Search results for: deep log analyzer
1112 A Survey of the Constraints Associated with the Mechanized Tillage of the Fadama Using Animal Drawn Tillage Implements
Authors: L. G. Abubakar, A. M. El-Okene, M. L. Suleiman, Z. Abubakar
Abstract:
Fadama tillage in Northern Nigeria and in Zaria in particular, has relied on manual labour and corresponding implements which are associated with drudgery, loss of human energy due to bending and reduced productivity. A survey was conducted to study the present tillage practices and determine the constraints associated with the use of animal traction for mechanized tillage of the Fadama. The study revealed that Fadama farmers (mostly aged between 36 and 60 years) use manual labour with tools like small hoe, big hoe and rake to till during the dry season (October of one year to March of the next year). Most of the Fadama farmers believe that tillage operations like ploughing, harrowing and basin making are very important tillage activities in the preparation of seedbeds for crops like green maize, sugarcane and vegetables, but are constrained to using animal traction for tillage due to beliefs like unsuitability of the workbulls and corresponding implements, Fadama soil being too heavy for the system and the non-attainment of deep tillage required by crops like sugarcane and potato. These were affirmed by local blacksmiths of animal traction implements and agricultural officers of government establishments.Keywords: snimal traction, Fadama, tillage implements, workbulls
Procedia PDF Downloads 5071111 Deep Learning-Based Channel Estimation for RIS-Assisted Unmanned Aerial Vehicle-Enabled Wireless Communication System
Authors: Getaneh Berie Tarekegn
Abstract:
Wireless communication via unmanned aerial vehicles (UAVs) has drawn a great deal of attention due to its flexibility in establishing line-of-sight (LoS) communications. However, in complex urban and dynamic environments, the movement of UAVs can be blocked by trees and high-rise buildings that obstruct directional paths. With reconfigurable intelligent surfaces (RIS), this problem can be effectively addressed. To achieve this goal, accurate channel estimation in RIS-assisted UAV-enabled wireless communications is crucial. This paper proposes an accurate channel estimation model using long short-term memory (LSTM) for a multi-user RIS-assisted UAV-enabled wireless communication system. According to simulation results, LSTM can improve the channel estimation performance of RIS-assisted UAV-enabled wireless communication.Keywords: channel estimation, reconfigurable intelligent surfaces, long short-term memory, unmanned aerial vehicles
Procedia PDF Downloads 571110 Studying Relationship between Local Geometry of Decision Boundary with Network Complexity for Robustness Analysis with Adversarial Perturbations
Authors: Tushar K. Routh
Abstract:
If inputs are engineered in certain manners, they can influence deep neural networks’ (DNN) performances by facilitating misclassifications, a phenomenon well-known as adversarial attacks that question networks’ vulnerability. Recent studies have unfolded the relationship between vulnerability of such networks with their complexity. In this paper, the distinctive influence of additional convolutional layers at the decision boundaries of several DNN architectures was investigated. Here, to engineer inputs from widely known image datasets like MNIST, Fashion MNIST, and Cifar 10, we have exercised One Step Spectral Attack (OSSA) and Fast Gradient Method (FGM) techniques. The aftermaths of adding layers to the robustness of the architectures have been analyzed. For reasoning, separation width from linear class partitions and local geometry (curvature) near the decision boundary have been examined. The result reveals that model complexity has significant roles in adjusting relative distances from margins, as well as the local features of decision boundaries, which impact robustness.Keywords: DNN robustness, decision boundary, local curvature, network complexity
Procedia PDF Downloads 751109 The Triple Interpretation of German Historicism and its Theoretical Contribution to Historical Materialism
Authors: Dandan Zhang
Abstract:
Elucidating the original relationship between historical materialism and German historicism from the internal dimension of intellectual history has important theoretical significance for deep understanding and interpretation of the essential characteristics of historical materialism. German historicism contains the triple deduction of scientific historicism, historical relativism, and vitalism. The historicism of science argues for its historical status as science in the name of objective, systematic, and typical research methods, and procedural principles. Historical relativism places history under the specific historical background to study epistemological and methodological issues about the nature of human beings and the value of history. German historicism walks up to natural and cultural relativism on the basis of romanticism. Vitalism emphasizes intuition, will, and experience of life from individuals and places history on the ontology of organic life and vitality. Historical materialism and German historicism have a theoretical relationship in the genetic field. The former criticizes and surpasses the latter. Meanwhile, in the evolution of German historicism, the differences between historical materialism with it are essential features of historical science.Keywords: German historicism, scientific historicism, historical relativism, vitalism, historical materialism
