Search results for: global innovation network
9778 Network Mobility Support in Content-Centric Internet
Authors: Zhiwei Yan, Jong-Hyouk Lee, Yong-Jin Park, Xiaodong Lee
Abstract:
In this paper, we analyze NEtwork MObility (NEMO) supporting problems in Content-Centric Networking (CCN), and propose the CCN-NEMO which can well support the deployment of the content-centric paradigm in large-scale mobile Internet. The CCN-NEMO extends the signaling message of the basic CCN protocol, to support the mobility discovery and fast trigger of Interest re-issuing during the network mobility. Besides, the Mobile Router (MR) is extended to optimize the content searching and relaying in the local subnet. These features can be employed by the nested NEMO to maximize the advantages of content retrieving with CCN. Based on the analysis, we compare the performance on handover latency between the basic CCN and our proposed CCN-NEMO. The results show that our scheme can facilitate the content-retrieving in the NEMO scenario with improved performance.Keywords: NEMO, CCN, mobility, handover latency
Procedia PDF Downloads 4709777 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection
Authors: Tim Farrelly
Abstract:
In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.Keywords: deep learning, object detection, machine vision applications, sport, network design
Procedia PDF Downloads 1469776 Estimating Cyclone Intensity Using INSAT-3D IR Images Based on Convolution Neural Network Model
Authors: Divvela Vishnu Sai Kumar, Deepak Arora, Sheenu Rizvi
Abstract:
Forecasting a cyclone through satellite images consists of the estimation of the intensity of the cyclone and predicting it before a cyclone comes. This research work can help people to take safety measures before the cyclone comes. The prediction of the intensity of a cyclone is very important to save lives and minimize the damage caused by cyclones. These cyclones are very costliest natural disasters that cause a lot of damage globally due to a lot of hazards. Authors have proposed five different CNN (Convolutional Neural Network) models that estimate the intensity of cyclones through INSAT-3D IR images. There are a lot of techniques that are used to estimate the intensity; the best model proposed by authors estimates intensity with a root mean squared error (RMSE) of 10.02 kts.Keywords: estimating cyclone intensity, deep learning, convolution neural network, prediction models
Procedia PDF Downloads 1279775 Series Network-Structured Inverse Models of Data Envelopment Analysis: Pitfalls and Solutions
Authors: Zohreh Moghaddas, Morteza Yazdani, Farhad Hosseinzadeh
Abstract:
Nowadays, data envelopment analysis (DEA) models featuring network structures have gained widespread usage for evaluating the performance of production systems and activities (Decision-Making Units (DMUs)) across diverse fields. By examining the relationships between the internal stages of the network, these models offer valuable insights to managers and decision-makers regarding the performance of each stage and its impact on the overall network. To further empower system decision-makers, the inverse data envelopment analysis (IDEA) model has been introduced. This model allows the estimation of crucial information for estimating parameters while keeping the efficiency score unchanged or improved, enabling analysis of the sensitivity of system inputs or outputs according to managers' preferences. This empowers managers to apply their preferences and policies on resources, such as inputs and outputs, and analyze various aspects like production, resource allocation processes, and resource efficiency enhancement within the system. The results obtained can be instrumental in making informed decisions in the future. The top result of this study is an analysis of infeasibility and incorrect estimation that may arise in the theory and application of the inverse model of data envelopment analysis with network structures. By addressing these pitfalls, novel protocols are proposed to circumvent these shortcomings effectively. Subsequently, several theoretical and applied problems are examined and resolved through insightful case studies.Keywords: inverse models of data envelopment analysis, series network, estimation of inputs and outputs, efficiency, resource allocation, sensitivity analysis, infeasibility
Procedia PDF Downloads 519774 Design and Implementation of Reliable Location-Based Social Community Services
Authors: B. J. Kim, K. W. Nam, S. J. Lee
Abstract:
Traditional social network services provide users with more information than is needed, and it is not easy to verify the authenticity of the information. This paper proposes a system that can only post messages where users are located to enhance the reliability of social networking services. The proposed system implements a Google Map API to post postings on the map and to read postings within a range of distances from the users’ location. The proposed system will only provide alerts, memories, and information about locations within a given range depending on the users' current location, providing reliable information that they believe will be necessary in real time. It is expected that the proposed system will be able to meet the real demands of users and create a more reliable social network services environment.Keywords: social network, location, reliability, posting
