Search results for: lysholm knee score
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2262

Search results for: lysholm knee score

972 The Association between Acupuncture Treatment and a Decreased Risk of Irritable Bowel Syndrome in Patients with Depression

Authors: Greg Zimmerman

Abstract:

Background: Major depression is a common illness that affects millions of people globally. It is the leading cause of disability and is projected to become the number one cause of the global burden of disease by 2030. Many of those who suffer from depression also suffer from Irritable Bowel Syndrome (IBS). Acupuncture has been shown to help depression. The aim of this study was to investigate the effectiveness of acupuncture in reducing the risk of IBS in patients with depression. Methods: We enrolled patients diagnosed with depression through the Taiwanese National Health Insurance Research Database (NHIRD). Propensity score matching was used to match equal numbers (n=32971) of the acupuncture cohort and no-acupuncture cohort based on characteristics including sex, age, baseline comorbidity, and medication. The Cox regression model was used to compare the hazard ratios (HRs) of IBS in the two cohorts. Results: The basic characteristics of the two groups were similar. The cumulative incidence of IBS was significantly lower in the acupuncture cohort than in the no-acupuncture cohort (Log-rank test, p<0.001). Conclusion: The results provided real-world evidence that acupuncture may have a beneficial effect on IBS risk reduction in patients with depression.

Keywords: acupuncture, depression, irritable bowel syndrome, national health insurance research database, real-world evidence

Procedia PDF Downloads 106
971 Thick Data Analytics for Learning Cataract Severity: A Triplet Loss Siamese Neural Network Model

Authors: Jinan Fiaidhi, Sabah Mohammed

Abstract:

Diagnosing cataract severity is an important factor in deciding to undertake surgery. It is usually conducted by an ophthalmologist or through taking a variety of fundus photography that needs to be examined by the ophthalmologist. This paper carries out an investigation using a Siamese neural net that can be trained with small anchor samples to score cataract severity. The model used in this paper is based on a triplet loss function that takes the ophthalmologist best experience in rating positive and negative anchors to a specific cataract scaling system. This approach that takes the heuristics of the ophthalmologist is generally called the thick data approach, which is a kind of machine learning approach that learn from a few shots. Clinical Relevance: The lens of the eye is mostly made up of water and proteins. A cataract occurs when these proteins at the eye lens start to clump together and block lights causing impair vision. This research aims at employing thick data machine learning techniques to rate the severity of the cataract using Siamese neural network.

Keywords: thick data analytics, siamese neural network, triplet-loss model, few shot learning

Procedia PDF Downloads 111
970 Performance of the Cmip5 Models in Simulation of the Present and Future Precipitation over the Lake Victoria Basin

Authors: M. A. Wanzala, L. A. Ogallo, F. J. Opijah, J. N. Mutemi

Abstract:

The usefulness and limitations in climate information are due to uncertainty inherent in the climate system. For any given region to have sustainable development it is important to apply climate information into its socio-economic strategic plans. The overall objective of the study was to assess the performance of the Coupled Model Inter-comparison Project (CMIP5) over the Lake Victoria Basin. The datasets used included the observed point station data, gridded rainfall data from Climate Research Unit (CRU) and hindcast data from eight CMIP5. The methodology included trend analysis, spatial analysis, correlation analysis, Principal Component Analysis (PCA) regression analysis, and categorical statistical skill score. Analysis of the trends in the observed rainfall records indicated an increase in rainfall variability both in space and time for all the seasons. The spatial patterns of the individual models output from the models of MPI, MIROC, EC-EARTH and CNRM were closest to the observed rainfall patterns.

Keywords: categorical statistics, coupled model inter-comparison project, principal component analysis, statistical downscaling

Procedia PDF Downloads 368
969 Text2Time: Transformer-Based Article Time Period Prediction

Authors: Karthick Prasad Gunasekaran, B. Chase Babrich, Saurabh Shirodkar, Hee Hwang

Abstract:

Construction preparation is crucial for the success of a construction project. By involving project participants early in the construction phase, project managers can plan ahead and resolve issues early, resulting in project success and satisfaction. This study uses quantitative data from construction management projects to determine the relationship between the pre-construction phase, construction schedule, and customer satisfaction. This study examined a total of 65 construction projects and 93 clients per job to (a) identify the relationship between the pre-construction phase and program reduction and (b) the pre-construction phase and customer retention. Based on a quantitative analysis, this study found a negative correlation between pre-construction status and project schedule in 65 construction projects. This finding means that the more preparatory work done on a particular project, the shorter the total construction time. The Net Promoter Score of 93 clients from 65 projects was then used to determine the relationship between construction preparation and client satisfaction. The pre-construction status and the projects were further analyzed, and a positive correlation between them was found. This shows that customers are happier with projects with a higher ready-to-build ratio than projects with less ready-to-build.

