Search results for: deep hole
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2443

Search results for: deep hole

1153 Automated Buffer Box Assembly Cell Concept for the Canadian Used Fuel Packing Plant

Authors: Dimitrie Marinceu, Alan Murchison

Abstract:

The Canadian Used Fuel Container (UFC) is a mid-size hemispherical headed copper coated steel container measuring 2.5 meters in length and 0.5 meters in diameter containing 48 used fuel bundles. The contained used fuel produces significant gamma radiation requiring automated assembly processes to complete the assembly. The design throughput of 2,500 UFCs per year places constraints on equipment and hot cell design for repeatability, speed of processing, robustness and recovery from upset conditions. After UFC assembly, the UFC is inserted into a Buffer Box (BB). The BB is made from adequately pre-shaped blocks (lower and upper block) and Highly Compacted Bentonite (HCB) material. The blocks are practically ‘sandwiching’ the UFC between them after assembly. This paper identifies one possible approach for the BB automatic assembly cell and processes. Automation of the BB assembly will have a significant positive impact on nuclear safety, quality, productivity, and reliability.

Keywords: used fuel packing plant, automatic assembly cell, used fuel container, buffer box, deep geological repository

Procedia PDF Downloads 275
1152 Leadership Dynamics and Teacher Engagement in Greek Education

Authors: Vasileios Floros

Abstract:

This article delves into the intricate interplay between leadership styles and teacher satisfaction within the Greek educational framework, underscoring the pivotal role of school leadership in shaping educational success and fostering a conducive school culture. Through a comprehensive analysis, the study explores various leadership theories, the psychological contract between teachers and leaders, and the impact of leadership on teacher job satisfaction and group dynamics within educational institutions. It highlights how leadership efficacy can significantly influence the organizational climate, teacher motivation, and, ultimately, educational outcomes. The findings suggest that effective leadership, characterized by a deep understanding of teacher psychology, thoughtful engagement with the school culture, and strategic application of leadership styles, can lead to heightened teacher satisfaction and enhanced educational performance. This research offers valuable insights for educational policymakers, school leaders, and the broader academic community interested in optimizing leadership practices to foster an enriching educational environment in Greece.

Keywords: educational leadership, teacher satisfaction, school culture, leadership styles, Greek education

Procedia PDF Downloads 50
1151 Machine Learning-Enabled Classification of Climbing Using Small Data

Authors: Nicholas Milburn, Yu Liang, Dalei Wu

Abstract:

Athlete performance scoring within the climbing do-main presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.

Keywords: classification, climbing, data imbalance, data scarcity, machine learning, time sequence

Procedia PDF Downloads 142
1150 Design and Analysis of Shielding Magnetic Field for Active Space Radiation Protection

Authors: Chaoyan Huang, Hongxia Zheng

Abstract:

For deep space exploration and long duration interplanetary manned missions, protection of astronauts from cosmic radiation is an unavoidable problem. However, passive shielding can be little effective for protecting particles which energies are greater than 1GeV/nucleon. In this study, active magnetic protection method is adopted. Taking into account the structure and size of the end-cap, eight shielding magnetic field configurations are designed based on the Hoffman configuration. The shielding effect of shielding magnetic field structure, intensity B and thickness L on H particles with 2GeV energy is compared by test particle simulation. The result shows that the shielding effect is better with the linear type magnetic field structure in the end-cap region. Furthermore, two magnetic field configurations with better shielding effect are investigated through H and He galactic cosmic spectra. And the shielding effect of the linear type configuration adopted in the barrel and end-cap regions is best.

Keywords: galactic cosmic rays, active protection, shielding magnetic field configuration, shielding effect

Procedia PDF Downloads 144
1149 Shaped Crystal Growth of Fe-Ga and Fe-Al Alloy Plates by the Micro Pulling down Method

Authors: Kei Kamada, Rikito Murakami, Masahiko Ito, Mototaka Arakawa, Yasuhiro Shoji, Toshiyuki Ueno, Masao Yoshino, Akihiro Yamaji, Shunsuke Kurosawa, Yuui Yokota, Yuji Ohashi, Akira Yoshikawa

Abstract:

Techniques of energy harvesting y have been widely developed in recent years, due to high demand on the power supply for ‘Internet of things’ devices such as wireless sensor nodes. In these applications, conversion technique of mechanical vibration energy into electrical energy using magnetostrictive materials n have been brought to attention. Among the magnetostrictive materials, Fe-Ga and Fe-Al alloys are attractive materials due to the figure of merits such price, mechanical strength, high magnetostrictive constant. Up to now, bulk crystals of these alloys are produced by the Bridgman–Stockbarger method or the Czochralski method. Using these method big bulk crystal up to 2~3 inch diameter can be grown. However, non-uniformity of chemical composition along to the crystal growth direction cannot be avoid, which results in non-uniformity of magnetostriction constant and reduction of the production yield. The micro-pulling down (μ-PD) method has been developed as a shaped crystal growth technique. Our group have reported shaped crystal growth of oxide, fluoride single crystals with different shape such rod, plate tube, thin fiber, etc. Advantages of this method is low segregation due to high growth rate and small diffusion of melt at the solid-liquid interface, and small kerf loss due to near net shape crystal. In this presentation, we report the shaped long plate crystal growth of Fe-Ga and Fe-Al alloys using the μ-PD method. Alloy crystals were grown by the μ-PD method using calcium oxide crucible and induction heating system under the nitrogen atmosphere. The bottom hole of crucibles was 5 x 1mm² size. A <100> oriented iron-based alloy was used as a seed crystal. 5 x 1 x 320 mm³ alloy crystal plates were successfully grown. The results of crystal growth, chemical composition analysis, magnetostrictive properties and a prototype vibration energy harvester are reported. Furthermore, continuous crystal growth using powder supply system will be reported to minimize the chemical composition non-uniformity along the growth direction.

Keywords: crystal growth, micro-pulling-down method, Fe-Ga, Fe-Al

Procedia PDF Downloads 334
1148 Traffic Light Detection Using Image Segmentation

Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra

Abstract:

Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).

Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks

Procedia PDF Downloads 173
1147 Neural Network Based Compressor Flow Estimator in an Aircraft Vapor Cycle System

Authors: Justin Reverdi, Sixin Zhang, Serge Gratton, Said Aoues, Thomas Pellegrini

Abstract:

In Vapor Cycle Systems, the flow sensor plays a key role in different monitoring and control purposes. However, physical sensors can be expensive, inaccurate, heavy, cumbersome, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor based on other standard sensors is a good alternative. In this paper, a data-driven model using a Convolutional Neural Network is proposed to estimate the flow of the compressor. To fit the model to our dataset, we tested different loss functions. We show in our application that a Dynamic Time Warping based loss function called DILATE leads to better dynamical performance than the vanilla mean squared error (MSE) loss function. DILATE allows choosing a trade-off between static and dynamic performance.

Keywords: deep learning, dynamic time warping, vapor cycle system, virtual sensor

Procedia PDF Downloads 146
1146 Exhaustive Study of Essential Constraint Satisfaction Problem Techniques Based on N-Queens Problem

Authors: Md. Ahsan Ayub, Kazi A. Kalpoma, Humaira Tasnim Proma, Syed Mehrab Kabir, Rakib Ibna Hamid Chowdhury

Abstract:

Constraint Satisfaction Problem (CSP) is observed in various applications, i.e., scheduling problems, timetabling problems, assignment problems, etc. Researchers adopt a CSP technique to tackle a certain problem; however, each technique follows different approaches and ways to solve a problem network. In our exhaustive study, it has been possible to visualize the processes of essential CSP algorithms from a very concrete constraint satisfaction example, NQueens Problem, in order to possess a deep understanding about how a particular constraint satisfaction problem will be dealt with by our studied and implemented techniques. Besides, benchmark results - time vs. value of N in N-Queens - have been generated from our implemented approaches, which help understand at what factor each algorithm produces solutions; especially, in N-Queens puzzle. Thus, extended decisions can be made to instantiate a real life problem within CSP’s framework.

Keywords: arc consistency (AC), backjumping algorithm (BJ), backtracking algorithm (BT), constraint satisfaction problem (CSP), forward checking (FC), least constrained values (LCV), maintaining arc consistency (MAC), minimum remaining values (MRV), N-Queens problem

Procedia PDF Downloads 364
1145 Studying the Schema of Afghan Immigrants about Iranians; A Case Study of Immigrants in Tehran Province

Authors: Mohammad Ayobi

Abstract:

Afghans have been immigrating to Iran for many years; The re-establishment of the Taliban in Afghanistan caused a flood of Afghan immigrants to Iran. One of the important issues related to the arrival of Afghan immigrants is the view that Afghan immigrants have toward Iranians. In this research, we seek to identify the schema of Afghan immigrants living in Iran about Iranians. A schema is a set of data or generalized knowledge that is formed in connection with a particular group or a particular person, or even a particular nationality to identify a person with pre-determined judgments about certain matters. The schemata between certain nationalities have a direct impact on the formation of interactions between them and can be effective in establishing or not establishing proper communication between the Afghan immigrant nationality and Iranians. For the scientific understanding of research, we use the theory of “schemata.” The method of this study is qualitative, and its data will be collected through semi-structured deep interviews, and data will be analyzed by thematic analysis. The expected findings in this study are that the schemata of Afghan immigrants are more negative than Iranians because Iranians are self-centered and fanatical about Afghans, and Afghans are only workers to them.