Procedia PDF Downloads 2579773 A Multi-Dimensional Neural Network Using the Fisher Transform to Predict the Price Evolution for Algorithmic Trading in Financial Markets
Authors: Cristian Pauna
Abstract:
Trading the financial markets is a widespread activity today. A large number of investors, companies, public of private funds are buying and selling every day in order to make profit. Algorithmic trading is the prevalent method to make the trade decisions after the electronic trading release. The orders are sent almost instantly by computers using mathematical models. This paper will present a price prediction methodology based on a multi-dimensional neural network. Using the Fisher transform, the neural network will be instructed for a low-latency auto-adaptive process in order to predict the price evolution for the next period of time. The model is designed especially for algorithmic trading and uses the real-time price series. It was found that the characteristics of the Fisher function applied at the nodes scale level can generate reliable trading signals using the neural network methodology. After real time tests it was found that this method can be applied in any timeframe to trade the financial markets. The paper will also include the steps to implement the presented methodology into an automated trading system. Real trading results will be displayed and analyzed in order to qualify the model. As conclusion, the compared results will reveal that the neural network methodology applied together with the Fisher transform at the nodes level can generate a good price prediction and can build reliable trading signals for algorithmic trading.Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, neural network
Procedia PDF Downloads 1609772 Reconfigurable Intelligent Surfaces (RIS)-Assisted Integrated Leo Satellite and UAV for Non-terrestrial Networks Using a Deep Reinforcement Learning Approach
Authors: Tesfaw Belayneh Abebe
Abstract:
Integrating low-altitude earth orbit (LEO) satellites and unmanned aerial vehicles (UAVs) within a non-terrestrial network (NTN) with the assistance of reconfigurable intelligent surfaces (RIS), we investigate the problem of how to enhance throughput through integrated LEO satellites and UAVs with the assistance of RIS. We propose a method to jointly optimize the associations with the LEO satellite, the 3D trajectory of the UAV, and the phase shifts of the RIS to maximize communication throughput for RIS-assisted integrated LEO satellite and UAV-enabled wireless communications, which is challenging due to the time-varying changes in the position of the LEO satellite, the high mobility of UAVs, an enormous number of possible control actions, and also the large number of RIS elements. Utilizing a multi-agent double deep Q-network (MADDQN), our approach dynamically adjusts LEO satellite association, UAV positioning, and RIS phase shifts. Simulation results demonstrate that our method significantly outperforms baseline strategies in maximizing throughput. Lastly, thanks to the integrated network and the RIS, the proposed scheme achieves up to 65.66x higher peak throughput and 25.09x higher worst-case throughput.Keywords: integrating low-altitude earth orbit (LEO) satellites, unmanned aerial vehicles (UAVs) within a non-terrestrial network (NTN), reconfigurable intelligent surfaces (RIS), multi-agent double deep Q-network (MADDQN)
Procedia PDF Downloads 489771 Modbus Gateway Design Using Arm Microprocessor
Authors: Semanur Savruk, Onur Akbatı
Abstract:
Integration of various communication protocols into an automation system causes a rise in setup and maintenance cost and make to control network devices in difficulty. The gateway becomes necessary for reducing complexity in network topology. In this study, Modbus RTU/Modbus TCP industrial ethernet gateway design and implementation are presented with ARM embedded system and FreeRTOS real-time operating system. The Modbus gateway can perform communication with Modbus RTU and Modbus TCP devices over itself. Moreover, the gateway can be adjustable with the user-interface application or messaging interface. Conducted experiments and the results are presented in the paper. Eventually, the proposed system is a complete, low-cost, real-time, and user-friendly design for monitoring and setting devices and useful for meeting remote control purposes.Keywords: gateway, industrial communication, modbus, network
Procedia PDF Downloads 1419770 A Network Optimization Study of Logistics for Enhancing Emergency Preparedness in Asia-Pacific
Authors: Giuseppe Timperio, Robert De Souza
Abstract:
