reghology. Upon data analysis, all the results from wells show that the proposed program provides a high accuracy than that proposed from the company in terms of hole cleaning efficiency, and cost break down if we consider that the actual data as a reference base for all wells. Finally, it is recommended to use the established Optimization calculations software at drilling design to achieve correct drilling parameters that can provide high drilling efficiency, borehole cleaning and all other hydraulic parameters which assist to minimize hole problems and control drilling operation costs.

Keywords: optimum keys, namely opti-flow, opti-clean, opti-slip and opti-nozzle

Procedia PDF Downloads 318
3435 A Study on the Assessment of Prosthetic Infection after Total Knee Replacement Surgery

Authors: Chun-Lang Chang, Chun-Kai Liu

Abstract:

In this study, the patients that have undergone total knee replacement surgery from the 2010 National Health Insurance database were adopted as the study participants. The important factors were screened and selected through literature collection and interviews with physicians. Through the Cross Entropy Method (CE), Genetic Algorithm Logistic Regression (GALR), and Particle Swarm Optimization (PSO), the weights of the factors were obtained. In addition, the weights of the respective algorithms, coupled with the Excel VBA were adopted to construct the Case Based Reasoning (CBR) system. The results through statistical tests show that the GALR and PSO produced no significant differences, and the accuracy of both models were above 97%. Moreover, the area under the curve of ROC for these two models also exceeded 0.87. This study shall serve as a reference for medical staff as an assistance for clinical assessment of infections in order to effectively enhance medical service quality and efficiency, avoid unnecessary medical waste, and substantially contribute to resource allocations in medical institutions.

Keywords: Case Based Reasoning, Cross Entropy Method, Genetic Algorithm Logistic Regression, Particle Swarm Optimization, Total Knee Replacement Surgery

Procedia PDF Downloads 320
3434 Nanomaterials Based Biosensing Chip for Non-Invasive Detection of Oral Cancer

Authors: Suveen Kumar

Abstract:

Oral cancer (OC) is the sixth most death causing cancer in world which includes tumour of lips, floor of the mouth, tongue, palate, cheeks, sinuses, throat, etc. Conventionally, the techniques used for OC detection are toluidine blue staining, biopsy, liquid-based cytology, visual attachments, etc., however these are limited by their highly invasive nature, low sensitivity, time consumption, sophisticated instrument handling, sample processing and high cost. Therefore, we developed biosensing chips for non-invasive detection of OC via CYFRA-21-1 biomarker. CYFRA-21-1 (molecular weight: 40 kDa) is secreted in saliva of OC patients which is a non-invasive biological fluid with a cut-off value of 3.8 ng mL-1, above which the subjects will be suffering from oral cancer. Therefore, in first work, 3-aminopropyl triethoxy silane (APTES) functionalized zirconia (ZrO2) nanoparticles (APTES/nZrO2) were used to successfully detect CYFRA-21-1 in a linear detection range (LDR) of 2-16 ng mL-1 with sensitivity of 2.2 µA mL ng-1. Successively, APTES/nZrO2-RGO was employed to prevent agglomeration of ZrO2 by providing high surface area reduced graphene oxide (RGO) support and much wider LDR (2-22 ng mL-1) was obtained with remarkable limit of detection (LOD) as 0.12 ng mL-1. Further, APTES/nY2O3/ITO platform was used for oral cancer bioseneor development. The developed biosensor (BSA/anti-CYFRA-21-1/APTES/nY2O3/ITO) have wider LDR (0.01-50 ng mL-1) with remarkable limit of detection (LOD) as 0.01 ng mL-1. To improve the sensitivity of the biosensing platform, nanocomposite of yattria stabilized nanostructured zirconia-reduced graphene oxide (nYZR) based biosensor has been developed. The developed biosensing chip having ability to detect CYFRA-21-1 biomolecules in the range of 0.01-50 ng mL-1, LOD of 7.2 pg mL-1 with sensitivity of 200 µA mL ng-1. Further, the applicability of the fabricated biosensing chips were also checked through real sample (saliva) analysis of OC patients and the obtained results showed good correlation with the standard protein detection enzyme linked immunosorbent assay (ELISA) technique.