Procedia PDF Downloads 441108 Hidden Stones When Implementing Artificial Intelligence Solutions in the Engineering, Procurement, and Construction Industry
Authors: Rimma Dzhusupova, Jan Bosch, Helena Holmström Olsson
Abstract:
Artificial Intelligence (AI) in the Engineering, Procurement, and Construction (EPC) industry has not yet a proven track record in large-scale projects. Since AI solutions for industrial applications became available only recently, deployment experience and lessons learned are still to be built up. Nevertheless, AI has become an attractive technology for organizations looking to automate repetitive tasks to reduce manual work. Meanwhile, the current AI market has started offering various solutions and services. The contribution of this research is that we explore in detail the challenges and obstacles faced in developing and deploying AI in a large-scale project in the EPC industry based on real-life use cases performed in an EPC company. Those identified challenges are not linked to a specific technology or a company's know-how and, therefore, are universal. The findings in this paper aim to provide feedback to academia to reduce the gap between research and practice experience. They also help reveal the hidden stones when implementing AI solutions in the industry.Keywords: artificial intelligence, machine learning, deep learning, innovation, engineering, procurement and construction industry, AI in the EPC industry
Procedia PDF Downloads 1191107 Distribution and Segregation of Aerosols in Ambient Air
Authors: S. Ramteke, K. S. Patel
Abstract:
Aerosols are complex mixture of particulate matters (PM) inclusive of carbons, silica, elements, various salts, etc. Aerosols get deep into the human lungs and cause a broad range of health effects, in particular, respiratory and cardiovascular illnesses. They are one of the major culprits for the climate change. They are emitted by the high thermal processes i.e. vehicles, steel, sponge, cement, thermal power plants, etc. Raipur (22˚33'N to 21˚14'N and 82˚6'E) to 81˚38'E) is a growing industrial city in central India with population of two million. In this work, the distribution of inorganics (i.e. Cl⁻, NO³⁻, SO₄²⁻, NH₄⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Al, Cr, Mn, Fe, Ni, Cu, Zn, and Pb) associated to the PM in the ambient air is described. The PM₁₀ in ambient air of Raipur city was collected for duration of one year (December 2014 - December 2015). The PM₁₀ was segregated into nine modes i.e. PM₁₀.₀₋₉.₀, PM₉.₀₋₅.₈, PM₅.₈₋₄.₇, PM₄.₇₋₃.₃, PM₃.₃₋₂.₁, PM₂.₁₋₁.₁, PM₁.₁₋₀.₇, PM₀.₇₋₀.₄ and PM₀.₄ to know their emission sources and health hazards. The analysis of ions and metals was carried out by techniques i.e. ion chromatography and TXRF. The PM₁₀ concentration (n=48) was ranged from 100-450 µg/m³ with mean value of 73.57±20.82 µg/m³. The highest concentration of PM₄.₇₋₃.₃, PM₂.₁₋₁.₁, PM₁.₁₋₀.₇ was observed in the commercial, residential and industrial area, respectively. The effect of meteorology i.e. temperature, humidity, wind speed and wind direction in the PM₁₀ and associated elemental concentration in the air is discussed.Keywords: ambient aerosol, ions, metals, segregation
Procedia PDF Downloads 2001106 Beef Cattle Farmers Perception toward Urea Mineral Molasses Block
Authors: Veronica Sri Lestari, Djoni Prawira Rahardja, Tanrigiling Rasyid, Aslina Asnawi, Ikrar Muhammad Saleh, Ilham Rasyid
Abstract:
Urea Mineral Molasses Block is very important for beef cattle, because it can increase beef production. The purpose of this research was to know beef cattle farmers’ perception towards Urea Mineral Molasses Block (UMMB). This research was conducted in Gowa Regency, South Sulawesi, Indonesia in 2016. The population of this research were all beef cattle farmers. Sample was chosen through purposive sampling. Data were collected through observation and face to face with deep interview using questionnaire. Variables of perception consisted of relative advantage, compatibility, complexity, observability and triability. There were 10 questions. The answer for each question was scored by 1, 2, 3 which refer to disagree, agree enough, strongly agree. The data were analyzed descriptively using frequency distribution. The research revealed that beef cattle farmers’ perception towards UMMB was categorized as strongly agree.Keywords: beef cattle, farmers, perception, urea mineral molasses block
Procedia PDF Downloads 3471105 An Analytical Approach to Calculate Thermo-Mechanical Stresses in Integral Abutment Bridge Piles
Authors: Jafar Razmi
Abstract:
Integral abutment bridges are bridges that do not have joints. If these bridges are subject to large seasonal and daily temperature variations, the expansion and contraction of the bridge slab is transferred to the piles. Since the piles are deep into the soil, displacement induced by slab can cause bending and stresses in piles. These stresses cause fatigue and failure of piles. A complex mechanical interaction exists between the slab, pile, soil and abutment. This complex interaction needs to be understood in order to calculate the stresses in piles. This paper uses a mechanical approach in developing analytical equations for the complex structure to determine the stresses in piles. The solution to these analytical solutions is developed and compared with finite element analysis results and experimental data. Our comparison shows that using analytical approach can accurately predict the displacement in piles. This approach offers a simplified technique that can be utilized without the need for computationally extensive finite element model.Keywords: integral abutment bridges, piles, thermo-mechanical stress, stress and strains