Keywords: NLP, BERT, LLM, deep learning, classification

Procedia PDF Downloads 104
968 Determinants of Service Quality on Thai Passengers’ Repeated Purchase of Domestic Flight Service with Thai Airways International

Authors: Nattapong Techarattanased

Abstract:

This research paper aimed to identify determinants of airline service quality on passengers’ repeated purchase of service. The population of this study was Thai passengers flying domestic flights with Thai Airways, making a total of 300 samples. These 300 samples participated in this research by answering a collection of questions by means of a questionnaire. An analysis of means score and multiple regression revealed that perceived service quality for tangible elements, reliability, responsiveness, assurance and empathy had determined repeated purchase of flight service of the passengers at a high level. Moreover, reliability and responsiveness factors could predict the passengers’ repeated purchase of flight service at the percentage of 30.6. The findings gave a signal that Thai Airways may consider a development of route network and fleet strategy as well as an establishment of aircraft and seat qualification to meet passengers’ needs and requirements. Passengers’ level of satisfaction could also be maximized by offering service value through various kinds of special deals and programs, whereas value- added pricing strategy should be considered in order to differentiate from and beat other leading airline competitors.

Keywords: repeated purchase, service quality, domestic flight, Thai Airways

Procedia PDF Downloads 283
967 Criticality Assessment of Power Transformer by Using Entropy Weight Method

Authors: Rattanakorn Phadungthin, Juthathip Haema

Abstract:

This research presents an assessment of the criticality of the substation's power transformer using the Entropy Weight method to enable more effective maintenance planning. Typically, transformers fail due to heat, electricity, chemical reactions, mechanical stress, and extreme climatic conditions. Effective monitoring of the insulating oil is critical to prevent transformer failure. However, finding appropriate weights for dissolved gases is a major difficulty due to the lack of a defined baseline and the requirement for subjective expert opinion. To decrease expert prejudice and subjectivity, the Entropy Weight method is used to optimise the weightings of eleven key dissolved gases. The algorithm to assess the criticality operates through five steps: create a decision matrix, normalise the decision matrix, compute the entropy, calculate the weight, and calculate the criticality score. This study not only optimises gas weighing but also greatly minimises the need for expert judgment in transformer maintenance. It is expected to improve the efficiency and reliability of power transformers so failures and related economic costs are minimized. Furthermore, maintenance schemes and ranking are accomplished appropriately when the assessment of criticality is reached.

Keywords: criticality assessment, dissolved gas, maintenance scheme, power transformer

Procedia PDF Downloads 8
966 The Important of Nutritional Status in Rehabilitation of Children with CP: Saudi Perspective

Authors: Reem Al-Garni

Abstract:

Malnutrition is a global epidemic, but the under-weight or Failure-To-Thrive risk is increasing in rehabilitation setting and considered one of the contribution factor for developmental delay. Beside the consequences of malnutrition on children growth and development, there are other side-effects that might delay or hold the progress of rehabilitation. The awareness for malnutrition must be raised and discussed by the rehabilitation team, to promote the treatment and to optimize the client care. The solution can start from food supplements intake and / or Enteral Nutrition plan, depending on the malnutrition level and to reach the goal, the medical team should to work together in order to provide comprehensive treatment and to help the family to be able to manage their child condition. We have explore the outcomes of rehabilitation between the children with CP whose diagnosed with malnutrition and children with normal body Wight Over a period of 4 months who received 4-6 weeks of rehabilitation two hours daily by using WeeFIM score to measure rehabilitation outcomes. WeeFIM measures and covers various domains, such as: self-care, mobility, locomotion, communication and other psycho-social aspects. Our findings reported that children with normal body Wight has better outcomes and improvement comparing with children with malnutrition for the entire study sample.