Keywords: non-invasive, oral cancer, nanomaterials, biosensor, biochip

Procedia PDF Downloads 125
3433 Assessing Trainee Radiation Exposure in Fluoroscopy-Guided Procedures: An Analysis of Hp(3)

Authors: Ava Zarif Sanayei, Sedigheh Sina

Abstract:

During fluoroscopically guided procedures, healthcare workers, especially radiology trainees, are at risk of exposure to elevated radiation exposure. It is vital to prioritize their safety in such settings. However, there is limited data on their monthly or annual doses. This study aimed to evaluate the equivalent dose to the eyes of the student trainee, utilizing LiF: Mg, Ti (TLD-100) chips at the radiology department of a hospital in Shiraz, Iran. Initially, the dosimeters underwent calibration procedures with the assistance of ISO-PTW calibrated phantoms. Following this, a set of dosimeters was prepared To determine HP(3) value for a trainee involved in the main operation room and controlled area utilized for two months. Three TLD chips were placed in a holder and attached to her eyeglasses. Upon completion of the duration, the TLDs were read out using a Harshaw TLD reader. Results revealed that Hp(3) value was 0.31±0.04 mSv. Based on international recommendations, students in radiology training above 18 have an annual dose limit of 0.6 rem (6 mSv). Assuming a 12-month workload, staff radiation exposure stayed below the annual limit. However, the Trainee workload may vary due to different deeds. This study's findings indicate the need for consistent, precise dose monitoring in IR facilities. Students can undertake supervised internships for up to 500 hours, depending on their institution. These internships take place in health-focused environments offering radiology services, such as clinics, diagnostic imaging centers, and hospitals. Failure to do so might result in exceeding occupational radiation dose limits. A 0.5 mm lead apron effectively absorbs 99% of radiation. To ensure safety, technologists and staff need to wear this protective gear whenever they are in the room during procedures. Furthermore, maintaining a safe distance from the primary beam is crucial. In cases where patients need assistance and must be held for imaging, additional protective equipment, including lead goggles, gloves, and thyroid shields, should be utilized for optimal safety.

Keywords: annual dose limits, Hp(3), individual monitoring, radiation protection, TLD-100

Procedia PDF Downloads 72
3432 Aerodynamic Design Optimization of Ferrari F430 Flying Car with Enhanced Takeoff Performance

Authors: E. Manikandan, C. Chilambarasan, M. Sulthan Ariff Rahman, S. Kanagaraj, Abhimanyu Pugazhandhi, V. R. Sanal Kumar

Abstract:

The designer of any flying car has the major concern on the creation of upward force with low takeoff velocity, with minimum drag, coupled with better stability and control warranting its overall high performance both in road and air. In this paper, 3D numerical simulations of external flow of a Ferrari F430 fitted with different NACA series rectangular wings have been carried out for finding the best aerodynamic design option in road and air. The principle that allows a car to rise off the ground by creating lift using deployable wings with desirable lifting characteristics is the main theme of our paper. Additionally, the car body is streamlined in accordance with the speed range. Further, the rounded and tapered shape of the top of the car is designed to slice through the air and minimize the wind resistance. The 3D SST k-ω turbulence model has been used for capturing the intrinsic flow physics during the take off phase. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations is employed. Through the detailed parametric analytical studies, we have conjectured that Ferrari F430 can be converted into a lucrative flying car with best fit NACA wing through a proper aerodynamic design optimization.

Keywords: aerodynamics of flying car, air taxi, Ferrari F430, roadable airplane

Procedia PDF Downloads 208
3431 Landscape Pattern Evolution and Optimization Strategy in Wuhan Urban Development Zone, China

Authors: Feng Yue, Fei Dai

Abstract:

With the rapid development of urbanization process in China, its environmental protection pressure is severely tested. So, analyzing and optimizing the landscape pattern is an important measure to ease the pressure on the ecological environment. This paper takes Wuhan Urban Development Zone as the research object, and studies its landscape pattern evolution and quantitative optimization strategy. First, remote sensing image data from 1990 to 2015 were interpreted by using Erdas software. Next, the landscape pattern index of landscape level, class level, and patch level was studied based on Fragstats. Then five indicators of ecological environment based on National Environmental Protection Standard of China were selected to evaluate the impact of landscape pattern evolution on the ecological environment. Besides, the cost distance analysis of ArcGIS was applied to simulate wildlife migration thus indirectly measuring the improvement of ecological environment quality. The result shows that the area of land for construction increased 491%. But the bare land, sparse grassland, forest, farmland, water decreased 82%, 47%, 36%, 25% and 11% respectively. They were mainly converted into construction land. On landscape level, the change of landscape index all showed a downward trend. Number of patches (NP), Landscape shape index (LSI), Connection index (CONNECT), Shannon's diversity index (SHDI), Aggregation index (AI) separately decreased by 2778, 25.7, 0.042, 0.6, 29.2%, all of which indicated that the NP, the degree of aggregation and the landscape connectivity declined. On class level, the construction land and forest, CPLAND, TCA, AI and LSI ascended, but the Distribution Statistics Core Area (CORE_AM) decreased. As for farmland, water, sparse grassland, bare land, CPLAND, TCA and DIVISION, the Patch Density (PD) and LSI descended, yet the patch fragmentation and CORE_AM increased. On patch level, patch area, Patch perimeter, Shape index of water, farmland and bare land continued to decline. The three indexes of forest patches increased overall, sparse grassland decreased as a whole, and construction land increased. It is obvious that the urbanization greatly influenced the landscape evolution. Ecological diversity and landscape heterogeneity of ecological patches clearly dropped. The Habitat Quality Index continuously declined by 14%. Therefore, optimization strategy based on greenway network planning is raised for discussion. This paper contributes to the study of landscape pattern evolution in planning and design and to the research on spatial layout of urbanization.

