Search results for: basal cell carcinoma and frozen section
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5516

Search results for: basal cell carcinoma and frozen section

4226 The Protective Effect of Grape Seed Oil with Use of Ciprofloxacin Induced Germ Cell Toxicity in Male Albino Mice

Authors: Galawezh Obaid Othman

Abstract:

The present investigation was undertaken to evaluate the germ cell toxicity induced by ciprofloxacin antibiotic and the Protective effect of grape seed oil, Ciproflaxin uses include treatment of genitor-urinary and some reproductive tract bacterial infections. One of the most attractive approaches to disease prevention involves the use of natural antioxidants to protect tissue against toxic injury, the possible protective effect of grape seed oil, against ciprofloxacin induced reproductive toxicity on mouse .the animals were randomly divided into four groups consisting of five mice. Group (1) was orally given distilled water (solvent of the used drugs) and kept as a control. Group (2) was administered 6ml/kg. b.w of grape seed oil orally 15 days .Group (3) was administered 206mg/kg. b.w of ciprofloxacin orally for 15 days.. Last group was treated orally with Grape seed oil (6mg/kg b.w. /day) prior to an orally administered ciprofloxacin (CPX) at a dose of 206 mg⁄kg. b.w. by three hours for fifteen days. Ciproflaxin have ability to induce various types of sperm abnormalities such as (Sperm without head, sperm without tail, defective head spearm,swollen head sperm ), The results explored that Grape seed oil possesses statistically significant (p<0.05) protective potential against Ciproflaxin by decreasing sperm abnormalities frequency in mouse.

Keywords: antimutagen, ciprofloxacin, grape seed oil, germ cell

Procedia PDF Downloads 431
4225 YPFS Attenuating TH2 Cell-Mediated Allergic Inflammation by Regulating the TSLP Pathway

Authors: Xi Yu, Lili Gu, Huizhu Wang, Xiao Wei, Dandan Sheng, Xiaoyan Jiang, Min Hong

Abstract:

Introduction: Hypersensitivity disease is difficult to cure completely because of its recurrence, yupingfengsan (YPFS) is used to treat the diseases with the advantage of reducing the recurrence,but the precise mechanism is not clear. Previous studies of our laboratory have shown that the extract of YPFS can inhibit Th2-type allergic contact dermatitis(ACD) induced by FITC.Besides, thymic stromal lymphopoietin(TSLP) have been proved to be a master switch for allergic inflammation. Based on these studies, we want to establish a mouse model of TSLP production based on Th2 cell-mediated allergic inflammation to explore the regulating mechanisms of YPFS on TSLP in Th2 cell-mediated allergic inflammation. Methods: Th2-type ACD mouse model: The mice were topically sensitized on the abdomens (induction phase) and elicited on its ears skin 6 day later (excitation phase) with FITC solution, and the ear swelling was measured to evaluate the allergic inflammation;A mouse model of TSLP production based on Th2 cell-mediated allergic inflammation (TSLP production model): the skin of the ear was sensitized on two consecutive days with FITC solution causing the production of TSLP;Mice were treated with YPFS extract,ELISA、Real-time PCR and Western-blotting were using to examine the mRNA and protein levels of TSLP\TSLPR and TLRs ect. Results: YPFS extract can attenuates Th2-type allergic inflammatory in mice;in TSLP production model, YPFS can inhibit the expression of TSLP、 TSLPR、TLRs and MyD88, So we deduce the possible mechanisms of YPFS to play a role of intervention is through TLRs- MyD88 dependent and independent pathway to reduce TSLP production.

Keywords: YPFS, TSLP, TLRs, Th2-type allergic contact dermatitis

Procedia PDF Downloads 418
4224 Developing Customizable Scaffolds With Antimicrobial Properties for Vascular Tissue Regeneration Using Low Temperature Plasma

Authors: Komal Vig, Syamala Soumyakrishnan, Yadav Baral

Abstract:

