Search results for: general linear regression model
22939 Transition from Linear to Circular Business Models with Service Design Methodology
Authors: Minna-Maari Harmaala, Hanna Harilainen
Abstract:
Estimates of the economic value of transitioning to circular economy models vary but it has been estimated to represent $1 trillion worth of new business into the global economy. In Europe alone, estimates claim that adopting circular-economy principles could not only have environmental and social benefits but also generate a net economic benefit of €1.8 trillion by 2030. Proponents of a circular economy argue that it offers a major opportunity to increase resource productivity, decrease resource dependence and waste, and increase employment and growth. A circular system could improve competitiveness and unleash innovation. Yet, most companies are not capturing these opportunities and thus the even abundant circular opportunities remain uncaptured even though they would seem inherently profitable. Service design in broad terms relates to developing an existing or a new service or service concept with emphasis and focus on the customer experience from the onset of the development process. Service design may even mean starting from scratch and co-creating the service concept entirely with the help of customer involvement. Service design methodologies provide a structured way of incorporating customer understanding and involvement in the process of designing better services with better resonance to customer needs. A business model is a depiction of how the company creates, delivers, and captures value; i.e. how it organizes its business. The process of business model development and adjustment or modification is also called business model innovation. Innovating business models has become a part of business strategy. Our hypothesis is that in addition to linear models still being easier to adopt and often with lower threshold costs, companies lack an understanding of how circular models can be adopted into their business and how customers will be willing and ready to adopt the new circular business models. In our research, we use robust service design methodology to develop circular economy solutions with two case study companies. The aim of the process is to not only develop the service concepts and portfolio, but to demonstrate the willingness to adopt circular solutions exists in the customer base. In addition to service design, we employ business model innovation methods to develop, test, and validate the new circular business models further. The results clearly indicate that amongst the customer groups there are specific customer personas that are willing to adopt and in fact are expecting the companies to take a leading role in the transition towards a circular economy. At the same time, there is a group of indifferents, to whom the idea of circularity provides no added value. In addition, the case studies clearly show what changes adoption of circular economy principles brings to the existing business model and how they can be integrated.Keywords: business model innovation, circular economy, circular economy business models, service design
Procedia PDF Downloads 13522938 Response Regimes and Vibration Mitigation in Equivalent Mechanical Model of Strongly Nonlinear Liquid Sloshing
Authors: Maor Farid, Oleg Gendelman
Abstract:
Equivalent mechanical model of liquid sloshing in partially-filled cylindrical vessel is treated in the cases of free oscillations and of horizontal base excitation. The model is designed to cover both the linear and essentially nonlinear sloshing regimes. The latter fluid behaviour might involve hydraulic impacts interacting with the inner walls of the tank. These impulsive interactions are often modeled by high-power potential and dissipation functions. For the sake of analytical description, we use the traditional approach by modeling the impacts with velocity-dependent restitution coefficient. This modelling is similar to vibro-impact nonlinear energy sink (VI NES) which was recently explored for its vibration mitigation performances and nonlinear response regimes. Steady-state periodic regimes and chaotic strongly modulated responses (CSMR) are detected. Those dynamical regimes were described by the system's slow motion on the slow invariant manifold (SIM). There is a good agreement between the analytical results and numerical simulations. Subsequently, Finite-Element (FE) method is used to determine and verify the model parameters and to identify dominant dynamical regimes, natural modes and frequencies. The tank failure modes are identified and critical locations are identified. Mathematical relation is found between degrees-of-freedom (DOFs) motion and the mechanical stress applied in the tank critical section. This is the prior attempt to take under consideration large-amplitude nonlinear sloshing and tank structure elasticity effects for design, regulation definition and resistance analysis purposes. Both linear (tuned mass damper, TMD) and nonlinear (nonlinear energy sink, NES) passive energy absorbers contribution to the overall system mitigation is firstly examined, in terms of both stress reduction and time for vibration decay.Keywords: nonlinear energy sink (NES), reduced-order modelling, liquid sloshing, vibration mitigation, vibro-impact dynamics
Procedia PDF Downloads 14522937 Digitalization and High Audit Fees: An Empirical Study Applied to US Firms
Authors: Arpine Maghakyan
Abstract:
The purpose of this paper is to study the relationship between the level of industry digitalization and audit fees, especially, the relationship between Big 4 auditor fees and industry digitalization level. On the one hand, automation of business processes decreases internal control weakness and manual mistakes; increases work effectiveness and integrations. On the other hand, it may cause serious misstatements, high business risks or even bankruptcy, typically in early stages of automation. Incomplete automation can bring high audit risk especially if the auditor does not fully understand client’s business automation model. Higher audit risk consequently will cause higher audit fees. Higher audit fees for clients with high automation level are more highlighted in Big 4 auditor’s behavior. Using data of US firms from 2005-2015, we found that industry level digitalization is an interaction for the auditor quality on audit fees. Moreover, the choice of Big4 or non-Big4 is correlated with client’s industry digitalization level. Big4 client, which has higher digitalization level, pays more than one with low digitalization level. In addition, a high-digitalized firm that has Big 4 auditor pays higher audit fee than non-Big 4 client. We use audit fees and firm-specific variables from Audit Analytics and Compustat databases. We analyze collected data by using fixed effects regression methods and Wald tests for sensitivity check. We use fixed effects regression models for firms for determination of the connections between technology use in business and audit fees. We control for firm size, complexity, inherent risk, profitability and auditor quality. We chose fixed effects model as it makes possible to control for variables that have not or cannot be measured.Keywords: audit fees, auditor quality, digitalization, Big4