Keywords: landscape pattern, optimization strategy, ArcGIS, Erdas, landscape metrics, landscape architecture

Procedia PDF Downloads 163
3430 Response Surface Methodology to Obtain Disopyramide Phosphate Loaded Controlled Release Ethyl Cellulose Microspheres

Authors: Krutika K. Sawant, Anil Solanki

Abstract:

The present study deals with the preparation and optimization of ethyl cellulose-containing disopyramide phosphate loaded microspheres using solvent evaporation technique. A central composite design consisting of a two-level full factorial design superimposed on a star design was employed for optimizing the preparation microspheres. The drug:polymer ratio (X1) and speed of the stirrer (X2) were chosen as the independent variables. The cumulative release of the drug at a different time (2, 6, 10, 14, and 18 hr) was selected as the dependent variable. An optimum polynomial equation was generated for the prediction of the response variable at time 10 hr. Based on the results of multiple linear regression analysis and F statistics, it was concluded that sustained action can be obtained when X1 and X2 are kept at high levels. The X1X2 interaction was found to be statistically significant. The drug release pattern fitted the Higuchi model well. The data of a selected batch were subjected to an optimization study using Box-Behnken design, and an optimal formulation was fabricated. Good agreement was observed between the predicted and the observed dissolution profiles of the optimal formulation.

Keywords: disopyramide phosphate, ethyl cellulose, microspheres, controlled release, Box-Behnken design, factorial design

Procedia PDF Downloads 455
3429 Vibration Control of Hermetic Compressors Using Flexible Multi-Body Dynamics Theory

Authors: Armin Amindari

Abstract:

Hermetic compressors are used widely for refrigeration, heat pump, and air conditioning applications. With the improvement of energy conservation and environmental protection requirements, inverter compressors that operates at different speeds have become increasingly attractive in the industry. Although speed change capability is more efficient, passing through resonant frequencies may lead to excessive vibrations. In this work, an integrated vibration control approach based on flexible multi-body dynamics theory is used for optimizing the vibration amplitudes of the compressor at different operating speeds. To examine the compressor vibrations, all the forces and moments exerted on the cylinder block were clarified and minimized using balancers attached to the upper and lower ends of the motor rotor and crankshaft. The vibration response of the system was simulated using Motionview™ software. In addition, mass-spring optimization was adopted to shift the resonant frequencies out of the operating speeds. The modal shapes of the system were studied using Optistruct™ solver. Using this approach, the vibrations were reduced up to 56% through dynamic simulations. The results were in high agreement with various experimental test data. In addition, the vibration resonance problem observed at low speeds was solved by shifting the resonant frequencies through optimization studies.

Keywords: vibration, MBD, compressor, hermetic

Procedia PDF Downloads 100
3428 Method and Apparatus for Optimized Job Scheduling in the High-Performance Computing Cloud Environment

Authors: Subodh Kumar, Amit Varde

Abstract:

Typical on-premises high-performance computing (HPC) environments consist of a fixed number and a fixed set of computing hardware. During the design of the HPC environment, the hardware components, including but not limited to CPU, Memory, GPU, and networking, are carefully chosen from select vendors for optimal performance. High capital cost for building the environment is a prime factor influencing the design environment. A class of software called “Job Schedulers” are critical to maximizing these resources and running multiple workloads to extract the maximum value for the high capital cost. In principle, schedulers work by preventing workloads and users from monopolizing the finite hardware resources by queuing jobs in a workload. A cloud-based HPC environment does not have the limitations of fixed (type of and quantity of) hardware resources. In theory, users and workloads could spin up any number and type of hardware resource. This paper discusses the limitations of using traditional scheduling algorithms for cloud-based HPC workloads. It proposes a new set of features, called “HPC optimizers,” for maximizing the benefits of the elasticity and scalability of the cloud with the goal of cost-performance optimization of the workload.