Keywords: Cerebral Palsy (CP), pediatric Functional Independent Measure (WeeFIM), rehabilitation, malnutrition

Procedia PDF Downloads 318
965 Effect of Different Oils on Quality of Deep-fried Dough Stick

Authors: Nuntaporn Aukkanit

Abstract:

The aim of this study was to determine the effect of oils on chemical, physical, and sensory properties of deep-fried dough stick. Five kinds of vegetable oil which were used for addition and frying consist of: palm oil, soybean oil, sunflower oil, rice bran oil, and canola oil. The results of this study showed that using different kinds of oil made significant difference in the quality of deep-fried dough stick. Deep-fried dough stick fried with the rice bran oil had the lowest moisture loss and oil absorption (p≤0.05), but it had some unsatisfactory physical properties (color, specific volume, density, and texture) and sensory characteristics. Nonetheless, deep-fried dough stick fried with the sunflower oil had moisture loss and oil absorption slightly more than the rice bran oil, but it had almost higher physical and sensory properties. Deep-fried dough sticks together with the sunflower oil did not have different sensory score from the palm oil, commonly used for production of deep-fried dough stick. These results indicated that addition and frying with the sunflower oil are appropriate for the production of deep-fried dough stick.

Keywords: deep-fried dough stick, palm oil, sunflower oil, rice bran oil

Procedia PDF Downloads 281
964 The Implementation of Animal Welfare for Garut Sheep Fighting Contest in West Java

Authors: Mustopa, Nadya R. Susilo, Rhizal D. Nuva

Abstract:

This study aims to determine the application of animal welfare in Garut sheep fighting contest at West Java. This study conducted by survey and discussion methods with 5 Garut sheep owners in the contest. The animal welfare is going to be proved by observing the condition of the cage, the cleanliness of it, the health of the sheep, feeding and water, also owner treatments for their sheep that will be served as a fighter. Observations made using stable conditions ACRES form with assessment scores ranged from 1 = very poor, 2 = poor, 3 = regular, 4 = good and 5 = very good, animal welfare conditions seen by conducting observations and interviews with garut sheep owners. The result shows that the Garut sheep fighting contest has fulfilled the criteria of animal welfare application. Application of animal welfare principle by the owner of Garut sheep terms of ACRES (Animal Concerns Research and Education Society) below standard, the average score obtained was 1.76 which is mean in a very bad ratings. Besides considering the animal welfare application, sheep owners also do special treatments for their Garut sheep with the purpose to produce fighters that are healthy and strong. So, if the sheep wins in Garut sheep fight contest, it will purchase a high-value prices.

Keywords: animal welfare, contest, garut sheep, sheep fighting

Procedia PDF Downloads 278
963 Integrating Indigenous Students’ Funds of Knowledge to Introduce Multiplication with a Picture Storybook

Authors: Murni Sianturi, Andreas Au Hurit

Abstract:

The low level of Indigenous Papuan students’ literacy and numeracy in Merauke Regency-Indonesia needs to be considered. The development of a learnable storybook with pictures related to their lives might raise their curiosity to read. This study aimed to design a storybook as a complementary resource for the third graders using Indigenous Malind cultural approaches by employing research and development methods. The product developed was a thematic-integrative picture storybook using funds of knowledge from Indigenous students. All the book contents depicted Indigenous students’ lives and were in line with the national curriculum syllabus, specifically representing one sub-theme−multiplication topic. Multiplication material of grade 3 was modified in the form of a story, and at the end of the reading, students were given several multiplication exercises. Based on the results of the evaluation from the expert team, it was found that the average score was in the excellent category. The students’ and teacher’s responses to the storybook were very positive. Students were thrilled when reading this book and also effortlessly understood the concept of multiplication. Therefore, this book might be used as a companion book to the main book and serve as introductory reading material for students prior to discussing multiplication material.

Keywords: a picture storybook, funds of knowledge, Indigenous elementary students, literacy, numeracy

Procedia PDF Downloads 189
962 Integrated Approach of Quality Function Deployment, Sensitivity Analysis and Multi-Objective Linear Programming for Business and Supply Chain Programs Selection

Authors: T. T. Tham

Abstract:

The aim of this study is to propose an integrated approach to determine the most suitable programs, based on Quality Function Deployment (QFD), Sensitivity Analysis (SA) and Multi-Objective Linear Programming model (MOLP). Firstly, QFD is used to determine business requirements and transform them into business and supply chain programs. From the QFD, technical scores of all programs are obtained. All programs are then evaluated through five criteria (productivity, quality, cost, technical score, and feasibility). Sets of weight of these criteria are built using Sensitivity Analysis. Multi-Objective Linear Programming model is applied to select suitable programs according to multiple conflicting objectives under a budget constraint. A case study from the Sai Gon-Mien Tay Beer Company is given to illustrate the proposed methodology. The outcome of the study provides a comprehensive picture for companies to select suitable programs to obtain the optimal solution according to their preference.