Procedia PDF Downloads 2401104 Evaluation of a Hybrid Configuration for Active Space Radiation Bio-Shielding
Authors: Jiahui Song, Ravindra P. Joshi
Abstract:
One of the biggest obstacles to human space exploration of the solar system is the risk posed by prolonged exposure to space radiation. It is generally agreed that particles with energies around 1-2 GeV per nucleon are the most damaging to humans. Passive shielding techniques entail using solid material to create a shield that prevents particles from penetrating a given region by absorbing the energy of incident particles. Previous techniques resulted in adding ‘dead mass’ to spacecraft, which is not an economically viable solution. Additionally, collisions of the incoming ionized particles with traditional passive protective material lead to secondary radiation. This study develops an enhanced hybrid active space radiation bio-shielding concept, a combination of the electrostatic and magnetostatic shielding, by varying the size of the magnetic ring, and by having multiple current-carrying rings, to mitigate the biohazards of severe space radiation for the success of deep-space explorations. The simulation results show an unprecedented reduction of 1GeV GCR (Galactic Cosmic Rays) proton transmission to about 15%.Keywords: bio-shielding, electrostatic, magnetostatic, radiation
Procedia PDF Downloads 3941103 Detailed Analysis of Mechanism of Crude Oil and Surfactant Emulsion
Authors: Riddhiman Sherlekar, Umang Paladia, Rachit Desai, Yash Patel
Abstract:
A number of surfactants which exhibit ultra-low interfacial tension and an excellent microemulsion phase behavior with crude oils of low to medium gravity are not sufficiently soluble at optimum salinity to produce stable aqueous solutions. Such solutions often show phase separation after a few days at reservoir temperature, which does not suffice the purpose and the time is short when compared to the residence time in a reservoir for a surfactant flood. The addition of polymer often exacerbates the problem although the poor stability of the surfactant at high salinity remains a pivotal issue. Surfactants such as SDS, Ctab with large hydrophobes produce lowest IFT, but are often not sufficiently water soluble at desired salinity. Hydrophilic co-solvents and/or co-surfactants are needed to make the surfactant-polymer solution stable at the desired salinity. This study focuses on contrasting the effect of addition of a co-solvent in stability of a surfactant –oil emulsion. The idea is to use a co-surfactant to increase stability of an emulsion. Stability of the emulsion is enhanced because of creation of micro-emulsion which is verified both visually and with the help of particle size analyzer at varying concentration of salinity, surfactant and co-surfactant. A lab-experimental method description is provided and the method is described in detail to permit readers to emulate all results. The stability of the oil-water emulsion is visualized with respect to time, temperature, salinity of the brine and concentration of the surfactant. Nonionic surfactant TX-100 when used as a co-surfactant increases the stability of the oil-water emulsion. The stability of the prepared emulsion is checked by observing the particle size distribution. For stable emulsion in volume% vs particle size curve, the peak should be obtained for particle size of 5-50 nm while for the unstable emulsion a bigger sized particles are observed. The UV-Visible spectroscopy is also used to visualize the fraction of oil that plays important role in the formation of micelles in stable emulsion. This is important as the study will help us to decide applicability of the surfactant based EOR method for a reservoir that contains a specific type of crude. The use of nonionic surfactant as a co-surfactant would also increase the efficiency of surfactant EOR. With the decline in oil discoveries during the last decades it is believed that EOR technologies will play a key role to meet the energy demand in years to come. Taking this into consideration, the work focuses on the optimization of the secondary recovery(Water flooding) with the help of surfactant and/or co-surfactants by creating desired conditions in the reservoir.Keywords: co-surfactant, enhanced oil recovery, micro-emulsion, surfactant flooding
Procedia PDF Downloads 2521102 Comparison of Classical Computer Vision vs. Convolutional Neural Networks Approaches for Weed Mapping in Aerial Images
Authors: Paulo Cesar Pereira Junior, Alexandre Monteiro, Rafael da Luz Ribeiro, Antonio Carlos Sobieranski, Aldo von Wangenheim
Abstract:
In this paper, we present a comparison between convolutional neural networks and classical computer vision approaches, for the specific precision agriculture problem of weed mapping on sugarcane fields aerial images. A systematic literature review was conducted to find which computer vision methods are being used on this specific problem. The most cited methods were implemented, as well as four models of convolutional neural networks. All implemented approaches were tested using the same dataset, and their results were quantitatively and qualitatively analyzed. The obtained results were compared to a human expert made ground truth for validation. The results indicate that the convolutional neural networks present better precision and generalize better than the classical models.Keywords: convolutional neural networks, deep learning, digital image processing, precision agriculture, semantic segmentation, unmanned aerial vehicles