Keywords: schema study, Afghan immigrants, Iranians, in-depth interview

Procedia PDF Downloads 86
1144 Fine Grained Action Recognition of Skateboarding Tricks

Authors: Frederik Calsius, Mirela Popa, Alexia Briassouli

Abstract:

In the field of machine learning, it is common practice to use benchmark datasets to prove the working of a method. The domain of action recognition in videos often uses datasets like Kinet-ics, Something-Something, UCF-101 and HMDB-51 to report results. Considering the properties of the datasets, there are no datasets that focus solely on very short clips (2 to 3 seconds), and on highly-similar fine-grained actions within one specific domain. This paper researches how current state-of-the-art action recognition methods perform on a dataset that consists of highly similar, fine-grained actions. To do so, a dataset of skateboarding tricks was created. The performed analysis highlights both benefits and limitations of state-of-the-art methods, while proposing future research directions in the activity recognition domain. The conducted research shows that the best results are obtained by fusing RGB data with OpenPose data for the Temporal Shift Module.

Keywords: activity recognition, fused deep representations, fine-grained dataset, temporal modeling

Procedia PDF Downloads 231
1143 Deep Learning Based Text to Image Synthesis for Accurate Facial Composites in Criminal Investigations

Authors: Zhao Gao, Eran Edirisinghe

Abstract:

The production of an accurate sketch of a suspect based on a verbal description obtained from a witness is an essential task for most criminal investigations. The criminal investigation system employs specifically trained professional artists to manually draw a facial image of the suspect according to the descriptions of an eyewitness for subsequent identification. Within the advancement of Deep Learning, Recurrent Neural Networks (RNN) have shown great promise in Natural Language Processing (NLP) tasks. Additionally, Generative Adversarial Networks (GAN) have also proven to be very effective in image generation. In this study, a trained GAN conditioned on textual features such as keywords automatically encoded from a verbal description of a human face using an RNN is used to generate photo-realistic facial images for criminal investigations. The intention of the proposed system is to map corresponding features into text generated from verbal descriptions. With this, it becomes possible to generate many reasonably accurate alternatives to which the witness can use to hopefully identify a suspect from. This reduces subjectivity in decision making both by the eyewitness and the artist while giving an opportunity for the witness to evaluate and reconsider decisions. Furthermore, the proposed approach benefits law enforcement agencies by reducing the time taken to physically draw each potential sketch, thus increasing response times and mitigating potentially malicious human intervention. With publically available 'CelebFaces Attributes Dataset' (CelebA) and additionally providing verbal description as training data, the proposed architecture is able to effectively produce facial structures from given text. Word Embeddings are learnt by applying the RNN architecture in order to perform semantic parsing, the output of which is fed into the GAN for synthesizing photo-realistic images. Rather than the grid search method, a metaheuristic search based on genetic algorithms is applied to evolve the network with the intent of achieving optimal hyperparameters in a fraction the time of a typical brute force approach. With the exception of the ‘CelebA’ training database, further novel test cases are supplied to the network for evaluation. Witness reports detailing criminals from Interpol or other law enforcement agencies are sampled on the network. Using the descriptions provided, samples are generated and compared with the ground truth images of a criminal in order to calculate the similarities. Two factors are used for performance evaluation: The Structural Similarity Index (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). A high percentile output from this performance matrix should attribute to demonstrating the accuracy, in hope of proving that the proposed approach can be an effective tool for law enforcement agencies. The proposed approach to criminal facial image generation has potential to increase the ratio of criminal cases that can be ultimately resolved using eyewitness information gathering.

Keywords: RNN, GAN, NLP, facial composition, criminal investigation

Procedia PDF Downloads 161
1142 The Rehabilitation Solutions for the Hydraulic Jump Sweepout: A Case Study from India

Authors: Ali Heidari, Hany Saleem

Abstract:

The tailwater requirements are important criteria in the design of the stilling basins as energy dissipation of the spillways. The adequate tailwater level that ensures the hydraulic jump inside the basin should be fulfilled by the river's natural water level and the apron depth downstream of the chute. The requirements of the hydraulic jump should mainly be checked for the design flood, however, the drawn jump condition should not be critical in the discharges lesser than the design flood. The tailwater requirement is not met in Almatti dam, built in 2005 in India, and the jump sweep out from the basin, resulting in significant scour in the apron and end sill of the basin. This paper discusses different hydraulic solutions as sustainable solutions for the rehabilitation program. The deep apron alternative is proposed for the fewer bays of the spillway as the most cost-effective, sustainable solution. The apron level of 15 gates out of 26 gates should decrease by 5.4 m compared to the existing design to ensure a safe hydraulic jump up to the discharge of 10,000 m3/s i.e. 30% of the updated PMF.