The combination of factors such as temperamental climate change, rampant urbanization of risk exposed areas, political and social instabilities, is posing an alarming base for the further growth of number and magnitude of humanitarian crises worldwide. Given the unique features of humanitarian supply chain such as unpredictability of demand in space, time, and geography, spike in the number of requests for relief items in the first days after the calamity, uncertain state of logistics infrastructures, large volumes of unsolicited low-priority items, a proactive approach towards design of disaster response operations is needed to achieve high agility in mobilization of emergency supplies in the immediate aftermath of the event. This paper is an attempt in that direction, and it provides decision makers with crucial strategic insights for a more effective network design for disaster response. Decision sciences and ICT are integrated to analyse the robustness and resilience of a prepositioned network of emergency strategic stockpiles for a real-life case about Indonesia, one of the most vulnerable countries in Asia-Pacific, with the model being built upon a rich set of quantitative data. At this aim, a network optimization approach was implemented, with several what-if scenarios being accurately developed and tested. Findings of this study are able to support decision makers facing challenges related with disaster relief chains resilience, particularly about optimal configuration of supply chain facilities and optimal flows across the nodes, while considering the network structure from an end-to-end in-country distribution perspective.Keywords: disaster preparedness, humanitarian logistics, network optimization, resilience
Procedia PDF Downloads 1769769 Strategic Role of Fintechs in Evolving Financial Functions and Enhancing Corporate Resilience amid Economic Crises
Authors: Ghizlane Barzi, Zineb Bamousse
Abstract:
In an increasingly volatile global economic context characterized by recurring crises, the financial function of companies is called upon to play a strategic role not only in resource management but also in organizational resilience. The emergence of financial technologies (fintech) offers innovative tools capable of transforming this function by enhancing the efficiency of financial processes and increasing companies' ability to adapt and overcome economic shocks. However, despite the rapid rise of fintechs and their growing adoption by companies, there remain uncertainties regarding the real impact of these innovations on the financial resilience of organizations. Indeed, how do fintech-driven innovations transform the financial function, and to what extent does this transformation contribute to strengthening the financial resilience of companies in the face of contemporary crises? This research aims to explore these questions by examining the interrelationships between the financial function, fintech innovations, and corporate resilience, in order to identify optimization levers that could be adopted for better financial risk management.Keywords: finance, financial function, fintech, resilience, innovation
Procedia PDF Downloads 269768 Effective Supply Chain Coordination with Hybrid Demand Forecasting Techniques
Authors: Gurmail Singh
Abstract:
Effective supply chain is the main priority of every organization which is the outcome of strategic corporate investments with deliberate management action. Value-driven supply chain is defined through development, procurement and by configuring the appropriate resources, metrics and processes. However, responsiveness of the supply chain can be improved by proper coordination. So the Bullwhip effect (BWE) and Net stock amplification (NSAmp) values were anticipated and used for the control of inventory in organizations by both discrete wavelet transform-Artificial neural network (DWT-ANN) and Adaptive Network-based fuzzy inference system (ANFIS). This work presents a comparative methodology of forecasting for the customers demand which is non linear in nature for a multilevel supply chain structure using hybrid techniques such as Artificial intelligence techniques including Artificial neural networks (ANN) and Adaptive Network-based fuzzy inference system (ANFIS) and Discrete wavelet theory (DWT). The productiveness of these forecasting models are shown by computing the data from real world problems for Bullwhip effect and Net stock amplification. The results showed that these parameters were comparatively less in case of discrete wavelet transform-Artificial neural network (DWT-ANN) model and using Adaptive network-based fuzzy inference system (ANFIS).Keywords: bullwhip effect, hybrid techniques, net stock amplification, supply chain flexibility
Procedia PDF Downloads 1279767 Multi Criteria Authentication Method in Cognitive Radio Networks
Authors: Shokoufeh Monjezi Kouchak
Abstract:
Cognitive radio network (CRN) is future network .Without this network wireless devices can’t work appropriately in the next decades. Today, wireless devices use static spectrum access methods and these methods don’t use spectrums optimum so we need use dynamic spectrum access methods to solve shortage spectrum challenge and CR is a great device for DSA but first of all its challenges should be solved .security is one of these challenges .In this paper we provided a survey about CR security. You can see this survey in tables 1 to 7 .After that we proposed a multi criteria authentication method in CRN. Our criteria in this method are: sensing results, following sending data rules, position of secondary users and no talk zone. Finally we compared our method with other authentication methods.Keywords: authentication, cognitive radio, security, radio networks
Procedia PDF Downloads 3929766 Machine Learning Methods for Network Intrusion Detection
Authors: Mouhammad Alkasassbeh, Mohammad Almseidin
Abstract:
Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE. Procedia PDF Downloads 2349765 Detection of Autistic Children's Voice Based on Artificial Neural Network
Authors: Royan Dawud Aldian, Endah Purwanti, Soegianto Soelistiono
Abstract:
In this research we have been developed an automatic investigation to classify normal children voice or autistic by using modern computation technology that is computation based on artificial neural network. The superiority of this computation technology is its capability on processing and saving data. In this research, digital voice features are gotten from the coefficient of linear-predictive coding with auto-correlation method and have been transformed in frequency domain using fast fourier transform, which used as input of artificial neural network in back-propagation method so that will make the difference between normal children and autistic automatically. The result of back-propagation method shows that successful classification capability for normal children voice experiment data is 100% whereas, for autistic children voice experiment data is 100%. The success rate using back-propagation classification system for the entire test data is 100%.Keywords: autism, artificial neural network, backpropagation, linier predictive coding, fast fourier transform
Procedia PDF Downloads 4619764 Protecting the Privacy and Trust of VIP Users on Social Network Sites
Authors: Nidal F. Shilbayeh, Sameh T. Khuffash, Mohammad H. Allymoun, Reem Al-Saidi
Abstract:
There is a real threat on the VIPs personal pages on the Social Network Sites (SNS). The real threats to these pages is violation of privacy and theft of identity through creating fake pages that exploit their names and pictures to attract the victims and spread of lies. In this paper, we propose a new secure architecture that improves the trusting and finds an effective solution to reduce fake pages and possibility of recognizing VIP pages on SNS. The proposed architecture works as a third party that is added to Facebook to provide the trust service to personal pages for VIPs. Through this mechanism, it works to ensure the real identity of the applicant through the electronic authentication of personal information by storing this information within content of their website. As a result, the significance of the proposed architecture is that it secures and provides trust to the VIPs personal pages. Furthermore, it can help to discover fake page, protect the privacy, reduce crimes of personality-theft, and increase the sense of trust and satisfaction by friends and admirers in interacting with SNS.Keywords: social network sites, online social network, privacy, trust, security and authentication
Procedia PDF Downloads 3819763 Facilitation of Digital Culture and Creativity through an Ideation Strategy: A Case Study with an Incumbent Automotive Manufacturer
Authors: K. Ö. Kartal, L. Maul, M. Hägele
Abstract:
With the development of new technologies come additional opportunities for the founding of companies and new markets to be created. The barriers to entry are lowered and technology makes old business models obsolete. Incumbent companies have to be adaptable to this quickly changing environment. They have to start the process of digital maturation and they have to be able to adapt quickly to new and drastic changes that might arise. One of the biggest barriers for organizations in order to do so is their culture. This paper shows the core elements of a corporate culture that supports the process of digital maturation in incumbent organizations. Furthermore, it is explored how ideation and innovation can be used in a strategy in order to facilitate these core elements of culture that promote digital maturity. Focus areas are identified for the design of ideation strategies, with the aim to make the facilitation and incitation process more effective, short to long term. Therefore, one in-depth case study is conducted with data collection from interviews, observation, document review and surveys. The findings indicate that digital maturity is connected to cultural shift and 11 relevant elements of digital culture are identified which have to be considered. Based on these 11 core elements, five focus areas that need to be regarded in the design of a strategy that uses ideation and innovation to facilitate the cultural shift are identified. These are: Focus topics, rewards and communication, structure and frequency, regions and new online formats.Keywords: digital transformation, innovation management, ideation strategy, creativity culture, change