Keywords: business program, multi-objective linear programming model, quality function deployment, sensitivity analysis, supply chain management

Procedia PDF Downloads 123
961 Evaluation of the Quality of Care for Premature Babies in the Neonatology Unit of the Centre Hospitalier Universitaire de Kamenge

Authors: Kankurize Josiane, Nizigama Mediatrice

Abstract:

Introduction: Burundi records a still high infant mortality rate. Despite efforts to reduce it, prematurity is still the leading cause of death in the neonatal period. The objective of this study was to assess the quality of care for premature babies hospitalized in the neonatology unit of the Centre Hospitalier Universitaire de Kamenge. Method: This was a descriptive and evaluative prospective carried out in the neonatology unit of the CHUK (Centre Hospitalier Universitaire de Kamenge) from December 1, 2016, to May 31, 2017, including 70 premature babies, 65 mothers of premature babies and 15 providers including a pediatrician and 14 nurses. Using a tool developed by the World Health Organization and adapted to the local context by national experts, the quality of care for premature babies was assessed. Results: Prematurity accounted for 44.05% of hospitalizations in neonatology at the University Hospital of Kamenge. The assessment of the quality of care for premature babies was of low quality, with an average global score of 2/5 (50%), indicating that there is a considerable need for improvement to reach the standards. Conclusion: Efforts must be made to have infrastructures, materials, and human resources sufficient in quality and quantity so that the neonatology unit of the CHUK can be efficient and optimize the care of premature babies.

Keywords: quality of care, evaluation, premature, standards

Procedia PDF Downloads 60
960 Automatic Assignment of Geminate and Epenthetic Vowel for Amharic Text-to-Speech System

Authors: Tadesse Anberbir, Felix Bankole, Tomio Takara, Girma Mamo

Abstract:

In the development of a text-to-speech synthesizer, automatic derivation of correct pronunciation from the grapheme form of a text is a central problem. Particularly deriving phonological features which are not shown in orthography is challenging. In the Amharic language, geminates and epenthetic vowels are very crucial for proper pronunciation but neither is shown in orthography. In this paper, we proposed and integrated a morphological analyzer into an Amharic Text-to-Speech system, mainly to predict geminates and epenthetic vowel positions, and prepared a duration modeling method. Amharic Text-to-Speech system (AmhTTS) is a parametric and rule-based system that adopts a cepstral method and uses a source filter model for speech production and a Log Magnitude Approximation (LMA) filter as the vocal tract filter. The naturalness of the system after employing the duration modeling was evaluated by sentence listening test and we achieved an average Mean Opinion Score (MOS) 3.4 (68%) which is moderate. By modeling the duration of geminates and controlling the locations of epenthetic vowel, we are able to synthesize good quality speech. Our system is mainly suitable to be customized for other Ethiopian languages with limited resources.

Keywords: Amharic, gemination, speech synthesis, morphology, epenthesis

Procedia PDF Downloads 87
959 Development and Evaluation of Preceptor Training Program for Nurse Preceptors in King Chulalongkorn Memorial Hospital

Authors: Pataraporn Kheawwan

Abstract:

Preceptorship represents an important aspect in new nurse orientation. However, there was no formal preceptor training program developed for nurse preceptor in Thailand. The purposes of this study were to develop and evaluate formal preceptor training program for nurse preceptors in King Chulalongkorn Memorial Hospital, Thailand. A research and development study design was utilized in this study. Participants were 37 nurse preceptors. The program contents were delivered by e-learning material, class lecture, group discussion followed by simulation training. Knowledge of the participants was assessed pre and post program. Skill and critical thinking were assessed using Preceptor Skill and Decision Making Evaluation form at the end of program. Statistical significant difference in knowledge regarding preceptor role and coaching strategies between pre and post program were found. All participants had satisfied skill and decision making score after completed the program. Most of participants perceived benefits of preceptor training course. In conclusion, The results of this study reveal that the newly developed preceptorship course is an effective formal training course for nurse preceptors.