Procedia PDF Downloads 30222936 Systematic Study of Structure Property Relationship in Highly Crosslinked Elastomers
Authors: Natarajan Ramasamy, Gurulingamurthy Haralur, Ramesh Nivarthu, Nikhil Kumar Singha
Abstract:
Elastomers are polymeric materials with varied backbone architectures ranging from linear to dendrimeric structures and wide varieties of monomeric repeat units. These elastomers show strongly viscous and weakly elastic when it is not cross-linked. But when crosslinked, based on the extent the properties of these elastomers can range from highly flexible to highly stiff nature. Lightly cross-linked systems are well studied and reported. Understanding the nature of highly cross-linked rubber based upon chemical structure and architecture is critical for varieties of applications. One of the critical parameters is cross-link density. In the current work, we have studied the highly cross-linked state of linear, lightly branched to star-shaped branched elastomers and determined the cross-linked density by using different models. Change in hardness, shift in Tg, change in modulus and swelling behavior were measured experimentally as a function of the extent of curing. These properties were analyzed using varied models to determine cross-link density. We used hardness measurements to examine cure time. Hardness to the extent of curing relationship is determined. It is well known that micromechanical transitions like Tg and storage modulus are related to the extent of crosslinking. The Tg of the elastomer in different crosslinked state was determined by DMA, and based on plateau modulus the crosslink density is estimated by using Nielsen’s model. Usually for lightly crosslinked systems, based on equilibrium swelling ratio in solvent the cross link density is estimated by using Flory–Rhener model. When it comes to highly crosslinked system, Flory-Rhener model is not valid because of smaller chain length. So models based on the assumption of polymer as a Non-Gaussian chain like 1) Helmis–Heinrich–Straube (HHS) model, 2) Gloria M.gusler and Yoram Cohen Model, 3) Barbara D. Barr-Howell and Nikolaos A. Peppas model is used for estimating crosslink density. In this work, correction factors are determined to the existing models and based upon it structure-property relationship of highly crosslinked elastomers was studied.Keywords: dynamic mechanical analysis, glass transition temperature, parts per hundred grams of rubber, crosslink density, number of networks per unit volume of elastomer
Procedia PDF Downloads 16522935 Fine-Scale Modeling the Influencing Factors of Multi-Time Dimensions of Transit Ridership at Station Level: The Study of Guangzhou City
Authors: Dijiang Lyu, Shaoying Li, Zhangzhi Tan, Zhifeng Wu, Feng Gao
Abstract:
Nowadays, China is experiencing rapidly urban rail transit expansions in the world. The purpose of this study is to finely model factors influencing transit ridership at multi-time dimensions within transit stations’ pedestrian catchment area (PCA) in Guangzhou, China. This study was based on multi-sources spatial data, including smart card data, high spatial resolution images, points of interest (POIs), real-estate online data and building height data. Eight multiple linear regression models using backward stepwise method and Geographic Information System (GIS) were created at station-level. According to Chinese code for classification of urban land use and planning standards of development land, residential land-use were divided into three categories: first-level (e.g. villa), second-level (e.g. community) and third-level (e.g. urban villages). Finally, it concluded that: (1) four factors (CBD dummy, number of feeder bus route, number of entrance or exit and the years of station operation) were proved to be positively correlated with transit ridership, but the area of green land-use and water land-use negative correlated instead. (2) The area of education land-use, the second-level and third-level residential land-use were found to be highly connected to the average value of morning peak boarding and evening peak alighting ridership. But the area of commercial land-use and the average height of buildings, were significantly positive associated with the average value of morning peak alighting and evening peak boarding ridership. (3) The area of the second-level residential land-use was rarely correlated with ridership in other regression models. Because private car ownership is still large in Guangzhou now, and some residents living in the community around the stations go to work by transit at peak time, but others are much more willing to drive their own car at non-peak time. The area of the third-level residential land-use, like urban villages, was highly positive correlated with ridership in all models, indicating that residents who live in the third-level residential land-use are the main passenger source of the Guangzhou Metro. (4) The diversity of land-use was found to have a significant impact on the passenger flow on the weekend, but was non-related to weekday. The findings can be useful for station planning, management and policymaking.Keywords: fine-scale modeling, Guangzhou city, multi-time dimensions, multi-sources spatial data, transit ridership
Procedia PDF Downloads 14222934 Numerical Simulation of a Three-Dimensional Framework under the Action of Two-Dimensional Moving Loads
Authors: Jia-Jang Wu
Abstract:
The objective of this research is to develop a general technique so that one may predict the dynamic behaviour of a three-dimensional scale crane model subjected to time-dependent moving point forces by means of conventional finite element computer packages. To this end, the whole scale crane model is divided into two parts: the stationary framework and the moving substructure. In such a case, the dynamic responses of a scale crane model can be predicted from the forced vibration responses of the stationary framework due to actions of the four time-dependent moving point forces induced by the moving substructure. Since the magnitudes and positions of the moving point forces are dependent on the relative positions between the trolley, moving substructure and the stationary framework, it can be found from the numerical results that the time histories for the moving speeds of the moving substructure and the trolley are the key factors affecting the dynamic responses of the scale crane model.Keywords: moving load, moving substructure, dynamic responses, forced vibration responses
Procedia PDF Downloads 35222933 Optimizing Nitrogen Fertilizer Application in Rice Cultivation: A Decision Model for Top and Ear Dressing Dosages
Authors: Ya-Li Tsai
Abstract:
Nitrogen is a vital element crucial for crop growth, significantly influencing crop yield. In rice cultivation, farmers often apply substantial nitrogen fertilizer to maximize yields. However, excessive nitrogen application increases the risk of lodging and pest infestation, leading to yield losses. Additionally, conventional flooded irrigation methods consume significant water resources, necessitating precise agricultural and intelligent water management systems. In this study, it leveraged physiological data and field images captured by unmanned aerial vehicles, considering fertilizer treatment and irrigation as key factors. Statistical models incorporating rice physiological data, yield, and vegetation indices from image data were developed. Missing physiological data were addressed using multiple imputation and regression methods, and regression models were established using principal component analysis and stepwise regression. Target nitrogen accumulation at key growth stages was identified to optimize fertilizer application, with the difference between actual and target nitrogen accumulation guiding recommendations for ear dressing dosage. Field experiments conducted in 2022 validated the recommended ear dressing dosage, demonstrating no significant difference in final yield compared to traditional fertilizer levels under alternate wetting and drying irrigation. These findings highlight the efficacy of applying recommended dosages based on fertilizer decision models, offering the potential for reduced fertilizer use while maintaining yield in rice cultivation.Keywords: intelligent fertilizer management, nitrogen top and ear dressing fertilizer, rice, yield optimization
Procedia PDF Downloads 8222932 Assessing Effects of an Intervention on Bottle-Weaning and Reducing Daily Milk Intake from Bottles in Toddlers Using Two-Part Random Effects Models
Authors: Yungtai Lo
Abstract:
Two-part random effects models have been used to fit semi-continuous longitudinal data where the response variable has a point mass at 0 and a continuous right-skewed distribution for positive values. We review methods proposed in the literature for analyzing data with excess zeros. A two-part logit-log-normal random effects model, a two-part logit-truncated normal random effects model, a two-part logit-gamma random effects model, and a two-part logit-skew normal random effects model were used to examine effects of a bottle-weaning intervention on reducing bottle use and daily milk intake from bottles in toddlers aged 11 to 13 months in a randomized controlled trial. We show in all four two-part models that the intervention promoted bottle-weaning and reduced daily milk intake from bottles in toddlers drinking from a bottle. We also show that there are no differences in model fit using either the logit link function or the probit link function for modeling the probability of bottle-weaning in all four models. Furthermore, prediction accuracy of the logit or probit link function is not sensitive to the distribution assumption on daily milk intake from bottles in toddlers not off bottles.Keywords: two-part model, semi-continuous variable, truncated normal, gamma regression, skew normal, Pearson residual, receiver operating characteristic curve
Procedia PDF Downloads 34922931 Model of Elastic Fracture Toughness for Ductile Metal Pipes with External Longitudinal Cracks
Authors: Guoyang Fu, Wei Yang, Chun-Qing Li
Abstract:
The most common type of cracks that appear on metal pipes is longitudinal cracks. For ductile metal pipes, the existence of plasticity eases the stress intensity at the crack front and consequently increases the fracture resistance. It should be noted that linear elastic fracture mechanics (LEFM) has been widely accepted by engineers. In order to make the LEFM applicable to ductile metal materials, the increase of fracture toughness due to plasticity should be excluded from the total fracture toughness of the ductile metal. This paper aims to develop a model of elastic fracture toughness for ductile metal pipes with external longitudinal cracks. The derived elastic fracture toughness is a function of crack geometry and material properties of the cracked pipe. The significance of the derived model is that the well-established LEFM can be used for ductile metal material in predicting the fracture failure.Keywords: Ductile metal pipes, elastic fracture toughness, longitudinal crack, plasticity
Procedia PDF Downloads 24722930 A New Method to Estimate the Low Income Proportion: Monte Carlo Simulations
Authors: Encarnación Álvarez, Rosa M. García-Fernández, Juan F. Muñoz
Abstract:
Estimation of a proportion has many applications in economics and social studies. A common application is the estimation of the low income proportion, which gives the proportion of people classified as poor into a population. In this paper, we present this poverty indicator and propose to use the logistic regression estimator for the problem of estimating the low income proportion. Various sampling designs are presented. Assuming a real data set obtained from the European Survey on Income and Living Conditions, Monte Carlo simulation studies are carried out to analyze the empirical performance of the logistic regression estimator under the various sampling designs considered in this paper. Results derived from Monte Carlo simulation studies indicate that the logistic regression estimator can be more accurate than the customary estimator under the various sampling designs considered in this paper. The stratified sampling design can also provide more accurate results.Keywords: poverty line, risk of poverty, auxiliary variable, ratio method
Procedia PDF Downloads 45622929 Evaluating Factors Influencing Information Quality in Large Firms
Authors: B. E. Narkhede, S. K. Mahajan, B. T. Patil, R. D. Raut
Abstract:
Information quality is a major performance measure for an Enterprise Resource Planning (ERP) system of any firm. This study identifies various critical success factors of information quality. The effect of various critical success factors like project management, reengineering efforts and interdepartmental communications on information quality is analyzed using a multiple regression model. Here quantitative data are collected from respondents from various firms through structured questionnaire for assessment of the information quality, project management, reengineering efforts and interdepartmental communications. The validity and reliability of the data are ensured using techniques like factor analysis, computing of Cronbach’s alpha. This study gives relative importance of each of the critical success factors. The findings suggest that among the various factors influencing information quality careful reengineering efforts are the most influencing factor. This paper gives clear insight to managers and practitioners regarding the relative importance of critical success factors influencing information quality so that they can formulate a strategy at the beginning of ERP system implementation.Keywords: Enterprise Resource Planning (ERP), information systems (IS), multiple regression, information quality