Procedia PDF Downloads 2601101 Curriculum-Based Multi-Agent Reinforcement Learning for Robotic Navigation
Authors: Hyeongbok Kim, Lingling Zhao, Xiaohong Su
Abstract:
Deep reinforcement learning has been applied to address various problems in robotics, such as autonomous driving and unmanned aerial vehicle. However, because of the sparse reward penalty for a collision with obstacles during the navigation mission, the agent fails to learn the optimal policy or requires a long time for convergence. Therefore, using obstacles and enemy agents, in this paper, we present a curriculum-based boost learning method to effectively train compound skills during multi-agent reinforcement learning. First, to enable the agents to solve challenging tasks, we gradually increased learning difficulties by adjusting reward shaping instead of constructing different learning environments. Then, in a benchmark environment with static obstacles and moving enemy agents, the experimental results showed that the proposed curriculum learning strategy enhanced cooperative navigation and compound collision avoidance skills in uncertain environments while improving learning efficiency.Keywords: curriculum learning, hard exploration, multi-agent reinforcement learning, robotic navigation, sparse reward
Procedia PDF Downloads 921100 Hybrid Deep Learning and FAST-BRISK 3D Object Detection Technique for Bin-Picking Application
Authors: Thanakrit Taweesoontorn, Sarucha Yanyong, Poom Konghuayrob
Abstract:
Robotic arms have gained popularity in various industries due to their accuracy and efficiency. This research proposes a method for bin-picking tasks using the Cobot, combining the YOLOv5 CNNs model for object detection and pose estimation with traditional feature detection (FAST), feature description (BRISK), and matching algorithms. By integrating these algorithms and utilizing a small-scale depth sensor camera for capturing depth and color images, the system achieves real-time object detection and accurate pose estimation, enabling the robotic arm to pick objects correctly in both position and orientation. Furthermore, the proposed method is implemented within the ROS framework to provide a seamless platform for robotic control and integration. This integration of robotics, cameras, and AI technology contributes to the development of industrial robotics, opening up new possibilities for automating challenging tasks and improving overall operational efficiency.Keywords: robotic vision, image processing, applications of robotics, artificial intelligent
Procedia PDF Downloads 971099 Football Chants in Israel: Persistent Values and Changing Trends
Authors: Ilan Tamir
Abstract:
Fans’ chants in sports stadium have, over the years, become an integral part of the spectator experience. While chants add color, atmosphere, and a demonstration of fans’ support for their team, chants also play a significant role in defining fans’ perceptions of their team’s identity and its differentiation from other teams. An analysis of football chants may therefore shed light on fans’ deep-seated worldviews of their own role, their team, the sport in general, and even life itself. This study, based on an analysis of Israeli football chants over years, identifies key changing and stable perceptions of football fans. Overall 94 chants collected, over a period of five decades. After a pilot study, the chants organized in two groups (one covering 1970-1999 and the other 2000-2016). The chants analyzed through qualitative content analysis in order to understand fans values as a reflection of the society. Findings point to several values that have remained stable over years, including fans’ attitudes toward their team and its rivals, and their attitude toward God. On the other hand, recently emerging phenomena such as radicalization of hatred toward the commercialization of sport reflect social and cultural changes, both in and outside the world of sport.Keywords: sport, fans, chants, soccer
Procedia PDF Downloads 1661098 Fungal Cellulase/Xylanase Complex and Their Industrial Applications
Authors: L. Kutateldze, T. Urushadze, R. Khvedelidze, N. Zakariashvili, I. Khokhashvili, T. Sadunishvili
Abstract:
Microbial cellulase/xylanase have shown their potential application in various industries including pulp and paper, textile, laundry, biofuel production, food and feed industry, brewing, and agriculture. Extremophilic micromycetes and their enzymes that are resistant to critical values of temperature and pH, and retaining enzyme activity for a long time are of great industrial interest. Among strains of microscopic fungi from the collection of S. Durmishidze Institute of Biochemistry and Biotechnology, strains isolated from different ecological niches of Southern Caucasus-active producers of cellulase/xylanase have been selected by means of screening under deep cultivation conditions. Extremophilic micromycetes and their enzymes that are resistant to critical values of temperature and pH, and retaining enzyme activity for a long time are of great industrial interest. Among strains of microscopic fungi from the collection of S. Durmishidze Institute of Biochemistry and Biotechnology, strains isolated from different ecological niches of Southern