Keywords: preceptor, preceptorship, new nurse, clinical education

Procedia PDF Downloads 261
958 The Effectiveness of Communication Skills Using Transactional Analysis on the Dimensions of Marital Intimacy: An Experimental Study

Authors: Mehravar Javid, James Sexton, S. Taridashti, Joseph Dorer

Abstract:

Objective: Intimacy is among the most important factors in marital relationships and includes different aspects. Communication skills can enable couples to promote their intimacy. This experimental study was conducted to measure the effectiveness of communication skills using Transactional Analysis (TA) on various dimensions of marital intimacy. Method: The participants in this study were female teachers. Analysis of covariance was recruited in the experimental group (n =15) and control group (n =15) with pre-test and post-test. Random assignment was applied. The experimental group received the Transactional Analysis training program for 9 sessions of 2 hours each week. The instrument was the Marital Intimacy Questionnaire, with 87 items and 9 subscales. Result: The findings suggest that training in Transactional Analysis significantly increased the total score of intimacy except spiritual intimacy on the post-test. Discussion: According to the obtained data, it is concluded that communication skills using Transactional Analysis (TA) training could increase intimacy and improve marital relationships. The study highlights the differential effects on emotional, rational, sexual, and psychological intimacy compared to physical, social/recreational, and relational intimacy over a 9-week period.

Keywords: communication skills, intimacy, marital relationships, transactional analysis

Procedia PDF Downloads 95
957 The Role of Contextual Factors in the Sustainability Reporting of Australian and New Zealand Companies

Authors: Ramona Zharfpeykan

Abstract:

The concept of sustainability is generally considered as a key topic in many countries, and sustainability reporting is becoming an important tool for companies to communicate their sustainability plans and performance to their stakeholders. There have been various studies on factors that may influence sustainability reporting in companies. This study examines the possible effect of some of the organisational factors on corporate sustainability reporting. The organisational factors included in this study are a company’s type (public or private), industry, and size as well as managers’ perception of the level of importance of indicators in reporting these indicators. A survey was conducted from 240 Australian and New Zealand companies in various industries. They were asked about their perception of the importance of sustainability indicators in their performance and if they report these indicators. The GRI indicators used to develop the survey. A multiple regression model was developed using reporting strategy score as dependent and type, size, industry categorisation, and managers’ perception of the level of importance of the GRI indicators as independent factors. The results show that among all the factors included in the model, size of a company and the perception of managers of the level of importance of environmental and labour practice indicators can affect the sustainability scores of these companies.

Keywords: sustainability reporting, global reporting initiative, sustainability reporting strategy, organisational features

Procedia PDF Downloads 158
956 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification

Authors: Megha Gupta, Nupur Prakash

Abstract:

Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network (CNN) architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.

Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification

Procedia PDF Downloads 198
955 The Question of Choice in an Achievement Test: A Study on the Sudanese Case

Authors: Mahmoud Abdelrazig Mahmoud Barakat

Abstract:

Achievement tests administered at national level play a significant role in the lives of test-takers as well as the whole society. This paper aims to investigate the effect of giving students a choice between two optional questions on their overall performance in a high stake achievement test for university admission. It is hypothesized that questions targeting writing-based productive skills and language system necessitate display of abilities which are different from fact-based questions designed around story content. The two items are assumed to reflect different constructs that require different criteria of assessment. Consequently, the student’s overall score is affected by the item they choose to answer, which might not be reflective of their real language abilities. An open-ended interview was carried out with ten teachers working with grade 3 students in model secondary schools to investigate the nature of the two test items and their impact on the student’s performance. The data has proved that giving choice in an achievement test generates different performances that are assessed differently. It is recommended that in order to address the question of fairness, it is important to clearly define and balance the construct of the items that affect the student’s choice and performance.

Keywords: achievement test, assessment, choice, fairness performance

Procedia PDF Downloads 222
954 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers

Authors: Nishank Raisinghani

Abstract:

Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.

Keywords: drug discovery, transformers, graph neural networks, multiomics

Procedia PDF Downloads 153
953 Across-Breed Genetic Evaluation of New Zealand Dairy Goats

Authors: Nicolas Lopez-Villalobos, Dorian J. Garrick, Hugh T. Blair

Abstract:

Many dairy goat farmers of New Zealand milk herds of mixed breed does. Simultaneous evaluation of sires and does across breed is required to select the best animals for breeding on a common basis. Across-breed estimated breeding values (EBV) and estimated producing values for 208-day lactation yields of milk (MY), fat (FY), protein (PY) and somatic cell score (SCS; LOG2(SCC) of Saanen, Nubian, Alpine, Toggenburg and crossbred dairy goats from 75 herds were estimated using a test day model. Evaluations were based on 248,734 herd-test records representing 125,374 lactations from 65,514 does sired by 930 sires over 9 generations. Averages of MY, FY and PY were 642 kg, 21.6 kg and 19.8 kg, respectively. Average SCC and SCS were 936,518 cells/ml milk and 9.12. Pure-bred Saanen does out-produced other breeds in MY, FY and PY. Average EBV for MY, FY and PY compared to a Saanen base were Nubian -98 kg, 0.1 kg and -1.2 kg; Alpine -64 kg, -1.0 kg and -1.7 kg; and Toggenburg -42 kg, -1.0 kg and -0.5 kg. First-cross heterosis estimates were 29 kg MY, 1.1 kg FY and 1.2 kg PY. Average EBV for SCS compared to a Saanen base were Nubian 0.041, Alpine -0.083 and Toggenburg 0.094. Heterosis for SCS was 0.03. Breeding values are combined with respective economic values to calculate an economic index used for ranking sires and does to reflect farm profit.

Keywords: breed effects, dairy goats, milk traits, test-day model

Procedia PDF Downloads 330
952 A Comparative Analysis of Grade Weighted Average and Comprehensive Examination Result of Non Board Passers and Board Passers

Authors: Rob Gesley Capistrano, Jasper James Isaac, Rose Mae Moralda, Therese Anne Peleo, Danica Rillo, Maria Virginia Santillian

Abstract:

One of the valuable things that shows the intelligence among individuals is the academic background specifically their Grade Weighted Average and the significant result of the Comprehensive Examination. The general objective of the researchers to this study is to determine if there is a significant difference between General Weighted Average and Comprehensive Examination Result of Psychometrician Board Passers and Non-Board Passers. The respondents of this study composed of board passers and non-board passers. The researchers used purposive sampling technique. The result utilized by using T-test Independent Sample to determine the comparison of General Weighted Average and Comprehensive Examination Result of Board Passers and Non Board Passers. At the end, it concluded that the General Weighted Average of Board Passers and Non-Board Passers shows that there is no significant difference, but the average showed a minimal variation. The Comprehensive Examination Result of Board Passers and Non-Board Passers result revealed that there is a significant difference. The performance of comprehensive examination that will test the overall knowledge of an individual and will determine whose more proficient will likely to have a higher score. The result of the comprehensive examination had an impact in the passing performance of board examination.

Keywords: board passers, comprehensive examination result, grade weighted average, non board passers

Procedia PDF Downloads 189
951 Investigating Students’ Acceptance Perception Level of Tablet PCs by a Variety of Variables

Authors: Baris Sezer

Abstract:

A great number of projects have been implemented by Turkey in order to integrate technologies into education. The FATİH Project is intended to integrate technology into all levels of education in Turkey. As part of the FATİH Project that is aimed to complete in 2016, it is intended to initially deliver a tablet PC to every student and teacher. We aimed to detect grade 9 students’ acceptance perception level of tablet PCs during the 2014 – 2015 school year in this study where quantitative and qualitative data collection techniques were used in combination. The study group consisted of 228 grade 9 students of high schools in Istanbul, Ankara, Zonguldak and Bursa in Turkey. Study data was obtained through the “Tablet PC Acceptance Scale” and structured interview forms. Given the results obtained from the study, the mean overall score was 70.08 (3.72 out of 5), which was derived from all the dimensions of the acceptance perception level of tablet PCs in the students’ view. Findings of the study indicate that mean scores for students’ acceptance perception level of tablet PCs did not differ by their gender and their level of use of Information and Communication Technology (ICT). Focus group interviews with students suggest that students did not effectively and actively use the tablet PCs; instead they used the interactive board during classes.

Keywords: acceptance of technology, student’s view, FATIH project, tablet PCs

Procedia PDF Downloads 293
950 Nonlinear Analysis of Postural Sway in Multiple Sclerosis

Authors: Hua Cao, Laurent Peyrodie, Olivier Agnani, Cecile Donze

Abstract:

Multiple sclerosis (MS) is a disease, which affects the central nervous system, and causes balance problem. In clinical, this disorder is usually evaluated using static posturography. Some linear or nonlinear measures, extracted from the posturographic data (i.e. center of pressure, COP) recorded during a balance test, has been used to analyze postural control of MS patients. In this study, the trend (TREND) and the sample entropy (SampEn), two nonlinear parameters were chosen to investigate their relationships with the expanded disability status scale (EDSS) score. Forty volunteers with different EDSS scores participated in our experiments with eyes open (EO) and closed (EC). TREND and two types of SampEn (SampEn1 and SampEn2) were calculated for each combined COP’s position signal. The results have shown that TREND had a weak negative correlation to EDSS while SampEn2 had a strong positive correlation to EDSS. Compared to TREND and SampEn1, SampEn2 showed a better significant correlation to EDSS and an ability to discriminate the MS patients in the EC case. In addition, the outcome of the study suggests that the multi-dimensional nonlinear analysis could provide some information about the impact of disability progression in MS on dynamics of the COP data.