Bypass surgery, using the autologous vein has been one of the most effective treatments for cardiovascular diseases (CVD). More recently tissue engineering including engineered vascular grafts to synthesize blood vessels is gaining usage. Dacron and ePTFE has been employed for vascular grafts, however, these does not work well for small diameter grafts (<6 mm) due to intimal hyperplasia and thrombosis. In the present study PTFE was treated with LTP to improve the endothelialization of intimal surface of graft. Scaffolds were also modified with polyvinylpyrrolidone coated silver nanoparticles (Ag-PVP) and the antimicrobial peptides, p753 and p359. Human umbilical vein endothelial cells (HUVEC) were plated on the developed scaffolds and cell proliferation was determined by the MTT assay. Cells attachment on scaffolds was visualized by microscopy. mRNA expressions levels of different cell markers were investigated using quantitative real-time PCR (qPCR). X ray photoelectron spectroscopic confirmed the introduction of oxygenated functionalities from LTP air plasma. Microscopic and MTT assays indicated increase in cell viability in LTP treated scaffolds. Gene expression studies shows enhanced expression of cell adhesion marker Integrin- α 5 gene after LTP treatment. The KB test displayed a zone of inhibition for Ag-PVP, p753 and p359 of 19mm, 14mm, and 12mm respectively. To determine toxicity of antimicrobial agents to cells, MTT Assay was performed using HEK293 cells. MTT Assay exhibited that Ag-PVP and the peptides were non-toxic to cells at 100μg/mL and 50μg/mL, respectively. Live/dead analysis and plate count of treated bacteria exhibited bacterial inhibition on develop scaffold compared to non-treated scaffold. SEM was performed to analyze the structural changes of bacteria after treatment with antimicrobial agents. Gene expression studies were conducted on RNA from bacteria treated with Ag-PVP and peptides using qRT-PCR. Based on our initial results, more scaffolds alternatives will be developed and investigated for cell growth and vascularization studies.

Keywords: low temperature plasma, vascular graft, HUVEC cells, antimicrobial

Procedia PDF Downloads 234
4223 Antiproliferative and Apoptotic Effects of an Enantiomerically Pure β-Dipeptide Derivative through PI3K/Akt-Dependent and -Independent Pathways in Human Hormone-Refractory Prostate Cancer Cells

Authors: Mei-Ling Chan, Jin-Ming Wu, Konstantin V. Kudryavtsev, Jih-Hwa Guh

Abstract:

Prostate cancer is one of the most common malignant disease in men. KUD983 is an enantiomerically pure β-dipeptide derivative, which may have anti-cancer effects. In the present study, KUD983 exhibits powerful activity against hormone-refractory prostate cancer (HRPC) PC-3 and DU145 cells. The IC50 values of KUD983 in PC-3 and DU145 cells are 0.56±0.07M and 0.50±0.04 M respectively. KUD983 induced G1 arrest of the cell cycle and subsequent apoptosis associated with the down-regulation of several related proteins including cyclin D1, cyclin E and Cdk4, and the de-phosphorylation of RB. The protein expressions of nuclear and total c-Myc protein, which was able to regulate the expression of both cyclin D1 and cyclin E, were significantly suppressed by KUD983. Phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) is an important signaling pathway that influences the energy metabolism, cell cycle, proliferation, survival and apoptosis of cells, and is associated with numerous other signaling pathways. The Western Blot data revealed that KUD983 inhibited PI3K/Akt and mTOR/p70S6K/4E-BP1 pathways. The transient transfection of constitutively active myristylated Akt (myr-Akt) cDNA significantly reversed KUD983-induced caspase activation but did not abolish the suppression of mTOR/p70S6K/4E-BP1 signaling cascade indicating the presence of both Akt-dependent and -independent pathways. Moreover, KUD983-induced effect was collaborated with the down-regulation of anti-apoptotic Bcl-2 members (e.g., Bcl-2, and Mcl-1) and IAP family members (e.g., survivin). Furthermore, KUD983 induced autophagic cell death using confocal microscopic examination, investigating the level of conversion of LC3-I to LC3-II and flow cytometric detection of AVO-positive cells. Taken together, the data suggest that KUD983 is an anticancer β-dipeptide against HRPCs through the inhibition of cell proliferation and induction of apoptotic and autophagic cell death. The suppression of signaling pathways mediated by c-Myc, PI3K/Akt and mTOR/p70S6K/4E-BP1 and the collaboration with down-regulation of Mcl-1 and survivin may indicate the mechanism of KUD983 against HRPC.