Keywords: high performance computing, HPC, cloud computing, optimization, schedulers

Procedia PDF Downloads 90
3427 Microfluidic Fluid Shear Mechanotransduction Device Using Linear Optimization of Hydraulic Channels

Authors: Sanat K. Dash, Rama S. Verma, Sarit K. Das

Abstract:

A logarithmic microfluidic shear device was designed and fabricated for cellular mechanotransduction studies. The device contains four cell culture chambers in which flow was modulated to achieve a logarithmic increment. Resistance values were optimized to make the device compact. The network of resistances was developed according to a unique combination of series and parallel resistances as found via optimization. Simulation results done in Ansys 16.1 matched the analytical calculations and showed the shear stress distribution at different inlet flow rates. Fabrication of the device was carried out using conventional photolithography and PDMS soft lithography. Flow profile was validated taking DI water as working fluid and measuring the volume collected at all four outlets. Volumes collected at the outlets were in accordance with the simulation results at inlet flow rates ranging from 1 ml/min to 0.1 ml/min. The device can exert fluid shear stresses ranging four orders of magnitude on the culture chamber walls which will cover shear stress values from interstitial flow to blood flow. This will allow studying cell behavior in the long physiological range of shear stress in a single run reducing number of experiments.

Keywords: microfluidics, mechanotransduction, fluid shear stress, physiological shear

Procedia PDF Downloads 126
3426 A Comprehensive Finite Element Model for Incremental Launching of Bridges: Optimizing Construction and Design

Authors: Mohammad Bagher Anvari, Arman Shojaei

Abstract:

Incremental launching, a widely adopted bridge erection technique, offers numerous advantages for bridge designers. However, accurately simulating and modeling the dynamic behavior of the bridge during each step of the launching process proves to be tedious and time-consuming. The perpetual variation of internal forces within the deck during construction stages adds complexity, exacerbated further by considerations of other load cases, such as support settlements and temperature effects. As a result, there is an urgent need for a reliable, simple, economical, and fast algorithmic solution to model bridge construction stages effectively. This paper presents a novel Finite Element (FE) model that focuses on studying the static behavior of bridges during the launching process. Additionally, a simple method is introduced to normalize all quantities in the problem. The new FE model overcomes the limitations of previous models, enabling the simulation of all stages of launching, which conventional models fail to achieve due to underlying assumptions. By leveraging the results obtained from the new FE model, this study proposes solutions to improve the accuracy of conventional models, particularly for the initial stages of bridge construction that have been neglected in previous research. The research highlights the critical role played by the first span of the bridge during the initial stages, a factor often overlooked in existing studies. Furthermore, a new and simplified model termed the "semi-infinite beam" model, is developed to address this oversight. By utilizing this model alongside a simple optimization approach, optimal values for launching nose specifications are derived. The practical applications of this study extend to optimizing the nose-deck system of incrementally launched bridges, providing valuable insights for practical usage. In conclusion, this paper introduces a comprehensive Finite Element model for studying the static behavior of bridges during incremental launching. The proposed model addresses limitations found in previous approaches and offers practical solutions to enhance accuracy. The study emphasizes the importance of considering the initial stages and introduces the "semi-infinite beam" model. Through the developed model and optimization approach, optimal specifications for launching nose configurations are determined. This research holds significant practical implications and contributes to the optimization of incrementally launched bridges, benefiting both the construction industry and bridge designers.

Keywords: incremental launching, bridge construction, finite element model, optimization

Procedia PDF Downloads 96
3425 A Simulation-Optimization Approach to Control Production, Subcontracting and Maintenance Decisions for a Deteriorating Production System

Authors: Héctor Rivera-Gómez, Eva Selene Hernández-Gress, Oscar Montaño-Arango, Jose Ramon Corona-Armenta

Abstract:

This research studies the joint production, maintenance and subcontracting control policy for an unreliable deteriorating manufacturing system. Production activities are controlled by a derivation of the Hedging Point Policy, and given that the system is subject to deterioration, it reduces progressively its capacity to satisfy product demand. Multiple deterioration effects are considered, reflected mainly in the quality of the parts produced and the reliability of the machine. Subcontracting is available as support to satisfy product demand; also overhaul maintenance can be conducted to reduce the effects of deterioration. The main objective of the research is to determine simultaneously the production, maintenance and subcontracting rate which minimize the total incurred cost. A stochastic dynamic programming model is developed and solved through a simulation-based approach composed of statistical analysis and optimization with the response surface methodology. The obtained results highlight the strong interactions between production, deterioration and quality which justify the development of an integrated model. A numerical example and a sensitivity analysis are presented to validate our results.