Keywords: dam, spillway, stilling basin, Almatti

Procedia PDF Downloads 57
1141 Variation of Quality of Roller-Compacted Concrete Based on Consistency

Authors: C. Chhorn, S. H. Han, S. W. Lee

Abstract:

Roller-compacted concrete (RCC) has been used for decades in many pavement applications due to its economic cost and high construction speed. However, due to the lack of deep researches and experiences, this material has not been widely employed. An RCC mixture with appropriate consistency can induce high compacted density, while high density can induce good aggregate interlock and high strength. Consistency of RCC is mainly known to define its constructability. However, it was not well specified how this property may affect other properties of a constructed RCC pavement (RCCP). This study suggested the possibility of an ideal range of consistency that may provide adequate quality of RCCP. In this research, five sections of RCCP consisted of both 13 mm and 19 mm aggregate sections were investigated. The effects of consistency on compacted depth, strength, international roughness index (IRI), skid resistance are examined. From this study, a new range of consistency is suggested for RCCP application.

Keywords: compacted depth, consistency, international roughness index (IRI), pavement, roller-compacted concrete (RCC), skid resistance, strength

Procedia PDF Downloads 243
1140 The Verification Study of Computational Fluid Dynamics Model of the Aircraft Piston Engine

Authors: Lukasz Grabowski, Konrad Pietrykowski, Michal Bialy

Abstract:

This paper presents the results of the research to verify the combustion in aircraft piston engine Asz62-IR. This engine was modernized and a type of ignition system was developed. Due to the high costs of experiments of a nine-cylinder 1,000 hp aircraft engine, a simulation technique should be applied. Therefore, computational fluid dynamics to simulate the combustion process is a reasonable solution. Accordingly, the tests for varied ignition advance angles were carried out and the optimal value to be tested on a real engine was specified. The CFD model was created with the AVL Fire software. The engine in the research had two spark plugs for each cylinder and ignition advance angles had to be set up separately for each spark. The results of the simulation were verified by comparing the pressure in the cylinder. The courses of the indicated pressure of the engine mounted on a test stand were compared. The real course of pressure was measured with an optical sensor, mounted in a specially drilled hole between the valves. It was the OPTRAND pressure sensor, which was designed especially to engine combustion process research. The indicated pressure was measured in cylinder no 3. The engine was running at take-off power. The engine was loaded by a propeller at a special test bench. The verification of the CFD simulation results was based on the results of the test bench studies. The course of the simulated pressure obtained is within the measurement error of the optical sensor. This error is 1% and reflects the hysteresis and nonlinearity of the sensor. The real indicated pressure measured in the cylinder and the pressure taken from the simulation were compared. It can be claimed that the verification of CFD simulations based on the pressure is a success. The next step was to research on the impact of changing the ignition advance timing of spark plugs 1 and 2 on a combustion process. Moving ignition timing between 1 and 2 spark plug results in a longer and uneven firing of a mixture. The most optimal point in terms of indicated power occurs when ignition is simultaneous for both spark plugs, but so severely separated ignitions are assured that ignition will occur at all speeds and loads of engine. It should be confirmed by a bench experiment of the engine. However, this simulation research enabled us to determine the optimal ignition advance angle to be implemented into the ignition control system. This knowledge allows us to set up the ignition point with two spark plugs to achieve as large power as possible.

Keywords: CFD model, combustion, engine, simulation

Procedia PDF Downloads 361
1139 Wetting Characterization of High Aspect Ratio Nanostructures by Gigahertz Acoustic Reflectometry

Authors: C. Virgilio, J. Carlier, P. Campistron, M. Toubal, P. Garnier, L. Broussous, V. Thomy, B. Nongaillard

Abstract:

Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.

Keywords: wetting, acoustic reflectometry, gigahertz, semiconductor

Procedia PDF Downloads 327
1138 Electrocatalytic Properties of Ru-Pd Bimetal Quantum Dots/TiO₂ Nanotube Arrays Electrodes Composites with Double Schottky Junctions

Authors: Shiying Fan, Xinyong Li

Abstract:

The development of highly efficient multifunctional catalytic materials towards HER, ORR and Photo-fuel cell applications in terms of combined electrochemical and photo-electrochemical principles have currently confronted with dire challenges. In this study, novel palladium (Pd) and ruthenium (Ru) Bimetal Quantum Dots (BQDs) co-anchored on Titania nanotube (NTs) arrays electrodes have been successfully constructed by facial two-step electrochemical strategy. Double Schottky junctions with superior performance in electrocatalytic (EC) hydrogen generations and solar fuel cell energy conversions (PE) have been found. Various physicochemical techniques including UV-vis spectroscopy, TEM/EDX/HRTEM, SPV/TRV and electro-chemical strategy including EIS, C-V, I-V, and I-T, etc. were chronically utilized to systematically characterize the crystal-, electronic and micro-interfacial structures of the composites with double Schottky junction, respectively. The characterizations have implied that the marvelous enhancement of separation efficiency of electron-hole pairs generations is mainly caused by the Schottky-barriers within the nanocomposites, which would greatly facilitate the interfacial charge transfer for H₂ generations and solar fuel cell energy conversions. Moreover, the DFT calculations clearly indicated that the oriented growth of Ru and Pd bimetal atoms at the anatase (101) surface is mainly driven by the interaction between Ru/Pd and surface atoms, and the most active site for bimetal Ru and Pd adatoms on the perfect TiO₂ (101) surface is the 2cO-6cTi-3cO bridge sites and the 2cO-bridge sites with the highest adsorption energy of 9.17 eV. Furthermore, the electronic calculations show that in the nanocomposites, the number of impurity (i.e., co-anchored Ru-Pd BQDs) energy levels near Fermi surface increased and some were overlapped with original energy level, promoting electron energy transition and reduces the band gap. Therefore, this work shall provide a deeper insight for the molecular design of Bimetal Quantum Dots (BQDs) assembled onto Tatiana NTs composites with superior performance for electrocatalytic hydrogen productions and solar fuel cell energy conversions (PE) simultaneously.

Keywords: eletrocatalytic, Ru-Pd bimetallic quantum dots, titania nanotube arrays, double Schottky junctions, hydrogen production

Procedia PDF Downloads 143
1137 RGB-D SLAM Algorithm Based on pixel level Dense Depth Map

Authors: Hao Zhang, Hongyang Yu

Abstract:

Scale uncertainty is a well-known challenging problem in visual SLAM. Because RGB-D sensor provides depth information, RGB-D SLAM improves this scale uncertainty problem. However, due to the limitation of physical hardware, the depth map output by RGB-D sensor usually contains a large area of missing depth values. These missing depth information affect the accuracy and robustness of RGB-D SLAM. In order to reduce these effects, this paper completes the missing area of the depth map output by RGB-D sensor and then fuses the completed dense depth map into ORB SLAM2. By adding the process of obtaining pixel-level dense depth maps, a better RGB-D visual SLAM algorithm is finally obtained. In the process of obtaining dense depth maps, a deep learning model of indoor scenes is adopted. Experiments are conducted on public datasets and real-world environments of indoor scenes. Experimental results show that the proposed SLAM algorithm has better robustness than ORB SLAM2.

Keywords: RGB-D, SLAM, dense depth, depth map

Procedia PDF Downloads 140
1136 Small Town Big Urban Issues the Case of Kiryat Ono, Israel

Authors: Ruth Shapira

Abstract:

Introduction: The rapid urbanization of the last century confronts planners, regulatory bodies, developers and most of all – the public with seemingly unsolved conflicts regarding values, capital, and wellbeing of the built and un-built urban space. This is reflected in the quality of the urban form and life which has known no significant progress in the last 2-3 decades despite the on-growing urban population. It is the objective of this paper to analyze some of these fundamental issues through the case study of a relatively small town in the center of Israel (Kiryat-Ono, 100,000 inhabitants), unfold the deep structure of qualities versus disruptors, present some cure that we have developed to bridge over and humbly suggest a practice that may be generic for similar cases. Basic Methodologies: The OBJECT, the town of Kiryat Ono, shall be experimented upon in a series of four action processes: De-composition, Re-composition, the Centering process and, finally, Controlled Structural Disintegration. Each stage will be based on facts, analysis of previous multidisciplinary interventions on various layers – and the inevitable reaction of the OBJECT, leading to the conclusion based on innovative theoretical and practical methods that we have developed and that we believe are proper for the open ended network, setting the rules for the contemporary urban society to cluster by. The Study: Kiryat Ono, was founded 70 years ago as an agricultural settlement and rapidly turned into an urban entity. In spite the massive intensification, the original DNA of the old small town was still deeply embedded, mostly in the quality of the public space and in the sense of clustered communities. In the past 20 years, the recent demand for housing has been addressed to on the national level with recent master plans and urban regeneration policies mostly encouraging individual economic initiatives. Unfortunately, due to the obsolete existing planning platform the present urban renewal is characterized by pressure of developers, a dramatic change in building scale and widespread disintegration of the existing urban and social tissue. Our office was commissioned to conceptualize two master plans for the two contradictory processes of Kiryat Ono’s future: intensification and conservation. Following a comprehensive investigation into the deep structures and qualities of the existing town, we developed a new vocabulary of conservation terms thus redefying the sense of PLACE. The main challenge was to create master plans that should offer a regulatory basis to the accelerated and sporadic development providing for the public good and preserving the characteristics of the PLACE consisting of a tool box of design guidelines that will have the ability to reorganize space along the time axis in a coherent way. In Conclusion: The system of rules that we have developed can generate endless possible patterns making sure that at each implementation fragment an event is created, and a better place is revealed. It takes time and perseverance but it seems to be the way to provide a healthy framework for the accelerated urbanization of our chaotic present.