Procedia PDF Downloads 33322928 Simulation of Dynamic Behavior of Seismic Isolators Using a Parallel Elasto-Plastic Model
Authors: Nicolò Vaiana, Giorgio Serino
Abstract:
In this paper, a one-dimensional (1d) Parallel Elasto- Plastic Model (PEPM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement, is presented. The parallel modeling concept is applied to discretize the continuously decreasing tangent stiffness function, thus allowing to simulate the dynamic behavior of seismic isolation bearings by putting linear elastic and nonlinear elastic-perfectly plastic elements in parallel. The mathematical model has been validated by comparing the experimental force-displacement hysteresis loops, obtained testing a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted numerically. Good agreement between the simulated and experimental results shows that the proposed model can be an effective numerical tool to predict the forcedisplacement relationship of seismic isolators within relatively large displacements. Compared to the widely used Bouc-Wen model, the proposed one allows to avoid the numerical solution of a first order ordinary nonlinear differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort, and requires the evaluation of only three model parameters from experimental tests, namely the initial tangent stiffness, the asymptotic tangent stiffness, and a parameter defining the transition from the initial to the asymptotic tangent stiffness.Keywords: base isolation, earthquake engineering, parallel elasto-plastic model, seismic isolators, softening hysteresis loops
Procedia PDF Downloads 28022927 A DFT-Based QSARs Study of Kovats Retention Indices of Adamantane Derivatives
Authors: Z. Bayat
Abstract:
A quantitative structure–property relationship (QSPR) study was performed to develop models those relate the structures of 65 Kovats retention index (RI) of adamantane derivatives. Molecular descriptors derived solely from 3D structures of the molecular compounds. The usefulness of the quantum chemical descriptors, calculated at the level of the DFT theories using 6-311+G** basis set for QSAR study of adamantane derivatives was examined. The use of descriptors calculated only from molecular structure eliminates the need to experimental determination of properties for use in the correlation and allows for the estimation of RI for molecules not yet synthesized. The prediction results are in good agreement with the experimental value. A multi-parametric equation containing maximum Four descriptors at B3LYP/6-31+G** method with good statistical qualities (R2train=0.913, Ftrain=97.67, R2test=0.770, Ftest=3.21, Q2LOO=0.895, R2adj=0.904, Q2LGO=0.844) was obtained by Multiple Linear Regression using stepwise method.Keywords: DFT, adamantane, QSAR, Kovat
Procedia PDF Downloads 36622926 A Comparison of Methods for Estimating Dichotomous Treatment Effects: A Simulation Study
Authors: Jacqueline Y. Thompson, Sam Watson, Lee Middleton, Karla Hemming
Abstract:
Introduction: The odds ratio (estimated via logistic regression) is a well-established and common approach for estimating covariate-adjusted binary treatment effects when comparing a treatment and control group with dichotomous outcomes. Its popularity is primarily because of its stability and robustness to model misspecification. However, the situation is different for the relative risk and risk difference, which are arguably easier to interpret and better suited to specific designs such as non-inferiority studies. So far, there is no equivalent, widely acceptable approach to estimate an adjusted relative risk and risk difference when conducting clinical trials. This is partly due to the lack of a comprehensive evaluation of available candidate methods. Methods/Approach: A simulation study is designed to evaluate the performance of relevant candidate methods to estimate relative risks to represent conditional and marginal estimation approaches. We consider the log-binomial, generalised linear models (GLM) with iteratively weighted least-squares (IWLS) and model-based standard errors (SE); log-binomial GLM with convex optimisation and model-based SEs; log-binomial GLM with convex optimisation and permutation tests; modified-Poisson GLM IWLS and robust SEs; log-binomial generalised estimation equations (GEE) and robust SEs; marginal standardisation and delta method SEs; and marginal standardisation and permutation test SEs. Independent and identically distributed datasets are simulated from a randomised controlled trial to evaluate these candidate methods. Simulations are replicated 10000 times for each scenario across all possible combinations of sample sizes (200, 1000, and 5000), outcomes (10%, 50%, and 80%), and covariates (ranging from -0.05 to 0.7) representing weak, moderate or strong relationships. Treatment effects (ranging from 0, -0.5, 1; on the log-scale) will consider null (H0) and alternative (H1) hypotheses to evaluate coverage and power in realistic scenarios. Performance measures (bias, mean square error (MSE), relative efficiency, and convergence rates) are evaluated across scenarios covering a range of sample sizes, event rates, covariate prognostic strength, and model misspecifications. Potential Results, Relevance & Impact: There are several methods for estimating unadjusted and adjusted relative risks. However, it is unclear which method(s) is the most efficient, preserves type-I error rate, is robust to model misspecification, or is the most powerful when adjusting for non-prognostic and prognostic covariates. GEE estimations may be biased when the outcome distributions are not from marginal binary data. Also, it seems that marginal standardisation and convex optimisation may perform better than GLM IWLS log-binomial.Keywords: binary outcomes, statistical methods, clinical trials, simulation study
Procedia PDF Downloads 11422925 Spatio-Temporal Analysis and Mapping of Malaria in Thailand
Authors: Krisada Lekdee, Sunee Sammatat, Nittaya Boonsit
Abstract:
This paper proposes a GLMM with spatial and temporal effects for malaria data in Thailand. A Bayesian method is used for parameter estimation via Gibbs sampling MCMC. A conditional autoregressive (CAR) model is assumed to present the spatial effects. The temporal correlation is presented through the covariance matrix of the random effects. The malaria quarterly data have been extracted from the Bureau of Epidemiology, Ministry of Public Health of Thailand. The factors considered are rainfall and temperature. The result shows that rainfall and temperature are positively related to the malaria morbidity rate. The posterior means of the estimated morbidity rates are used to construct the malaria maps. The top 5 highest morbidity rates (per 100,000 population) are in Trat (Q3, 111.70), Chiang Mai (Q3, 104.70), Narathiwat (Q4, 97.69), Chiang Mai (Q2, 88.51), and Chanthaburi (Q3, 86.82). According to the DIC criterion, the proposed model has a better performance than the GLMM with spatial effects but without temporal terms.Keywords: Bayesian method, generalized linear mixed model (GLMM), malaria, spatial effects, temporal correlation