Caucasus-active producers of cellulase/xylanase have been selected by means of screening under deep cultivation conditions. Representatives of the genera Aspergillus, Penicillium and Trichoderma are outstanding by relatively high activities of these enzymes. Among the producers were revealed thermophilic strains, representatives of the genus Aspergillus-Aspergillus terreus, Aspergillus versicolor, Aspergillus wentii, also strains of Sporotrichum pulverulentum and Chaetomium thermophile. As a result of optimization of cultivation media and conditions, activities of enzymes produced by the strains have been increased by 4 -189 %. Two strains, active producers of cellulase/xylanase – Penicillium canescence E2 (mesophile) and Aspergillus versicolor Z17 (thermophile) were chosen for further studies. Cellulase/xylanase enzyme preparations from two different genera of microscopic fungi Penicillium canescence E2 and Aspergillus versicolor Z 17 were obtained with activities 220 U/g /1200 U/g and 125 U/g /940 U/g, correspondingly. Main technical characteristics were as follows: the highest enzyme activities were obtained for mesophilic strain Penicillium canescence E2 at 45-500C, while almost the same enzyme activities were fixed for the thermophilic strain Aspergillus versicolor Z 17 at temperature 60-65°C, exceeding the temperature optimum of the mesophile by 150C. Optimum pH of action of the studied cellulase/xylanases from mesophileic and thermophilic strains were similar and equaled to 4.5-5.0 It has been shown that cellulase/xylanase technical preparations from selected strains of Penicillium canescence E2 and Aspergillus versicolor Z17 hydrolyzed cellulose of untreated wheat straw to reducible sugars by 46-52%, and to glucose by 22-27%. However the thermophilic enzyme preparations from the thermophilic A.versicolor strains conducted the process at 600C higher by 100C as compared to mesophlic analogue. Rate of hydrolyses of the pretreated substrate by the same enzyme preparations to reducible sugars and glucose conducted at optimum for their action 60 and 500C was 52-61% and 29-33%, correspondingly. Thus, maximum yield of glucose and reducible sugars form untreated and pretreated wheat straw was achieved at higher temperature (600C) by enzyme preparations from thermophilic strain, which gives advantage for their industrial application.Keywords: cellulase/xylanase, cellulose hydrolysis, microscopic fungi, thermophilic strain
Procedia PDF Downloads 2851097 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management
Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran
Abstract:
Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities
Procedia PDF Downloads 721096 Machine Learning Approach for Yield Prediction in Semiconductor Production
Authors: Heramb Somthankar, Anujoy Chakraborty
Abstract:
This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis
Procedia PDF Downloads 1091095 Participatory Culture and Value Perception Amongst the Korean and Chinese Drama International Fandom
Authors: Patricia P. M. C. Lourenco, Javier Bringué Sala, Anaisa D. A. de Sena
Abstract:
Almost everyone in Dramaland knows the names of big Korean stars that grace their computer screens on a roll through social media and video streaming platforms that enable awareness of Korean dramas and lifestyle at a click. A surface culture instilled with notions of belonging has redefined the meaning of friendship and challenged deep inner values. Not everyone, however, knows Chinese Dramas or their stars, which is a consequence of Dramaland's focus on Korean dramas and promoting the Korean experience. Despite a parity in terms of production quality, star power, scripts and compelling visual settings, Chinese Dramas have been playing catch up to their famous counterparts. While they might have a strong competitive soft power for international drama fans, the soft power of Korean dramas is imbued with substantial societal values that they want to share with others. Those values are portrayed in an artistic way that connects with audiences who experience loneliness in the non-virtual world contrary to the way Chinese Dramas are perceived.Keywords: Chinese dramas, fandom, Korean dramas, participatory culture, value perception, soft power, surface culture
Procedia PDF Downloads 1691094 A Conceptual Model of the 'Driver – Highly Automated Vehicle' System
Authors: V. A. Dubovsky, V. V. Savchenko, A. A. Baryskevich
Abstract:
The current trend in the automotive industry towards automatic vehicles is creating new challenges related to human factors. This occurs due to the fact that the driver is increasingly relieved of the need to be constantly involved in driving the vehicle, which can negatively impact his/her situation awareness when manual control is required, and decrease driving skills and abilities. These new problems need to be studied in order to provide road safety during the transition towards self-driving vehicles. For this purpose, it is important to develop an appropriate conceptual model of the interaction between the driver and the automated vehicle, which could serve as a theoretical basis for the development of mathematical and simulation models to explore different aspects of driver behaviour in different road situations. Well-known driver behaviour models describe the impact of different stages of the driver's cognitive process on driving performance but do not describe how the driver controls and adjusts his actions. A more complete description of the driver's