Procedia PDF Downloads 1969762 Comparative Performance Analysis of Fiber Delay Line Based Buffer Architectures for Contention Resolution in Optical WDM Networks
Authors: Manoj Kumar Dutta
Abstract:
Wavelength division multiplexing (WDM) technology is the most promising technology for the proper utilization of huge raw bandwidth provided by an optical fiber. One of the key problems in implementing the all-optical WDM network is the packet contention. This problem can be solved by several different techniques. In time domain approach the packet contention can be reduced by incorporating fiber delay lines (FDLs) as optical buffer in the switch architecture. Different types of buffering architectures are reported in literatures. In the present paper a comparative performance analysis of three most popular FDL architectures are presented in order to obtain the best contention resolution performance. The analysis is further extended to consider the effect of different fiber non-linearities on the network performance.Keywords: WDM network, contention resolution, optical buffering, non-linearity, throughput
Procedia PDF Downloads 4519761 Funding Innovative Activities in Firms: The Ownership Structure and Governance Linkage - Evidence from Mongolia
Authors: Ernest Nweke, Enkhtuya Bavuudorj
Abstract:
The harsh realities of the scandalous failure of several notable corporations in the past two decades have inextricably resulted in a surge in corporate governance studies. Nevertheless, little or no attention has been paid to corporate governance studies in Mongolian firms and much less to the comprehension of the correlation among ownership structure, corporate governance mechanisms and trend of innovative activities. Innovation is the bed rock of enterprise success. However, the funding and support for innovative activities in many firms are to a great extent determined by the incentives provided by the firm’s internal and external governance mechanisms. Mongolia is an East Asian country currently undergoing a fast-paced transition from socialist to democratic system and it is a widely held view that private ownership as against public ownership fosters innovation. Hence, following the privatization policy of Mongolian Government which has led to the transfer of the ownership of hitherto state controlled and state directed firms to private individuals and organizations, expectations are high that sufficient motivation would be provided for firm managers to engage in innovative activities. This research focuses on the relationship between ownership structure, corporate governance on one hand and the level of innovation on the hand. The paper is empirical in nature and derives data from both reliable secondary and primary sources. Secondary data for the study was in respect of ownership structure of Mongolian listed firms and innovation trend in Mongolia generally. These were analyzed using tables, charts, bars and percentages. Personal interviews and surveys were held to collect primary data. Primary data was in respect of corporate governance practices in Mongolian firms and were collected using structured questionnaire. Out of a population of three hundred and twenty (320) companies listed on the Mongolian Stock Exchange (MSE), a sample size of thirty (30) randomly selected companies was utilized for the study. Five (5) management level employees were surveyed in each selected firm giving a total of one hundred and fifty (150) respondents. Data collected were analyzed and research hypotheses tested using Chi-Square test statistic. Research results showed that corporate governance mechanisms were better and have significantly improved overtime in privately held as opposed to publicly owned firms. Consequently, the levels of innovation in privately held firms were considerably higher. It was concluded that a significant and positive relationship exists between private ownership and good corporate governance on one hand and the level of funding provided for innovative activities in Mongolian firms on the other hand.Keywords: corporate governance, innovation, ownership structure, stock exchange
Procedia PDF Downloads 1959760 A Remote Sensing Approach to Calculate Population Using Roads Network Data in Lebanon
Authors: Kamel Allaw, Jocelyne Adjizian Gerard, Makram Chehayeb, Nada Badaro Saliba
Abstract:
In developing countries, such as Lebanon, the demographic data are hardly available due to the absence of the mechanization of population system. The aim of this study is to evaluate, using only remote sensing data, the correlations between the number of population and the characteristics of roads network (length of primary roads, length of secondary roads, total length of roads, density and percentage of roads and the number of intersections). In order to find the influence of the different factors on the demographic data, we studied the degree of correlation between each factor and the number of population. The results of this study have shown a strong correlation between the number of population and the density of roads and the number of intersections.Keywords: population, road network, statistical correlations, remote sensing