Keywords: β-dipeptide, hormone-refractory prostate cancer, mTOR, PI3K/Akt

Procedia PDF Downloads 278
4222 The Ethical Healthcare Paradigm with in Corporate Framework: CSR for Equitable Access to Drugs

Authors: Abhay Vir Singh Kanwar

Abstract:

The pharmaceutical industry today is a multi-billion dollar business and yet disadvantages people in many corners of the globe who are still dying in large numbers from curable illnesses for lack of access to drugs. The astronomical prices of essential and life-saving drugs is not just an economic problem that can be settled through clever market strategies but is an ethical issue, given the accumulated wealth of today’s humanity and the sense of global justice that it increasingly comes to share. In this paper, I make a very practical argument for what I shall call ‘the ethical healthcare paradigm’, which, I propose, can replace the economistic paradigm that can still drive the healthcare sector without creating spillover effects on the market. Taking off from the ethical-philosophical argument for recognizing every individual’s right to capability to be healthy, I shall come to the focused practical proposal of the cost-rationalization and universal availability of essential, life-saving drugs through the undertaking of research and development funding for drug innovation by the business establishment as such in terms of the concept of CSR. The paper will first expose the concepts of basic and fundamental capabilities in relation to education and health, after which it will focus on the right to capability to be healthy of every person. In the third section, it will discuss the ‘ethical healthcare paradigm’ as opposed to the economistic health paradigm and will argue that the patient will have to be considered the primary stakeholder of this paradigm or the very ‘subject’ of healthcare. The next section will be on an ethical-historical critique of the pharmaceutical industry’s profit driven economism. The section after that will look at the business operation and the stages in the life cycle of a drug that comes to the market in order to understand the risks, strengths and problems of the pharmaceutical industry. Finally, the paper will discuss the concept of CSR in relation to the ethical healthcare paradigm in order to propose CSR funding in research and development for innovation on drugs so that life-saving drugs can be made available to every sick person cost-effectively.

Keywords: capability approach, healthcare, CSR, patient

Procedia PDF Downloads 305
4221 Modeling and Optimization of a Microfluidic Electrochemical Cell for the Electro-Reduction of CO₂ to CH₃OH

Authors: Barzin Rajabloo, Martin Desilets

Abstract:

First, an electrochemical model for the reduction of CO₂ into CH₃OH is developed in which mass and charge transfer, reactions at the surface of the electrodes and fluid flow of the electrolyte are considered. This mathematical model is developed in COMSOL Multiphysics® where both secondary and tertiary current distribution interfaces are coupled to consider concentrations and potentials inside different parts of the cell. Constant reaction rates are assumed as the fitted parameters to minimize the error between experimental data and modeling results. The model is validated through a comparison with experimental data in terms of faradaic efficiency for production of CH₃OH, the current density in different applied cathode potentials as well as current density in different electrolyte flow rates. The comparison between model outputs and experimental measurements shows a good agreement. The model indicates the higher hydrogen evolution in comparison with CH₃OH production as well as mass transfer limitation caused by CO₂ concentration, which are consistent with findings in the literature. After validating the model, in the second part of the study, some design parameters of the cell, such as cathode geometry and catholyte/anolyte channel widths, are modified to reach better performance and higher faradaic efficiency of methanol production.

Keywords: carbon dioxide, electrochemical reduction, methanol, modeling

Procedia PDF Downloads 101
4220 Influence of Online Sports Events on Betting among Nigerian Youth

Authors: Babajide Olufemi Diyaolu

Abstract:

The opportunity provided by advances in technology as regards sports betting is so numerous that even at one's comfort, with the use of a phone, Nigerian youth are found engaging in all kinds of betting. Today it is more difficult to differentiate a true fan as there are quite a number of them that became fans as a result of betting on live games. This study investigated the influence of online sports events on betting among Nigerian youth. A descriptive survey research design was used, and the population consists of all Nigerian youth that engages in betting and live within the southwest zone of Nigeria. A simple random sampling technique was used to pick three states from the southwest zone of Nigeria. Two thousand five hundred respondents comprising males and female were sampled from the three states. A structured questionnaire on online sports event contribution to sports betting (OSECSB) was used. The Instrument consists of three sections. Section A seeks information on the demographic data of the respondents. Section B seeks information on online sports events, while section C is used to extract information on sports betting. The modified instrument, which consists of 14 items, has a reliability coefficient of 0.74. The hypothesis was tested at 0.05 significance level. The completed questionnaire was collated, coded, and analyzed using descriptive statistics of frequency counts, percentage and pie chart, and inferential statistics of multiple regressions. The findings of this study revealed that online sports betting is a significant predictor of an increase in sports betting among Nigerian youth. The media and television, as well as globalization and the internet coupled with social media and various online platforms, have all contributed to the immense increase in sports betting. The increase in the advertisement of the betting platform during live matches, especially football, is becoming more alarming. In most organized international events, the media attention, as well as sponsorship right, are now been given to one or two betting platforms. There is a need for all stakeholders to put in place school-based intervention programs to reorientate our youth about the consequences of addiction to betting. Such programs must include meta-analyses and emotional control towards sports betting.

Keywords: betting platform, Nigerian fans, Nigerian youth, sports betting

Procedia PDF Downloads 72
4219 Cooperative AF Scheme for Multi Source and Terminal in Edge of Cell Coverage

Authors: Myoung-Jin Kim, Chang-Bin Ha, Yeong-Seop Ahn, Hyoung-Kyu Song

Abstract:

This paper proposes a cooperative communication scheme for improve wireless communication performance. When the receiver is located in the edge of coverage, the signal from the transmitter is distorted for various reasons such as inter-cell interference (ICI), power reduction, incorrect channel estimation. In order to improve communication performance, the proposed scheme adds the relay. By the relay, the receiver has diversity gain. In this paper, two base stations, one relay and one destination are considered. The two base stations transmit same time to relay and destination. The relay forwarding to destination and the destination detects signals.

Keywords: cooperative communication, diversity gain, OFDM, MMSE

Procedia PDF Downloads 384
4218 Pedagogical Effects of Using Workbooks in English Classes for the TOEIC Test: A Study on ESL Learners in Japanese Colleges

Authors: Mikako Nobuhara

Abstract:

The Test of English for International Communication (TOEIC) test, conducted by the Institute for International Business Communication (IIBC), has a huge impact on education in Japan. Almost all college students have to submit their TOEIC test scores when applying for entry-level jobs at companies. In addition, an increasing number of colleges are encouraging students to have a global vision. For this specific reason, studying for the TOEIC test is essential for English as a second language (ESL) learner to develop English communication skills. This study shows that studying by using some workbooks about the listening section of the TOEIC test clearly helps ESL learners to develop their listening skills. For this purpose, the listening test scores before and after classroom sessions were analyzed for each student. Students obtained higher scores in the listening section of the test and improved their English listening skills at the end of all the classroom sessions. In conclusion, it is important for English teachers to achieve the following objectives: (1) facilitate the learning of effective methods for correctly solving questions based on listening skills and (2) prepare listening tasks for reading aloud so as to keep up with the original speed, which is required for solving questions in the TOEIC test.

Keywords: education, ESL, listening skills, TOEIC test

Procedia PDF Downloads 252
4217 Effect of Environmental Conditions on E. Coli o157:h7 Atcc 43888 and L. Monocytogenes Atcc 7644 Cell Surface Hydrophobicity, Motility and Cell Attachment on Food-Contact Surfaces

Authors: Stanley Dula, Oluwatosini A. Ijabadeniyi

Abstract:

Biofilm formation is a major source of materials and foodstuffs contamination, contributing to occurrence of pathogenic and spoilage microbes in food processing resulting in food spoilage, transmission of diseases and significant food hygiene and safety issues. This study elucidates biofilm formation of E. coli O157:H7 and L. monocytogenes ATCC 7644 grown under food related environmental stress conditions of varying pH (5.0;7.0; and 8.5) and temperature (15, 25 and 37 ℃). Both strains showed confluent biofilm formation at 25 ℃ and 37 ℃, at pH 8.5 after 5 days. E. coli showed curli fimbriae production at various temperatures, while L. monocytogenes did not show pronounced expression. Swarm, swimming and twitching plate assays were used to determine strain motilities. Characterization of cell hydrophobicity was done using the microbial adhesion to hydrocarbons (MATH) assay using n-hexadecane. Both strains showed hydrophilic characteristics as they fell within a < 20 % interval. FT-IR revealed COOH at 1622 cm-1, and a strong absorption band at 3650 cm-1 – 3200 cm-1 indicating the presence of both -OH and -NH groups. Both strains were hydrophilic and could form biofilm at different combinations of temperature and pH. EPS produced in both species proved to be an acidic hetero-polysaccharide.