Keywords: housing, architecture, urban qualities, urban regeneration, conservation, intensification

Procedia PDF Downloads 361
1135 The Popular Imagination through the Poem of “Ras B’Nadam”

Authors: Hirreche Baghdad Mohamed

Abstract:

One of the main texts in popular culture in Algeria is a symbolic and imaginary tale, through which the author was able to derive from the world and popular cultural stock and symbolic capital elements that enabled him to create a synthesis between a number of imaginary and real events. Thanks to the level of spirituality that the author was experiencing, he was able to go deep in order to redraw the boundaries of human life in view of its existence and status (life experiences, its end, and its fate). It is a text that is consistent with religious values and has a philosophical depth. This poem can be shared in official and unofficial meetings, during feasts, and during popular celebrations, such as circumcision ceremonies, marriage, and condolences. It has also the ability to draw attention and appeal to the listener and let him travel into the imaginary world. It is the text related to the story of "Ras b’nadem", or "the head of a man", or rather, a "human skull", for which only a few academic studies have been devoted, and there are two copies of it, one attributed to Lakhdar Ibn Khalouf as a matter of suspicion, while the other is attributed to Qadour Ibn Ashour Al-Zarhouni.

Keywords: ras B’Nadam, ras al mahna, lakhdar ibn khalouf, qadour ibn ashour, sufism, melhoun poetry, resistance poetry

Procedia PDF Downloads 192
1134 Emperical Correlation for Measurement of Thermal Diffusivity of Spherical Shaped Food Products under Forced Convection Environment

Authors: M. Riaz, Inamur Rehman, Abhishek Sharma

Abstract:

The present work is the development of an experimental method for determining the thermal diffusivity variations with temperature of selected regular shaped solid fruits and vegetables subjected to forced convection cooling. Experimental investigations were carried on the sample chosen (potato and brinjal), which is approximately of spherical geometry. The variation of temperature within the food product is measured at several locations from centre to skin, under forced convection environment using a deep freezer, maintained at -10°C.This method uses one dimensional Fourier equation applied to regular shapes. For this, the experimental temperature data obtained from cylindrical and spherical shaped products during pre-cooling was utilised. Such temperature and thermal diffusivity profiles can be readily used with other information such as degradation rate, etc. to evaluate thermal treatments based on cold air cooling methods for storage of perishable food products.

Keywords: thermal diffusivity, skin temperature, precooling, forced convection, regular shaped

Procedia PDF Downloads 459
1133 Uncertainty Estimation in Neural Networks through Transfer Learning

Authors: Ashish James, Anusha James

Abstract:

The impressive predictive performance of deep learning techniques on a wide range of tasks has led to its widespread use. Estimating the confidence of these predictions is paramount for improving the safety and reliability of such systems. However, the uncertainty estimates provided by neural networks (NNs) tend to be overconfident and unreasonable. Ensemble of NNs typically produce good predictions but uncertainty estimates tend to be inconsistent. Inspired by these, this paper presents a framework that can quantitatively estimate the uncertainties by leveraging the advances in transfer learning through slight modification to the existing training pipelines. This promising algorithm is developed with an intention of deployment in real world problems which already boast a good predictive performance by reusing those pretrained models. The idea is to capture the behavior of the trained NNs for the base task by augmenting it with the uncertainty estimates from a supplementary network. A series of experiments with known and unknown distributions show that the proposed approach produces well calibrated uncertainty estimates with high quality predictions.

Keywords: uncertainty estimation, neural networks, transfer learning, regression

Procedia PDF Downloads 135
1132 Architectural Design Studio (ADS) as an Operational Synthesis in Architectural Education

Authors: Francisco A. Ribeiro Da Costa

Abstract:

Who is responsible for teaching architecture; consider various ways to participate in learning, manipulating various pedagogical tools to streamline the creative process. The Architectural Design Studio (ADS) should become a holistic, systemic process responding to the complexity of our world. This essay corresponds to a deep reflection developed by the author on the teaching of architecture. The outcomes achieved are the corollary of experimentation; discussion and application of pedagogical methods that allowed consolidate the creativity applied by students. The purpose is to show the conjectures that have been considered effective in creating an intellectual environment that nurtures the subject of Architectural Design Studio (ADS), as an operational synthesis in the final stage of the degree. These assumptions, which are part of the proposed model, displaying theories and teaching methodologies that try to respect the learning process based on student learning styles Kolb, ensuring their latent specificities and formulating the structure of the ASD discipline. In addition, the assessing methods are proposed, which consider the architectural Design Studio as an operational synthesis in the teaching of architecture.