Keywords: balance, multiple sclerosis, nonlinear analysis, postural sway

Procedia PDF Downloads 338
949 Recommender System Based on Mining Graph Databases for Data-Intensive Applications

Authors: Mostafa Gamal, Hoda K. Mohamed, Islam El-Maddah, Ali Hamdi

Abstract:

In recent years, many digital documents on the web have been created due to the rapid growth of ’social applications’ communities or ’Data-intensive applications’. The evolution of online-based multimedia data poses new challenges in storing and querying large amounts of data for online recommender systems. Graph data models have been shown to be more efficient than relational data models for processing complex data. This paper will explain the key differences between graph and relational databases, their strengths and weaknesses, and why using graph databases is the best technology for building a realtime recommendation system. Also, The paper will discuss several similarity metrics algorithms that can be used to compute a similarity score of pairs of nodes based on their neighbourhoods or their properties. Finally, the paper will discover how NLP strategies offer the premise to improve the accuracy and coverage of realtime recommendations by extracting the information from the stored unstructured knowledge, which makes up the bulk of the world’s data to enrich the graph database with this information. As the size and number of data items are increasing rapidly, the proposed system should meet current and future needs.

Keywords: graph databases, NLP, recommendation systems, similarity metrics

Procedia PDF Downloads 104
948 Effects of Clinical Practice Guideline on Knowledge and Preventive Practices of Nursing Personnel and Incidences of Ventilator-associated Pneumonia Thailand

Authors: Phawida Wattanasoonthorn

Abstract:

Ventilator-associated pneumonia is a serious infection found to be among the top three infections in the hospital. To investigate the effects of clinical practice guideline on knowledge and preventive practices of nursing personnel, and incidences of ventilator-associated pneumonia. A pre-post quasi-experimental study on 17 professional nurses, and 123 ventilator-associated pneumonia patients admitted to the surgical intensive care unit, and the accident and surgical ward of Songkhla Hospital from October 2013 to January 2014. The study found that after using the clinical practice guideline, the subjects’ median score increased from 16.00 to 19.00. The increase in practicing correctly was from 66.01 percent to 79.03 percent with the statistical significance level of .05, and the incidences of ventilator-associated pneumonia decreased by 5.00 percent. The results of this study revealed that the use of the clinical practice guideline helped increase knowledge and practice skill of nursing personnel, and decrease incidences of ventilator-associated pneumonia. Thus, nursing personnel should be encouraged, reminded and promoted to continue using the practice guideline through various means including training, providing knowledge, giving feedback, and putting up posters to remind them of practicing correctly and sustainably.

Keywords: Clinical Practice Guideline, knowledge, Preventive Ventilator, Pneumonia

Procedia PDF Downloads 410
947 Board Regulation and Its Impact on Composition and Effects: Evidence from German Cooperative Banks

Authors: Markus Stralla

Abstract:

This study employs a GMM framework to examine the impact of potential regulatory intervention regarding the occupations of supervisory board members in cooperative banking. To achieve insights, the study proceeds in two different ways. First, it investigates the changes in board structure prior and following to the German Act to Strengthen Financial Market and Insurance Supervision (FinVAG). Second, the study estimates the influence of Ph.D.Share, professional concentration and supervisory power on bank-risk changes in consideration of the implementation of FinVAG. Therefore, the study is based on a sample of 246 German cooperative banks from 2006-2011 while applying four different measures of bank risk, namely credit-, equity-, liquidity-risk, and Z-Score, with the former three also being addressed in FinVAG. Results indicate that the implementation of FinVAG results in (most likely unintentional) structural changes, especially at the expense of farmers, and affects all risk measures and relations between risk measures and supervisory board characteristics in a risk-reducing and therefore intended way. To disentangle the complex relationship between board characteristics and risk measures, the study utilizes two-step system GMM estimator to account for unobserved heterogeneity and simultaneity in order to reduce endogeneity problems. The findings may be especially relevant for stakeholders, regulators, supervisors and managers.