Keywords: subcontracting, optimal control, deterioration, simulation, production planning

Procedia PDF Downloads 577
3424 A Mathematical Model for Reliability Redundancy Optimization Problem of K-Out-Of-N: G System

Authors: Gak-Gyu Kim, Won Il Jung

Abstract:

According to a remarkable development of science and technology, function and role of the system of engineering fields has recently been diversified. The system has become increasingly more complex and precise, and thus, system designers intended to maximize reliability concentrate more effort at the design stage. This study deals with the reliability redundancy optimization problem (RROP) for k-out-of-n: G system configuration with cold standby and warm standby components. This paper further intends to present the optimal mathematical model through which the following three elements of (i) multiple components choices, (ii) redundant components quantity and (iii) the choice of redundancy strategies may be combined in order to maximize the reliability of the system. Therefore, we focus on the following three issues. First, we consider RROP that there exists warm standby state as well as cold standby state of the component. Second, as eliminating an approximation approach of the previous RROP studies, we construct a precise model for system reliability. Third, given transition time when the state of components changes, we present not simply a workable solution but the advanced method. For the wide applicability of RROPs, moreover, we use absorbing continuous time Markov chain and matrix analytic methods in the suggested mathematical model.

Keywords: RROP, matrix analytic methods, k-out-of-n: G system, MTTF, absorbing continuous time Markov Chain

Procedia PDF Downloads 253
3423 Crow Search Algorithm-Based Task Offloading Strategies for Fog Computing Architectures

Authors: Aniket Ganvir, Ritarani Sahu, Suchismita Chinara

Abstract:

The rapid digitization of various aspects of life is leading to the creation of smart IoT ecosystems, where interconnected devices generate significant amounts of valuable data. However, these IoT devices face constraints such as limited computational resources and bandwidth. Cloud computing emerges as a solution by offering ample resources for offloading tasks efficiently despite introducing latency issues, especially for time-sensitive applications like fog computing. Fog computing (FC) addresses latency concerns by bringing computation and storage closer to the network edge, minimizing data travel distance, and enhancing efficiency. Offloading tasks to fog nodes or the cloud can conserve energy and extend IoT device lifespan. The offloading process is intricate, with tasks categorized as full or partial, and its optimization presents an NP-hard problem. Traditional greedy search methods struggle to address the complexity of task offloading efficiently. To overcome this, the efficient crow search algorithm (ECSA) has been proposed as a meta-heuristic optimization algorithm. ECSA aims to effectively optimize computation offloading, providing solutions to this challenging problem.

Keywords: IoT, fog computing, task offloading, efficient crow search algorithm

Procedia PDF Downloads 56
3422 The Choicest Design of InGaP/GaAs Heterojunction Solar Cell

Authors: Djaafar Fatiha, Ghalem Bachir, Hadri Bagdad

Abstract:

We studied mainly the influence of temperature, thickness, molar fraction and the doping of the various layers (emitter, base, BSF and window) on the performances of a photovoltaic solar cell. In a first stage, we optimized the performances of the InGaP/GaAs dual-junction solar cell while varying its operation temperature from 275°K to 375 °K with an increment of 25°C using a virtual wafer fabrication TCAD Silvaco. The optimization at 300 °K led to the following result: Icc =14.22 mA/cm2, Voc =2.42V, FF=91.32 %, η= 22.76 % which is close with those found in the literature. In a second stage ,we have varied the molar fraction of different layers as well their thickness and the doping of both emitters and bases and we have registered the result of each variation until obtaining an optimal efficiency of the proposed solar cell at 300°K which was of Icc=14.35mA/cm2,Voc=2.47V,FF=91.34,and η=23.33% for In(1-x)Ga(x)P molar fraction( x=0.5).The elimination of a layer BSF on the back face of our cell, enabled us to make a remarkable improvement of the short-circuit current (Icc=14.70 mA/cm2) and a decrease in open circuit voltage Voc and output η which reached 1.46V and 11.97% respectively. Therefore, we could determine the critical parameters of the cell and optimize its various technological parameters to obtain the best performance for a dual junction solar cell .This work opens the way with new prospects in the field of the photovoltaic one. Such structures will thus simplify the manufacturing processes of the cells; will thus reduce the costs while producing high outputs of photovoltaic conversion.

Keywords: modeling, simulation, multijunction, optimization, Silvaco ATLAS

Procedia PDF Downloads 502