Keywords: teaching-learning, architectural design studio, architecture, education

Procedia PDF Downloads 390
1131 Depletion Layer Parameters of Al-MoO3-P-CdTe-Al MOS Structures

Authors: A. C. Sarmah

Abstract:

The Al-MoO3-P-CdTe-Al MOS sandwich structures were fabricated by vacuum deposition method on cleaned glass substrates. Capacitance versus voltage measurements were performed at different frequencies and sweep rates of applied voltages for oxide and semiconductor films of different thicknesses. In the negative voltage region of the C-V curve a high differential capacitance of the semiconductor was observed and at high frequencies (<10 kHz) the transition from accumulation to depletion and further to deep depletion was observed as the voltage was swept from negative to positive. A study have been undertaken to determine the value of acceptor density and some depletion layer parameters such as depletion layer capacitance, depletion width, impurity concentration, flat band voltage, Debye length, flat band capacitance, diffusion or built-in-potential, space charge per unit area etc. These were determined from C-V measurements for different oxide and semiconductor thicknesses.

Keywords: debye length, depletion width, flat band capacitance, impurity concentration

Procedia PDF Downloads 451
1130 Vital Pulp Therapy: A Paradigm Shift in Treating Irreversible Pulpitis

Authors: Fadwa Chtioui

Abstract:

Vital Pulp Therapy (VPT) is nowadays challenging the deep-rooted dogma of root canal treatment, being the only therapeutic option for permanent teeth diagnosed with irreversible pulpitis or carious pulp exposure. Histologic and clinical research has shown that compromised dental pulp can be treated without the full removal or excavation of all healthy pulp, and the outcome of the partial or full pulpotomy followed by a Tricalcium-Silicate-based dressing seems to show promising results in maintaining pulp vitality and preserving affected teeth in the long term. By reviewing recent advances in the techniques of VPT and their clinical effectiveness and safety in permanent teeth with irreversible Pulpitis, this work provides a new understanding of pulp pathophysiology and defense mechanisms and will reform dental practitioners' decision-making in treating irreversible pulpits from root canal therapy to vital pulp therapy by taking advantage of the biological effects of Tricalcium Silicate materials.

Keywords: irreversible pulpitis, vital pulp therapy, pulpotomy, Tricalcium Silicate

Procedia PDF Downloads 60
1129 Failure Statistics Analysis of China’s Spacecraft in Full-Life

Authors: Xin-Yan Ji

Abstract:

The historical failures data of the spacecraft is very useful to improve the spacecraft design and the test philosophies and reduce the spacecraft flight risk. A study of spacecraft failures data was performed, which is the most comprehensive statistics of spacecrafts in China. 2593 on-orbit failures data and 1298 ground data that occurred on 150 spacecraft launched from 2000 to 2016 were identified and collected, which covered the navigation satellites, communication satellites, remote sensing deep space exploration manned spaceflight platforms. In this paper, the failures were analyzed to compare different spacecraft subsystem and estimate their impact on the mission, then the development of spacecraft in China was evaluated from design, software, workmanship, management, parts, and materials. Finally, the lessons learned from the past years show that electrical and mechanical failures are responsible for the largest parts, and the key solution to reduce in-orbit failures is improving design technology, enough redundancy, adequate space environment protection measures, and adequate ground testing.

Keywords: spacecraft anomalies, anomalies mechanism, failure cause, spacecraft testing

Procedia PDF Downloads 117
1128 Use of Thermosonication to Obtain Minimally Processed Mosambi Juice

Authors: Ruby Siwach, Manish Kumar, Raman Seth

Abstract:

Extent of inactivation of pectin methylesterase (PME) in mosambi juice during thermal and thermosonication treatments was studied to obtain a minimally processed product. Effect of both treatments on cloud value, pH, titratable acidity, oBrix, and sensory attributes (flavour and taste) was studied. Thermal treatments (HT) were carried out at three temperatures 60, 70, and 80°C in a serological water bath for 5, 10, 15, and 20 min at each temperature. Thermosonication treatments (TS) were also given for same time-temperature combinations in water bath of a thermosonicator. Treated samples were stored in a deep freezer at 18°C for PME assay. PME activity of untreated sample was also assayed and residual PME activity and % loss in PME activity was calculated at each time-temperature combination. The extent of inactivation of PME increased with increase in treatment temperature and duration. Thermosonication treatments were found far more effective than thermal treatments of same time temperature combination in PME inactivation and retention of sensory attributes.