Keywords: bank governance, bank risk-taking, board of directors, regulation

Procedia PDF Downloads 428
946 An Accurate Brain Tumor Segmentation for High Graded Glioma Using Deep Learning

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

Gliomas are most challenging and aggressive type of tumors which appear in different sizes, locations, and scattered boundaries. CNN is most efficient deep learning approach with outstanding capability of solving image analysis problems. A fully automatic deep learning based 2D-CNN model for brain tumor segmentation is presented in this paper. We used small convolution filters (3 x 3) to make architecture deeper. We increased convolutional layers for efficient learning of complex features from large dataset. We achieved better results by pushing convolutional layers up to 16 layers for HGG model. We achieved reliable and accurate results through fine-tuning among dataset and hyper-parameters. Pre-processing of this model includes generation of brain pipeline, intensity normalization, bias correction and data augmentation. We used the BRATS-2015, and Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.81 for complete, 0.79 for core, 0.80 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, HGG

Procedia PDF Downloads 256
945 Attention-Based ResNet for Breast Cancer Classification

Authors: Abebe Mulugojam Negash, Yongbin Yu, Ekong Favour, Bekalu Nigus Dawit, Molla Woretaw Teshome, Aynalem Birtukan Yirga

Abstract:

Breast cancer remains a significant health concern, necessitating advancements in diagnostic methodologies. Addressing this, our paper confronts the notable challenges in breast cancer classification, particularly the imbalance in datasets and the constraints in the accuracy and interpretability of prevailing deep learning approaches. We proposed an attention-based residual neural network (ResNet), which effectively combines the robust features of ResNet with an advanced attention mechanism. Enhanced through strategic data augmentation and positive weight adjustments, this approach specifically targets the issue of data imbalance. The proposed model is tested on the BreakHis dataset and achieved accuracies of 99.00%, 99.04%, 98.67%, and 98.08% in different magnifications (40X, 100X, 200X, and 400X), respectively. We evaluated the performance by using different evaluation metrics such as precision, recall, and F1-Score and made comparisons with other state-of-the-art methods. Our experiments demonstrate that the proposed model outperforms existing approaches, achieving higher accuracy in breast cancer classification.

Keywords: residual neural network, attention mechanism, positive weight, data augmentation

Procedia PDF Downloads 101
944 Formative Assessment in an Introductory Python Programming Course

Authors: María José Núñez-Ruiz, Luis Álvarez-González, Cristian Olivares-Rodriguez, Benjamin Lazo-Letelier

Abstract:

This paper begins with some concept of formative assessment and the relationship with learning objective: contents objectives, processes objectives, and metacognitive objectives. Two methodologies are describes Evidence-Based teaching and Question Drive Instruction. To do formative assessments in larges classes a Classroom Response System (CRS) is needed. But most of CRS use only Multiple Choice Questions (MCQ), True/False question, or text entry; however, this is insufficient to formative assessment. To do that a new CRS, call FAMA was developed. FAMA support six types of questions: Choice, Order, Inline choice, Text entry, Associated, and Slider. An experiment participated in 149 students from four engineering careers. For results, Kendall's Range Correlation Analysis and descriptive analysis was done. In conclusion, there is a strong relation between contents question, process questions (ask in formative assessment without a score) and metacognitive questions, asked in summative assessment. As future work, the lecturer can do personalized teaching, because knows the behavior of all students in each formative assessment

Keywords: Python language, formative assessment, classroom response systems, evidence-Based teaching, question drive instruction

Procedia PDF Downloads 131
943 Machine Learning Approach for Mutation Testing

Authors: Michael Stewart

Abstract:

Mutation testing is a type of software testing proposed in the 1970s where program statements are deliberately changed to introduce simple errors so that test cases can be validated to determine if they can detect the errors. Test cases are executed against the mutant code to determine if one fails, detects the error and ensures the program is correct. One major issue with this type of testing was it became intensive computationally to generate and test all possible mutations for complex programs. This paper used reinforcement learning and parallel processing within the context of mutation testing for the selection of mutation operators and test cases that reduced the computational cost of testing and improved test suite effectiveness. Experiments were conducted using sample programs to determine how well the reinforcement learning-based algorithm performed with one live mutation, multiple live mutations and no live mutations. The experiments, measured by mutation score, were used to update the algorithm and improved accuracy for predictions. The performance was then evaluated on multiple processor computers. With reinforcement learning, the mutation operators utilized were reduced by 50 – 100%.

Keywords: automated-testing, machine learning, mutation testing, parallel processing, reinforcement learning, software engineering, software testing

Procedia PDF Downloads 198