cognitive process, including the evaluation of the results of his/her actions, will make it possible to more accurately model various aspects of the human factor in different road situations. This paper presents a conceptual model of the 'driver – highly automated vehicle' system based on the P.K. Anokhin's theory of functional systems, which is a theoretical framework for describing internal processes in purposeful living systems based on such notions as goal, desired and actual results of the purposeful activity. A central feature of the proposed model is a dynamic coupling mechanism between the decision-making of a driver to perform a particular action and changes of road conditions due to driver’s actions. This mechanism is based on the stage by stage evaluation of the deviations of the actual values of the driver’s action results parameters from the expected values. The overall functional structure of the highly automated vehicle in the proposed model includes a driver/vehicle/environment state analyzer to coordinate the interaction between driver and vehicle. The proposed conceptual model can be used as a framework to investigate different aspects of human factors in transitions between automated and manual driving for future improvements in driving safety, and for understanding how driver-vehicle interface must be designed for comfort and safety. A major finding of this study is the demonstration that the theory of functional systems is promising and has the potential to describe the interaction of the driver with the vehicle and the environment.Keywords: automated vehicle, driver behavior, human factors, human-machine system
Procedia PDF Downloads 1461093 Algorithm Research on Traffic Sign Detection Based on Improved EfficientDet
Authors: Ma Lei-Lei, Zhou You
Abstract:
Aiming at the problems of low detection accuracy of deep learning algorithm in traffic sign detection, this paper proposes improved EfficientDet based traffic sign detection algorithm. Multi-head self-attention is introduced in the minimum resolution layer of the backbone of EfficientDet to achieve effective aggregation of local and global depth information, and this study proposes an improved feature fusion pyramid with increased vertical cross-layer connections, which improves the performance of the model while introducing a small amount of complexity, the Balanced L1 Loss is introduced to replace the original regression loss function Smooth L1 Loss, which solves the problem of balance in the loss function. Experimental results show, the algorithm proposed in this study is suitable for the task of traffic sign detection. Compared with other models, the improved EfficientDet has the best detection accuracy. Although the test speed is not completely dominant, it still meets the real-time requirement.Keywords: convolutional neural network, transformer, feature pyramid networks, loss function
Procedia PDF Downloads 971092 Strengthening of Reinforced Concrete Beams Using Steel Plates
Authors: Ghusen al-Kafri, Mohammed Ali Abdallah Elsageer, Ahmed Mohamed Hadya Alsdaai, Abdeimanam Salhien Salih Khalifa
Abstract:
In this paper, external reinforcement to enhance a reinforced concrete structure performance has been done using externally bonded steel plate. This technique has been reported effective in enhancing the strength of reinforced concrete beam, a study to determine the effectiveness of steel plate as an external reinforcement was carried out. A total of two groups of beams and one group content five beams, each 750 mm long, 150 mm wide, and 150 mm deep were cast, strengthened and tested till failure under two point loads. One beam was act as a control beam without strengthening and other four beams were strengthened with steel plate at a different arrangement. Other group beams were strengthened with steel plate in shear zone and also strengthened at bottom as first group. The behaviours of the strengthened beams were studied through their load-deflection characteristic upon bending, cracking and mode of failure. The results confirmed that all steel plate arrangements enhanced the strength of the reinforced concrete beam, the positioning of the steel plate affect the moment carrying capacity of the beam.Keywords: beams, bending, beflection, steel plates
Procedia PDF Downloads 4161091 Application of Neural Network in Portfolio Product Companies: Integration of Boston Consulting Group Matrix and Ansoff Matrix
Authors: M. Khajezadeh, M. Saied Fallah Niasar, S. Ali Asli, D. Davani Davari, M. Godarzi, Y. Asgari
Abstract:
This study aims to explore the joint application of both Boston and Ansoff matrices in the operational development of the product. We conduct deep analysis, by utilizing the Artificial Neural Network, to predict the position of the product in the market while the company is interested in increasing its share. The data are gathered from two industries, called hygiene and detergent. In doing so, the effort is being made by investigating the behavior of top player companies and, recommend strategic orientations. In conclusion, this combination analysis is appropriate for operational development; as well, it plays an important role in providing the position of the product in the market for both hygiene and detergent industries. More importantly, it will elaborate on the company’s strategies to increase its market share related to a combination of the Boston Consulting Group (BCG) Matrix and Ansoff Matrix.Keywords: artificial neural network, portfolio analysis, BCG matrix, Ansoff matrix