Keywords: pectin methylesterase, heat inactivation kinetics, thermosonication, thermal treatment

Procedia PDF Downloads 431
1127 Deep Reinforcement Learning for Optimal Decision-Making in Supply Chains

Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol

Abstract:

We propose the use of reinforcement learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making makes it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and statistical analysis of the results. We study the generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.

Keywords: inventory management, reinforcement learning, supply chain optimization, uncertainty

Procedia PDF Downloads 107
1126 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory

Authors: Yang Zhang, Jian He

Abstract:

Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.

Keywords: Bi-LSTM, CHD, ECG, ResNet, sliding window

Procedia PDF Downloads 89
1125 Crustal Scale Seismic Surveys in Search for Gawler Craton Iron Oxide Cu-Au (IOCG) under Very Deep Cover

Authors: E. O. Okan, A. Kepic, P. Williams

Abstract:

Iron oxide copper gold (IOCG) deposits constitute important sources of copper and gold in Australia especially since the discovery of the supergiant Olympic Dam deposits in 1975. They are considered to be metasomatic expressions of large crustal-scale alteration events occasioned by intrusive actions and are associated with felsic igneous rocks in most cases, commonly potassic igneous magmatism, with the deposits ranging from ~2.2 –1.5 Ga in age. For the past two decades, geological, geochemical and potential methods have been used to identify the structures hosting these deposits follow up by drilling. Though these methods have largely been successful for shallow targets, at deeper depth due to low resolution they are limited to mapping only very large to gigantic deposits with sufficient contrast. As the search for ore-bodies under regolith cover continues due to depletion of the near surface deposits, there is a compelling need to develop new exploration technology to explore these deep seated ore-bodies within 1-4km which is the current mining depth range. Seismic reflection method represents this new technology as it offers a distinct advantage over all other geophysical techniques because of its great depth of penetration and superior spatial resolution maintained with depth. Further, in many different geological scenarios, it offers a greater ‘3D mapability’ of units within the stratigraphic boundary. Despite these superior attributes, no arguments for crustal scale seismic surveys have been proposed because there has not been a compelling argument of economic benefit to proceed with such work. For the seismic reflection method to be used at these scales (100’s to 1000’s of square km covered) the technical risks or the survey costs have to be reduced. In addition, as most IOCG deposits have large footprint due to its association with intrusions and large fault zones; we hypothesized that these deposits can be found by mainly looking for the seismic signatures of intrusions along prospective structures. In this study, we present two of such cases: - Olympic Dam and Vulcan iron-oxide copper-gold (IOCG) deposits all located in the Gawler craton, South Australia. Results from our 2D modelling experiments revealed that seismic reflection surveys using 20m geophones and 40m shot spacing as an exploration tool for locating IOCG deposit is possible even when hosted in very complex structures. The migrated sections were not only able to identify and trace various layers plus the complex structures but also show reflections around the edges of intrusive packages. The presences of such intrusions were clearly detected from 100m to 1000m depth range without losing its resolution. The modelled seismic images match the available real seismic data and have the hypothesized characteristics; thus, the seismic method seems to be a valid exploration tool to find IOCG deposits. We therefore propose that 2D seismic survey is viable for IOCG exploration as it can detect mineralised intrusive structures along known favourable corridors. This would help in reducing the exploration risk associated with locating undiscovered resources as well as conducting a life-of-mine study which will enable better development decisions at the very beginning.

Keywords: crustal scale, exploration, IOCG deposit, modelling, seismic surveys

Procedia PDF Downloads 325
1124 Architectural Strategies for Designing Durable Steel Structural Systems

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

Nowadays, steel structures are used for not only common buildings but also high-rise construction and wide span covering. The advanced methods of construction as well as the advanced structural connections have a great effect on architecture. However a better use of steel structural systems will be achieved with the deep understanding of steel structures specifications and their substantial advantages. On the other hand, the steel structures face to the different environmental factors such as air flow which cause erosion and corrosion. With the time passing, the amount of these steel mass damages and also the imposed stress will be increased. In other words, the position of erosion in steel structures related to existing stresses indicates that effective environmental conditions will gradually decrease the structural resistance of steel components and result in decreasing the durability of steel components. In this paper, the durability of different steel structural components is evaluated and on the basis of these stress, architectural strategies for designing the system and the components of steel structures is recognized in order to achieve an optimum life cycle.

Keywords: durability, bending stress, erosion in steel structure, life cycle

Procedia PDF Downloads 560