Procedia PDF Downloads 1629759 Cooperative Cross Layer Topology for Concurrent Transmission Scheduling Scheme in Broadband Wireless Networks
Authors: Gunasekaran Raja, Ramkumar Jayaraman
Abstract:
In this paper, we consider CCL-N (Cooperative Cross Layer Network) topology based on the cross layer (both centralized and distributed) environment to form network communities. Various performance metrics related to the IEEE 802.16 networks are discussed to design CCL-N Topology. In CCL-N topology, nodes are classified as master nodes (Master Base Station [MBS]) and serving nodes (Relay Station [RS]). Nodes communities are organized based on the networking terminologies. Based on CCL-N Topology, various simulation analyses for both transparent and non-transparent relays are tabulated and throughput efficiency is calculated. Weighted load balancing problem plays a challenging role in IEEE 802.16 network. CoTS (Concurrent Transmission Scheduling) Scheme is formulated in terms of three aspects – transmission mechanism based on identical communities, different communities and identical node communities. CoTS scheme helps in identifying the weighted load balancing problem. Based on the analytical results, modularity value is inversely proportional to that of the error value. The modularity value plays a key role in solving the CoTS problem based on hop count. The transmission mechanism for identical node community has no impact since modularity value is same for all the network groups. In this paper three aspects of communities based on the modularity value which helps in solving the problem of weighted load balancing and CoTS are discussed.Keywords: cross layer network topology, concurrent scheduling, modularity value, network communities and weighted load balancing
Procedia PDF Downloads 2659758 Demonstration of Powering up Low Power Wireless Sensor Network by RF Energy Harvesting System
Authors: Lim Teck Beng, Thiha Kyaw, Poh Boon Kiat, Lee Ngai Meng
Abstract:
This work presents discussion on the possibility of merging two emerging technologies in microwave; wireless power transfer (WPT) and RF energy harvesting. The current state of art of the two technologies is discussed and the strength and weakness of the two technologies is also presented. The equivalent circuit of wireless power transfer is modeled and explained as how the range and efficiency can be further increased by controlling certain parameters in the receiver. The different techniques of harvesting the RF energy from the ambient are also extensive study. Last but not least, we demonstrate that a low power wireless sensor network (WSN) can be power up by RF energy harvesting. The WSN is designed to transmit every 3 minutes of information containing the temperature of the environment and also the voltage of the node. One thing worth mention is both the sensors that are used for measurement are also powering up by the RF energy harvesting system.Keywords: energy harvesting, wireless power transfer, wireless sensor network and magnetic coupled resonator
Procedia PDF Downloads 5199757 Cybersecurity Strategies for Protecting Oil and Gas Industrial Control Systems
Authors: Gaurav Kumar Sinha
Abstract:
The oil and gas industry is a critical component of the global economy, relying heavily on industrial control systems (ICS) to manage and monitor operations. However, these systems are increasingly becoming targets for cyber-attacks, posing significant risks to operational continuity, safety, and environmental integrity. This paper explores comprehensive cybersecurity strategies for protecting oil and gas industrial control systems. It delves into the unique vulnerabilities of ICS in this sector, including outdated legacy systems, integration with IT networks, and the increased connectivity brought by the Industrial Internet of Things (IIoT). We propose a multi-layered defense approach that includes the implementation of robust network security protocols, regular system updates and patch management, advanced threat detection and response mechanisms, and stringent access control measures. We illustrate the effectiveness of these strategies in mitigating cyber risks and ensuring the resilient and secure operation of oil and gas industrial control systems. The findings underscore the necessity for a proactive and adaptive cybersecurity framework to safeguard critical infrastructure in the face of evolving cyber threats.Keywords: cybersecurity, industrial control systems, oil and gas, cyber-attacks, network security, IoT, threat detection, system updates, patch management, access control, cybersecurity awareness, critical infrastructure, resilience, cyber threats, legacy systems, IT integration, multi-layered defense, operational continuity, safety, environmental integrity
Procedia PDF Downloads 449756 Towards a Competitive South African Tooling Industry