Procedia PDF Downloads 1431090 A Topological Approach for Motion Track Discrimination
Authors: Tegan H. Emerson, Colin C. Olson, George Stantchev, Jason A. Edelberg, Michael Wilson
Abstract:
Detecting small targets at range is difficult because there is not enough spatial information present in an image sub-region containing the target to use correlation-based methods to differentiate it from dynamic confusers present in the scene. Moreover, this lack of spatial information also disqualifies the use of most state-of-the-art deep learning image-based classifiers. Here, we use characteristics of target tracks extracted from video sequences as data from which to derive distinguishing topological features that help robustly differentiate targets of interest from confusers. In particular, we calculate persistent homology from time-delayed embeddings of dynamic statistics calculated from motion tracks extracted from a wide field-of-view video stream. In short, we use topological methods to extract features related to target motion dynamics that are useful for classification and disambiguation and show that small targets can be detected at range with high probability.Keywords: motion tracks, persistence images, time-delay embedding, topological data analysis
Procedia PDF Downloads 1141089 Transfer Learning for Protein Structure Classification at Low Resolution
Authors: Alexander Hudson, Shaogang Gong
Abstract:
Structure determination is key to understanding protein function at a molecular level. Whilst significant advances have been made in predicting structure and function from amino acid sequence, researchers must still rely on expensive, time-consuming analytical methods to visualise detailed protein conformation. In this study, we demonstrate that it is possible to make accurate (≥80%) predictions of protein class and architecture from structures determined at low (>3A) resolution, using a deep convolutional neural network trained on high-resolution (≤3A) structures represented as 2D matrices. Thus, we provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function. We investigate the impact of the input representation on classification performance, showing that side-chain information may not be necessary for fine-grained structure predictions. Finally, we confirm that high resolution, low-resolution and NMR-determined structures inhabit a common feature space, and thus provide a theoretical foundation for boosting with single-image super-resolution.Keywords: transfer learning, protein distance maps, protein structure classification, neural networks
Procedia PDF Downloads 1361088 Helping the Helper: Impact of Teaching Assistantship Program among Psychology Alumni
Authors: Clarissa Delariarte
Abstract:
With the aim of helping the poorest of the poor achieve quality education, Psychology students supported and served as teacher assistants to its Early Childhood Education Center in two barangays since the program began in 1999. Making use of qualitative approach, the impact of the program to 29 alumni who served as teacher assistants between 2000-2014 was assessed. Results show that the impact to the alumni is in cognitive as well as social-emotional in terms of feelings of deep satisfaction and sense of volunteerism which is being carried out in their respective workspaces. They also expressed positive feelings of inspiration, gratefulness and happiness. A wider perspective in life, being confident, creative and resourceful was also articulated as concrete impacts. It is concluded that the program had an impact on helping the helper and is a concrete manifestation of the academe being successful in its commitment of forming individuals into becoming integrated and compassionate in the service of the Church and Society. It implies that more opportunities of helping others be provided to students since, in the final analysis, is actually an opportunity of helping the helper be of better service to others.Keywords: applied psychology, life skill, qualitative research, quality education
Procedia PDF Downloads 1861087 Financial Investment of a Wine Cavein Greece
Authors: Stamataki Erofili Nellie, Benardos Andreas
Abstract:
Winemaking and aging in Greece has been performed so far in special facilities, designed either as above ground or shallow underground buildings. The latter are well-known in Santorini as “canaves,” dating back to the 1700s. Canaves were mainly used for wine storage and aging, although occasionally, they included a winepress to complete there the whole wine production. On the other hand, wine caves are subterranean caves of the same use as canaves in the wine manufacturing industry, but they are excavated at a much greater depth of more than 53 meters or 175 feet. Whereas canaves or a typical wine cellar is around 10 feet deep, with is equivalent to almost 3 meters. This paper discusses the advantages and the disadvantages of creating a wine cave for the vinification of a winery in Greece and the financial investment or risk that has to be taken. The data presented and analysed are given from wineries in Greece and especially from those located in Santorini island. The estimation of the cost for the excavation of the model selected as a wine cave will be compared with the financial budget of the existing premises and facilities above ground in Greek wineries. In order to show whether it is viable for a greek winery to invest in a wine cave.Keywords: underground space use, subterranean winery, wine cave, underground winery, greece