Procedia PDF Downloads 45422924 Predictors of Sexually Transmitted Infection of Korean Adolescent Females: Analysis of Pooled Data from Korean Nationwide Survey
Authors: Jaeyoung Lee, Minji Je
Abstract:
Objectives: In adolescence, adolescents are curious about sex, but sexual experience before becoming an adult can cause the risk of high probability of sexually transmitted infection. Therefore, it is very important to prevent sexually transmitted infections so that adolescents can grow in healthy and upright way. Adolescent females, especially, have sexual behavior distinguished from that of male adolescents. Protecting female adolescents’ reproductive health is even more important since it is directly related to the childbirth of the next generation. This study, thus, investigated the predictors of sexually transmitted infection in adolescent females with sexual experiences based on the National Health Statistics in Korea. Methods: This study was conducted based on the National Health Statistics in Korea. The 11th Korea Youth Behavior Web-based Survey in 2016 was conducted in the type of anonymous self-reported survey in order to find out the health behavior of adolescents. The target recruitment group was middle and high school students nationwide as of April 2016, and 65,528 students from a total of 800 middle and high schools participated. The study was conducted in 537 female high school students (Grades 10–12) among them. The collected data were analyzed as complex sampling design using SPSS statistics 22. The strata, cluster, weight, and finite population correction provided by Korea Center for Disease Control & Prevention (KCDC) were reflected to constitute complex sample design files, which were used in the statistical analysis. The analysis methods included Rao-Scott chi-square test, complex samples general linear model, and complex samples multiple logistic regression analysis. Results: Out of 537 female adolescents, 11.9% (53 adolescents) had experiences of venereal infection. The predictors for venereal infection of the subjects were ‘age at first intercourse’ and ‘sexual intercourse after drinking’. The sexually transmitted infection of the subjects was decreased by 0.31 times (p=.006, 95%CI=0.13-0.71) for middle school students and 0.13 times (p<.001, 95%CI=0.05-0.32) for high school students whereas the age of the first sexual experience was under elementary school age. In addition, the sexually transmitted infection of the subjects was 3.54 times (p < .001, 95%CI=1.76-7.14) increased when they have experience of sexual relation after drinking alcohol, compared to those without the experience of sexual relation after drinking alcohol. Conclusions: The female adolescents had high probability of sexually transmitted infection if their age for the first sexual experience was low. Therefore, the female adolescents who start sexual experience earlier shall have practical sex education appropriate for their developmental stage. In addition, since the sexually transmitted infection increases, if they have sexual relations after drinking alcohol, the consideration for prevention of alcohol use or intervention of sex education shall be required. When health education intervention is conducted for health promotion for female adolescents in the future, it is necessary to reflect the result of this study.Keywords: adolescent, coitus, female, sexually transmitted diseases
Procedia PDF Downloads 19222923 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques
Authors: Soheila Sadeghi
Abstract:
In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes
Procedia PDF Downloads 3922922 Rayleigh-Bénard-Taylor Convection of Newtonian Nanoliquid
Authors: P. G. Siddheshwar, T. N. Sakshath
Abstract:
In the paper we make linear and non-linear stability analyses of Rayleigh-Bénard convection of a Newtonian nanoliquid in a rotating medium (called as Rayleigh-Bénard-Taylor convection). Rigid-rigid isothermal boundaries are considered for investigation. Khanafer-Vafai-Lightstone single phase model is used for studying instabilities in nanoliquids. Various thermophysical properties of nanoliquid are obtained using phenomenological laws and mixture theory. The eigen boundary value problem is solved for the Rayleigh number using an analytical method by considering trigonometric eigen functions. We observe that the critical nanoliquid Rayleigh number is less than that of the base liquid. Thus the onset of convection is advanced due to the addition of nanoparticles. So, increase in volume fraction leads to advanced onset and thereby increase in heat transport. The amplitudes of convective modes required for estimating the heat transport are determined analytically. The tri-modal standard Lorenz model is derived for the steady state assuming small scale convective motions. The effect of rotation on the onset of convection and on heat transport is investigated and depicted graphically. It is observed that the onset of convection is delayed due to rotation and hence leads to decrease in heat transport. Hence, rotation has a stabilizing effect on the system. This is due to the fact that the energy of the system is used to create the component V. We observe that the amount of heat transport is less in the case of rigid-rigid isothermal boundaries compared to free-free isothermal boundaries.Keywords: nanoliquid, rigid-rigid, rotation, single phase
Procedia PDF Downloads 23422921 Impact of Audit Committee on Real Earnings Management: Cases of Netherlands
Authors: Sana Masmoudi Mardassi, Yosra Makni Fourati
Abstract:
Regulators highlight the importance of the Audit Committee (AC) as a key internal corporate governance mechanism. One of the most important roles of this committee is to oversee the financial reporting process. The purpose of this paper is to examine the link between the characteristics of an audit committee and the financial reporting quality by investigating whether the characteristics of audit committees are associated with improved financial reporting quality, especially the Real Earnings Management. In the current study, a panel data from 80 nonfinancial companies listed on the Amsterdam Stock Exchange during the period between 2010 and 2017 were used. To measure audit committee characteristics, four proxies have been used, specifically, audit committee independence, financial expertise, gender diversity and AC meetings. For this research, a linear regression model was used to identify the influence of a set of board characteristics of the audit committee on real earnings management after controlling for firm audit committee size, leverage, size, loss, growth and board size. This research provides empirical evidence of the association between audit committee independence, financial expertise, gender diversity and meetings and Real Earnings Management (REM) as a proxy of financial reporting quality. The study finds that independence and AC Gender diversity are strongly related to financial reporting quality. In fact, these two characteristics constrain REM. The results also suggest that AC- financial expertise reduces to some extent, the likelihood of engaging in REM. These conclusions provide support then to the audit committee requirement under the Dutch Corporate Governance Code rules regarding gender diversity and AC meetings.Keywords: audit committee, financial expertise, independence, real earnings management