Authors: Mncedisi Trinity Dewa, Andre Francois Van Der Merwe, Stephen Matope
Abstract:
Tool, Die and Mould-making (TDM) firms have been known to play a pivotal role in the growth and development of the manufacturing sectors in most economies. Their output contributes significantly to the quality, cost and delivery speed of final manufactured parts. Unfortunately, the South African Tool, Die and Mould-making manufacturers have not been competing on the local or global market in a significant way. This reality has hampered the productivity and growth of the sector thus attracting intervention. The paper explores the shortcomings South African toolmakers have to overcome to restore their competitive position globally. Results from a global benchmarking survey on the tooling sector are used to establish a roadmap of what South African toolmakers can do to become a productive, World Class force on the global market.Keywords: competitive performance objectives, toolmakers, world-class manufacturing, lead times
Procedia PDF Downloads 5199755 Interbrain Synchronization and Multilayer Hyper brain Networks when Playing Guitar in Quartet
Authors: Viktor Müller, Ulman Lindenberger
Abstract:
Neurophysiological evidence suggests that the physiological states of the system are characterized by specific network structures and network topology dynamics, demonstrating a robust interplay between network topology and function. It is also evident that interpersonal action coordination or social interaction (e.g., playing music in duets or groups) requires strong intra- and interbrain synchronization resulting in a specific hyper brain network activity across two or more brains to support such coordination or interaction. Such complex hyper brain networks can be described as multiplex or multilayer networks that have a specific multidimensional or multilayer network organization characteristic for superordinate systems and their constituents. The aim of the study was to describe multilayer hyper brain networks and synchronization patterns of guitarists playing guitar in a quartet by using electroencephalography (EEG) hyper scanning (simultaneous EEG recording from multiple brains) and following time-frequency decomposition and multilayer network construction, where within-frequency coupling (WFC) represents communication within different layers, and cross-frequency coupling (CFC) depicts communication between these layers. Results indicate that communication or coupling dynamics, both within and between the layers across the brains of the guitarists, play an essential role in action coordination and are particularly enhanced during periods of high demands on musical coordination. Moreover, multilayer hyper brain network topology and dynamical structure of guitar sounds showed specific guitar-guitar, brain-brain, and guitar-brain causal associations, indicating multilevel dynamics with upward and downward causation, contributing to the superordinate system dynamics and hyper brain functioning. It is concluded that the neuronal dynamics during interpersonal interaction are brain-wide and frequency-specific with the fine-tuned balance between WFC and CFC and can best be described in terms of multilayer multi-brain networks with specific network topology and connectivity strengths. Further sophisticated research is needed to deepen our understanding of these highly interesting and complex phenomena.Keywords: EEG hyper scanning, intra- and interbrain coupling, multilayer hyper brain networks, social interaction, within- and cross-frequency coupling
Procedia PDF Downloads 729754 Review of Energy Efficiency Routing in Ad Hoc Wireless Networks
Authors: P. R. Dushantha Chaminda, Peng Kai
Abstract:
In this review paper, we enclose the thought of wireless ad hoc networks and particularly mobile ad hoc network (MANET), their field of study, intention, concern, benefit and disadvantages, modifications, with relation of AODV routing protocol. Mobile computing is developing speedily with progression in wireless communications and wireless networking protocols. Making communication easy, we function most wireless network devices and sensor networks, movable, battery-powered, thus control on a highly constrained energy budget. However, progress in battery technology presents that only little improvements in battery volume can be expected in the near future. Moreover, recharging or substitution batteries is costly or unworkable, it is preferable to support energy waste level of devices low.Keywords: wireless ad hoc network, energy efficient routing protocols, AODV, EOAODV, AODVEA, AODVM, AOMDV, FF-AOMDV, AOMR-LM
Procedia PDF Downloads 2149753 The Effect of Global Solar Variations on the Performance of n- AlGaAs/ p-GaAs Solar Cells
Authors: A. Guechi, M. Chegaar
Abstract:
This study investigates how AlGaAs/GaAs thin film solar cells perform under varying global solar spectrum due to the changes of environmental parameters such as the air mass and the atmospheric turbidity. The solar irradiance striking the solar cell is simulated using the spectral irradiance model SMARTS2 (Simple Model of the Atmospheric Radiative Transfer of Sunshine) for clear skies on the site of Setif (Algeria). The results show a reduction in the short circuit current due to increasing atmospheric turbidity, it is 63.09% under global radiation. However increasing air mass leads to a reduction in the short circuit current of 81.73%.The efficiency decrease with increasing atmospheric turbidity and air mass.Keywords: AlGaAs/GaAs, solar cells, environmental parameters, spectral variation, SMARTS
Procedia PDF Downloads 3979752 A Comparison of Methods for Neural Network Aggregation
Authors: John Pomerat, Aviv Segev
Abstract:
Recently, deep learning has had many theoretical breakthroughs. For deep learning to be successful in the industry, however, there need to be practical algorithms capable of handling many real-world hiccups preventing the immediate application of a learning algorithm. Although AI promises to revolutionize the healthcare industry, getting access to patient data in order to train learning algorithms has not been easy. One proposed solution to this is data- sharing. In this paper, we propose an alternative protocol, based on multi-party computation, to train deep learning models while maintaining both the privacy and security of training data. We examine three methods of training neural networks in this way: Transfer learning, average ensemble learning, and series network learning. We compare these methods to the equivalent model obtained through data-sharing across two different experiments. Additionally, we address the security concerns of this protocol. While the motivating example is healthcare, our findings regarding multi-party computation of neural network training are purely theoretical and have use-cases outside the domain of healthcare.Keywords: neural network aggregation, multi-party computation, transfer learning, average ensemble learning
Procedia PDF Downloads 1629751 A Comparative Study on Deep Learning Models for Pneumonia Detection
Authors: Hichem Sassi
Abstract:
Pneumonia, being a respiratory infection, has garnered global attention due to its rapid transmission and relatively high mortality rates. Timely detection and treatment play a crucial role in significantly reducing mortality associated with pneumonia. Presently, X-ray diagnosis stands out as a reasonably effective method. However, the manual scrutiny of a patient's X-ray chest radiograph by a proficient practitioner usually requires 5 to 15 minutes. In situations where cases are concentrated, this places immense pressure on clinicians for timely diagnosis. Relying solely on the visual acumen of imaging doctors proves to be inefficient, particularly given the low speed of manual analysis. Therefore, the integration of artificial intelligence into the clinical image diagnosis of pneumonia becomes imperative. Additionally, AI recognition is notably rapid, with convolutional neural networks (CNNs) demonstrating superior performance compared to human counterparts in image identification tasks. To conduct our study, we utilized a dataset comprising chest X-ray images obtained from Kaggle, encompassing a total of 5216 training images and 624 test images, categorized into two classes: normal and pneumonia. Employing five mainstream network algorithms, we undertook a comprehensive analysis to classify these diseases within the dataset, subsequently comparing the results. The integration of artificial intelligence, particularly through improved network architectures, stands as a transformative step towards more efficient and accurate clinical diagnoses across various medical domains.Keywords: deep learning, computer vision, pneumonia, models, comparative study
Procedia PDF Downloads 649750 An Introductory Study on Optimization Algorithm for Movable Sensor Network-Based Odor Source Localization
Authors: Yossiri Ariyakul, Piyakiat Insom, Poonyawat Sangiamkulthavorn, Takamichi Nakamoto
Abstract:
In this paper, the method of optimization algorithm for sensor network comprised of movable sensor nodes which can be used for odor source localization was proposed. A sensor node is composed of an odor sensor, an anemometer, and a wireless communication module. The odor intensity measured from the sensor nodes are sent to the processor to perform the localization based on optimization algorithm by which the odor source localization map is obtained as a result. The map can represent the exact position of the odor source or show the direction toward it remotely. The proposed method was experimentally validated by creating the odor source localization map using three, four, and five sensor nodes in which the accuracy to predict the position of the odor source can be observed.Keywords: odor sensor, odor source localization, optimization, sensor network
Procedia PDF Downloads 2999749 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area
Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim
Abstract:
In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.Keywords: data estimation, link data, machine learning, road network
Procedia PDF Downloads 510