Procedia PDF Downloads 1801086 ROOP: Translating Sequential Code Fragments to Distributed Code Fragments Using Deep Reinforcement Learning
Authors: Arun Sanjel, Greg Speegle
Abstract:
Every second, massive amounts of data are generated, and Data Intensive Scalable Computing (DISC) frameworks have evolved into effective tools for analyzing such massive amounts of data. Since the underlying architecture of these distributed computing platforms is often new to users, building a DISC application can often be time-consuming and prone to errors. The automated conversion of a sequential program to a DISC program will consequently significantly improve productivity. However, synthesizing a user’s intended program from an input specification is complex, with several important applications, such as distributed program synthesizing and code refactoring. Existing works such as Tyro and Casper rely entirely on deductive synthesis techniques or similar program synthesis approaches. Our approach is to develop a data-driven synthesis technique to identify sequential components and translate them to equivalent distributed operations. We emphasize using reinforcement learning and unit testing as feedback mechanisms to achieve our objectives.Keywords: program synthesis, distributed computing, reinforcement learning, unit testing, DISC
Procedia PDF Downloads 1071085 Time and Cost Efficiency Analysis of Quick Die Change System on Metal Stamping Industry
Authors: Rudi Kurniawan Arief
Abstract:
Manufacturing cost and setup time are the hot topics to improve in Metal Stamping industry because material and components price are always rising up while costumer requires to cut down the component price year by year. The Single Minute Exchange of Die (SMED) is one of many methods to reduce waste in stamping industry. The Japanese Quick Die Change (QDC) dies system is one of SMED systems that could reduce both of setup time and manufacturing cost. However, this system is rarely used in stamping industries. This paper will analyze how deep the QDC dies system could reduce setup time and the manufacturing cost. The research is conducted by direct observation, simulating and comparing of QDC dies system with conventional dies system. In this research, we found that the QDC dies system could save up to 35% of manufacturing cost and reduce 70% of setup times. This simulation proved that the QDC die system is effective for cost reduction but must be applied in several parallel production processes.Keywords: press die, metal stamping, QDC system, single minute exchange die, manufacturing cost saving, SMED
Procedia PDF Downloads 1701084 Local Boundary Analysis for Generative Theory of Tonal Music: From the Aspect of Classic Music Melody Analysis
Authors: Po-Chun Wang, Yan-Ru Lai, Sophia I. C. Lin, Alvin W. Y. Su
Abstract:
The Generative Theory of Tonal Music (GTTM) provides systematic approaches to recognizing local boundaries of music. The rules have been implemented in some automated melody segmentation algorithms. Besides, there are also deep learning methods with GTTM features applied to boundary detection tasks. However, these studies might face constraints such as a lack of or inconsistent label data. The GTTM database is currently the most widely used GTTM database, which includes manually labeled GTTM rules and local boundaries. Even so, we found some problems with these labels. They are sometimes discrepancies with GTTM rules. In addition, since it is labeled at different times by multiple musicians, they are not within the same scope in some cases. Therefore, in this paper, we examine this database with musicians from the aspect of classical music and relabel the scores. The relabeled database - GTTM Database v2.0 - will be released for academic research usage. Despite the experimental and statistical results showing that the relabeled database is more consistent, the improvement in boundary detection is not substantial. It seems that we need more clues than GTTM rules for boundary detection in the future.Keywords: dataset, GTTM, local boundary, neural network
Procedia PDF Downloads 1461083 A Simple Colorimetric Assay for Paraquat Detection Using Negatively Charged Silver Nanopaticles
Authors: Weena Siangphro, Orawon Chailapakul, Kriangsak Songsrirote
Abstract:
A simple, rapid, sensitive, and economical method based on colorimetry for the determination of paraquat, a widely used herbicide, was developed. Citrate-coated silver nanoparticles (AgNPs) were synthesized as colorimetric probe. The mechanism of the assay is related to aggregation of negatively charged AgNPs induced by positively-charged paraquat resulting from coulombic attraction which causes the color change from deep greenish yellow to pale yellow upon the concentrations of paraquat. Silica gel was exploited as paraquat adsorbent for purification and pre-concentration prior to the direct determination with negatively charged AgNPs without elution step required. The validity of the proposed approach was evaluated by spiking standard paraquat in water and plant samples. Recoveries of paraquat in water samples were 93.6-95.4%, while those in plant samples were 86.6-89.5% by using the optimized extraction procedure. The absorbance of AgNPs at 400 nm was linearly related to the concentration of paraquat over the range of 0.05-50 mg/L with detection limits of 0.05 ppm for water samples, and 0.10 ppm for plant samples.Keywords: colorimetric assay, paraquat, silica gel, silver nanoparticles
Procedia PDF Downloads 238