Procedia PDF Downloads 16622920 Social Participation and Associated Life Satisfaction among Older Adults in India: Moderating Role of Marital Status and Living Arrangements
Authors: Varsha Pandurang Nagargoje, K. S. James
Abstract:
Background: Social participation is considered as one of the central components of successful and healthy aging. This study aimed to examine the moderating role of marital status and living arrangement in the relationship between social participation and life satisfaction and other potential factors associated with life satisfaction of Indian older adults. Method: For analyses, the nationally representative study sample of 31,464 adults aged ≥60 years old was extracted from the Longitudinal Ageing Study in India (LASI) wave 1, 2017-18. Descriptive statistics and bivariate analysis have been performed to determine the proportion of life satisfaction. The first set of multivariable linear regression analyses examined Diener’s Satisfaction with Life Scale and its association with various predictor variables, including social participation, marital status, living arrangements, socio-demographic, economic, and health-related variables. Further, the second and third sets of regression investigated the moderating role of marital status and living arrangements respectively in the association of social participation and level of life satisfaction among Indian older adults. Results: Overall, the proportion of life satisfaction among older men was relatively higher than women counterparts in most background characteristics. Regression results stressed the importance of older adults’ involvement in social participation [β = 0.39, p < 0.05], being in marital union [β = 0.68, p < 0.001] and co-residential living arrangements either only with spouse [β = 1.73, p < 0.001] or with other family members [β = 2.18, p < 0.001] for the improvement of life satisfaction. Results also showed that some factors were significant for life satisfaction: in particular, increased age, having a higher level of educational status, MPCE quintile, and caste category. Higher risk of life dissatisfaction found among Indian older adults who were exposed to vulnerabilities like consuming tobacco, poor self-rated health, having difficulty in performing ADL and IADL were of major concern. The interaction effect of social participation with marital status or with living arrangements explained that currently married older individuals, and those older adults who were either co-residing with their spouse only or with other family members irrespective of their involvement in social participation remained an important modifiable factor for life satisfaction. Conclusion: It would be crucial for policymakers and practitioners to advocate social policy programs and service delivery oriented towards meaningful social connections, especially for those Indian older adults who were staying alone or currently not in the marital union to enhance their overall life satisfaction.Keywords: Indian, older adults, social participation, life satisfaction, marital status, living arrangement
Procedia PDF Downloads 12922919 A Study on the Coefficient of Transforming Relative Lateral Displacement under Linear Analysis of Structure to Its Real Relative Lateral Displacement
Authors: Abtin Farokhipanah
Abstract:
In recent years, analysis of structures is based on ductility design in contradictory to strength design in surveying earthquake effects on structures. ASCE07-10 code offers to intensify relative drifts calculated from a linear analysis with Cd which is called (Deflection Amplification Factor) to obtain the real relative drifts which can be calculated using nonlinear analysis. This lateral drift should be limited to the code boundaries. Calculation of this amplification factor for different structures, comparing with ASCE07-10 code and offering the best coefficient are the purposes of this research. Following our target, short and tall building steel structures with various earthquake resistant systems in linear and nonlinear analysis should be surveyed, so these questions will be answered: 1. Does the Response Modification Coefficient (R) have a meaningful relation to Deflection Amplification Factor? 2. Does structure height, seismic zone, response spectrum and similar parameters have an effect on the conversion coefficient of linear analysis to real drift of structure? The procedure has used to conduct this research includes: (a) Study on earthquake resistant systems, (b) Selection of systems and modeling, (c) Analyzing modeled systems using linear and nonlinear methods, (d) Calculating conversion coefficient for each system and (e) Comparing conversion coefficients with the code offered ones and concluding results.Keywords: ASCE07-10 code, deflection amplification factor, earthquake engineering, lateral displacement of structures, response modification coefficient
Procedia PDF Downloads 35422918 Risk Assessment of Flood Defences by Utilising Condition Grade Based Probabilistic Approach
Authors: M. Bahari Mehrabani, Hua-Peng Chen
Abstract:
Management and maintenance of coastal defence structures during the expected life cycle have become a real challenge for decision makers and engineers. Accurate evaluation of the current condition and future performance of flood defence structures is essential for effective practical maintenance strategies on the basis of available field inspection data. Moreover, as coastal defence structures age, it becomes more challenging to implement maintenance and management plans to avoid structural failure. Therefore, condition inspection data are essential for assessing damage and forecasting deterioration of ageing flood defence structures in order to keep the structures in an acceptable condition. The inspection data for flood defence structures are often collected using discrete visual condition rating schemes. In order to evaluate future condition of the structure, a probabilistic deterioration model needs to be utilised. However, existing deterioration models may not provide a reliable prediction of performance deterioration for a long period due to uncertainties. To tackle the limitation, a time-dependent condition-based model associated with a transition probability needs to be developed on the basis of condition grade scheme for flood defences. This paper presents a probabilistic method for predicting future performance deterioration of coastal flood defence structures based on condition grading inspection data and deterioration curves estimated by expert judgement. In condition-based deterioration modelling, the main task is to estimate transition probability matrices. The deterioration process of the structure related to the transition states is modelled according to Markov chain process, and a reliability-based approach is used to estimate the probability of structural failure. Visual inspection data according to the United Kingdom Condition Assessment Manual are used to obtain the initial condition grade curve of the coastal flood defences. The initial curves then modified in order to develop transition probabilities through non-linear regression based optimisation algorithms. The Monte Carlo simulations are then used to evaluate the future performance of the structure on the basis of the estimated transition probabilities. Finally, a case study is given to demonstrate the applicability of the proposed method under no-maintenance and medium-maintenance scenarios. Results show that the proposed method can provide an effective predictive model for various situations in terms of available condition grading data. The proposed model also provides useful information on time-dependent probability of failure in coastal flood defences.Keywords: condition grading, flood defense, performance assessment, stochastic deterioration modelling
Procedia PDF Downloads 23322917 Analysis of Basic Science Curriculum as Correlates of Secondary School Students' Achievement in Science Test in Oyo State
Authors: Olubiyi Johnson Ezekiel
Abstract:
Basic science curriculum is an on-going effort towards developing the potential of manner to produce individuals in a holistic and integrated person, who are intellectually, spiritually, emotionally and physically balanced and harmonious. The main focus of this study is to determine the relationship between students’ achievement in junior school certificate examination (JSCE) and senior school basic science achievement test (SSBSAT) on the basis of all the components of basic science. The study employed the descriptive research of the survey type and utilized junior school certificate examination and senior school basic science achievement test(r = .87) scores as instruments. The data collected were subjected to Pearson product moment correlation, Spearman rank correlation, regression analysis and analysis of variance. The result of the finding revealed that the mean effects of the achievement in all the components of basic science on SSBSAT are significantly different from zero. Based on the results of the findings, it was concluded that the relationship between students’ achievement in JSCE and SSBSAT was weak and to achieve a unit increase in the students’ achievement in the SSBSAT when other subjects are held constant, we have to increase the learning of: -physics by 0.081 units; -chemistry by 0.072 units; -biology by 0.025 units and general knowledge by 0.097 units. It was recommended among others, that general knowledge aspect of basic science should be included in either physics or chemistry aspect of basic science.Keywords: basic science curriculum, students’ achievement, science test, secondary school students
Procedia PDF Downloads 45022916 Defining Affecting Factors on Rate of Car E-Customers' Satisfaction – a Case Study of Iran Khodro Co.
Authors: Majid Mohammadi, Mohammad Yosef Zadeh, Vahid Naderi Darshori
Abstract:
The main purpose of this research is concreting of satisfaction literature for obtain index with online content in carmaker industry. The study measures customer satisfaction of online and collect from similar studies with reference to a model of online satisfaction, they are attempting to complete. Statistical communities of research are online customers' carmaker Iran Khodro has been buying the company's products in the last six months. One of the innovative measures in this study is that, customer reviews are obtained through an Internet site. Reliability of the data collected in this study, the Cronbach's alpha coefficient was approved. The coefficient of 0.828 was calculated for the questionnaire. To test the hypothesis, the Pearson correlation coefficient was used. To ensure the correctness of initial theoretical model, we used regression analyzes and structural equation weight and finally, the results obtained with little change to the basic model of research, are improved and completed. At last obtain the perceived value has most direct effect on online car customers satisfaction.Keywords: customer satisfaction, online satisfaction, online customer, car
Procedia PDF Downloads 40522915 Contrasted Mean and Median Models in Egyptian Stock Markets
Authors: Mai A. Ibrahim, Mohammed El-Beltagy, Motaz Khorshid
Abstract:
Emerging Markets return distributions have shown significance departure from normality were they are characterized by fatter tails relative to the normal distribution and exhibit levels of skewness and kurtosis that constitute a significant departure from normality. Therefore, the classical Markowitz Mean-Variance is not applicable for emerging markets since it assumes normally-distributed returns (with zero skewness and kurtosis) and a quadratic utility function. Moreover, the Markowitz mean-variance analysis can be used in cases of moderate non-normality and it still provides a good approximation of the expected utility, but it may be ineffective under large departure from normality. Higher moments models and median models have been suggested in the literature for asset allocation in this case. Higher moments models have been introduced to account for the insufficiency of the description of a portfolio by only its first two moments while the median model has been introduced as a robust statistic which is less affected by outliers than the mean. Tail risk measures such as Value-at Risk (VaR) and Conditional Value-at-Risk (CVaR) have been introduced instead of Variance to capture the effect of risk. In this research, higher moment models including the Mean-Variance-Skewness (MVS) and Mean-Variance-Skewness-Kurtosis (MVSK) are formulated as single-objective non-linear programming problems (NLP) and median models including the Median-Value at Risk (MedVaR) and Median-Mean Absolute Deviation (MedMAD) are formulated as a single-objective mixed-integer linear programming (MILP) problems. The higher moment models and median models are compared to some benchmark portfolios and tested on real financial data in the Egyptian main Index EGX30. The results show that all the median models outperform the higher moment models were they provide higher final wealth for the investor over the entire period of study. In addition, the results have confirmed the inapplicability of the classical Markowitz Mean-Variance to the Egyptian stock market as it resulted in very low realized profits.Keywords: Egyptian stock exchange, emerging markets, higher moment models, median models, mixed-integer linear programming, non-linear programming
Procedia PDF Downloads 31522914 The Impact of Deprivation on the Prevalence of Common Mental Health Disorders in Clinical Commissioning Groups across England: A Retrospective, Cross-Sectional Study
Authors: Mohammed-Hareef Asunramu, Sana Hashemi, Raja Ohri, Luc Worthington, Nadia Zaman, Junkai Zhu
Abstract:
Background: The 2012 Health and Social Care Act committed to a ‘parity of esteem between mental and physical health services. Although this investment, aimed to both increase the quality of services and ensure the retention of mental health staff, questions remained regarding its ability to prevent mental health problems. One possible solution is a focus on the social determinants of health which have been shown to impact mental health. Aim: To examine the relationship between the index of multiple deprivations (IMD) and the prevalence of common mental health disorders (CMD) for CCGs in NHS England between 2019 and 2020. Design and setting: Cross-sectional analysis of 189 CCGs in NHS England. Methods: A multivariate linear regression model was utilized with CMD as outcome variable and IMD, age and ethnicity as explanatory variables. Datasets were obtained from Public Health England and the latest UK Census. Results: CCG IMD was found to have a significantly positive relationship with CMD. For every 1-point increase in IMD, CMD increases by 0.25%. Ethnicity had a significantly positive relationship with CMD. For every 1% increase in the population that identifies as BME, there is a 0.03% increase in CMD. Age had a significantly negative relationship with CMD. For every 1% increase in the population aged 60+, there is a 0.11% decrease in CMD. Conclusion: This study demonstrates that addressing mental health issues may require a multi-pronged approach. Beyond budget increases, it is essential to prioritize health equity, with careful considerations towards ethnic minorities and different age brackets.Keywords: deprivation, health inequality, mental health, social determinants
Procedia PDF Downloads 12722913 A Method to Identify the Critical Delay Factors for Building Maintenance Projects of Institutional Buildings: Case Study of Eastern India
Authors: Shankha Pratim Bhattacharya
Abstract:
In general building repair and renovation projects are minor in nature. It requires less attention as the primary cost involvement is relatively small. Although the building repair and maintenance projects look simple, it involves much complexity during execution. Many of the present research indicate that few uncertain situations are usually linked with maintenance projects. Those may not be read properly in the planning stage of the projects, and finally, lead to time overrun. Building repair and maintenance become essential and periodical after commissioning of the building. In Institutional buildings, the regular maintenance projects also include addition –alteration, modification activities. Increase in the student admission, new departments, and sections, new laboratories and workshops, up gradation of existing laboratories are very common in the institutional buildings in the developing nations like India. The project becomes very critical because it undergoes space problem, architectural design issues, structural modification, etc. One of the prime factors in the institutional building maintenance and modification project is the time constraint. Mostly it required being executed a specific non-work time period. The present research considered only the institutional buildings of the Eastern part of India to analyse the repair and maintenance project delay. A general survey was conducted among the technical institutes to find the causes and corresponding nature of construction delay factors. Five technical institutes are considered in the present study with repair, renovation, modification and extension type of projects. Construction delay factors are categorically subdivided into four groups namely, material, manpower (works), Contract and Site. The survey data are collected for the nature of delay responsible for a specific project and the absolute amount of delay through proposed and actual duration of work. In the first stage of the paper, a relative importance index (RII) is proposed for the delay factors. The occurrence of the delay factors is also judged by its frequency-severity nature. Finally, the delay factors are then rated and linked with the type of work. In the second stage, a regression analysis is executed to establish an empirical relationship between the actual time of a project and the percentage of delay. It also indicates the impact of the factors for delay responsibility. Ultimately, the present paper makes an effort to identify the critical delay factors for the repair and renovation type project in the Eastern Indian Institutional building.Keywords: delay factor, institutional building, maintenance, relative importance index, regression analysis, repair
Procedia PDF Downloads 25022912 Attachment as a Predictor for Cognitive Rigidity
Authors: Barbara Gawda
Abstract:
Attachment model formed in childhood has an important impact on emotional development, personality, and social relationships. Attachment is also thought to have an impact on construction of affective-cognitive schemas and cognitive functioning. The aim of the current study was to verify whether there is an association between attachment and cognitive rigidity defined as dogmatism and intolerance of ambiguity. The analysis of 180 participants (persons of a similar age and education level, number of men and women was equal) was conducted. To test the attachment styles, the Revised Experiences in Close Relationships Inventory (ECR-R) was used. To examine cognitive rigidity, the Rokeach and Budner questionnaires were used. A multiple regression model was employed to examine whether attachment styles are predictors for dogmatism. The results confirmed that fearful-ambivalent attachment is the main predictor for dogmatism but not for intolerance of ambiguity.Keywords: attachment styles, cognitive rigidity, dogmatism, intolerance of ambiguity
Procedia PDF Downloads 33622911 General Architecture for Automation of Machine Learning Practices
Authors: U. Borasi, Amit Kr. Jain, Rakesh, Piyush Jain
Abstract:
Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities.Keywords: machine learning, automation, AUTOML, architecture, operator pool, configuration, scheduler
Procedia PDF Downloads 5722910 Modelling of Induction Motor Including Skew Effect Using MWFA for Performance Improvement
Authors: M. Harir, A. Bendiabdellah, A. Chaouch, N. Benouzza
Abstract:
This paper deals with the modelling and simulation of the squirrel cage induction motor by taking into account all space harmonic components, as well as the introduction of the bars skew, in the calculation of the linear evolution of the magnetomotive force (MMF) between the slots extremities. The model used is based on multiple coupled circuits and the modified winding function approach (MWFA). The effect of skewing is included in the calculation of motors inductances with an axial asymmetry in the rotor. The simulation results in both time and spectral domains show the effectiveness and merits of the model and the error that may be caused if the skew of the bars is neglected.Keywords: modeling, MWFA, skew effect, squirrel cage induction motor, spectral domain
Procedia PDF Downloads 439