Keywords: biofilm, pathogens, hydrophobicity, motility

Procedia PDF Downloads 228
4216 Cellular Mechanisms Involved in the Radiosensitization of Breast- and Lung Cancer Cells by Agents Targeting Microtubule Dynamics

Authors: Elsie M. Nolte, Annie M. Joubert, Roy Lakier, Maryke Etsebeth, Jolene M. Helena, Marcel Verwey, Laurence Lafanechere, Anne E. Theron

Abstract:

Treatment regimens for breast- and lung cancers may include both radiation- and chemotherapy. Ideally, a pharmaceutical agent which selectively sensitizes cancer cells to gamma (γ)-radiation would allow administration of lower doses of each modality, yielding synergistic anti-cancer benefits and lower metastasis occurrence, in addition to decreasing the side-effect profiles. A range of 2-methoxyestradiol (2-ME) analogues, namely 2-ethyl-3-O-sulphamoyl-estra-1,3,5 (10) 15-tetraene-3-ol-17one (ESE-15-one), 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10),15-tetraen-17-ol (ESE-15-ol) and 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10)16-tetraene (ESE-16) were in silico-designed by our laboratory, with the aim of improving the parent compound’s bioavailability in vivo. The main effect of these compounds is the disruption of microtubule dynamics with a resultant mitotic accumulation and induction of programmed cell death in various cancer cell lines. This in vitro study aimed to determine the cellular responses involved in the radiation sensitization effects of these analogues at low doses in breast- and lung cancer cell lines. The oestrogen receptor positive MCF-7-, oestrogen receptor negative MDA-MB-231- and triple negative BT-20 breast cancer cell lines as well as the A549 lung cancer cell line were used. The minimal compound- and radiation doses able to induce apoptosis were determined using annexin-V and cell cycle progression markers. These doses (cell line dependent) were used to pre-sensitize the cancer cells 24 hours prior to 6 gray (Gy) radiation. Experiments were conducted on samples exposed to the individual- as well as the combination treatment conditions in order to determine whether the combination treatment yielded an additive cell death response. Morphological studies included light-, fluorescence- and transmission electron microscopy. Apoptosis induction was determined by flow cytometry employing annexin V, cell cycle analysis, B-cell lymphoma 2 (Bcl-2) signalling, as well as reactive oxygen species (ROS) production. Clonogenic studies were performed by allowing colony formation for 10 days post radiation. Deoxyribonucleic acid (DNA) damage was quantified via γ-H2AX foci and micronuclei quantification. Amplification of the p53 signalling pathway was determined by western blot. Results indicated that exposing breast- and lung cancer cells to nanomolar concentrations of these analogues 24 hours prior to γ-radiation induced more cell death than the compound- and radiation treatments alone. Hypercondensed chromatin, decreased cell density, a damaged cytoskeleton and an increase in apoptotic body formation were observed in cells exposed to the combination treatment condition. An increased number of cells present in the sub-G1 phase as well as increased annexin-V staining, elevation of ROS formation and decreased Bcl-2 signalling confirmed the additive effect of the combination treatment. In addition, colony formation decreased significantly. p53 signalling pathways were significantly amplified in cells exposed to the analogues 24 hours prior to radiation, as was the amount of DNA damage. In conclusion, our results indicated that pre-treatment of breast- and lung cancer cells with low doses of 2-ME analogues sensitized breast- and lung cancer cells to γ-radiation and induced apoptosis more so than the individual treatments alone. Future studies will focus on the effect of the combination treatment on non-malignant cellular counterparts.

Keywords: cancer, microtubule dynamics, radiation therapy, radiosensitization

Procedia PDF Downloads 204
4215 Anti-TNF: Possibilities of Rising Anti-Phosphorylcholine Antibodies

Authors: Md. Mizanur Rahman, Anquan Liu, Anna Frostegård, Johan Frostegård

Abstract:

The role of the human immune system is essential in cardiovascular diseases and atherosclerosis. Activated cells in atherosclerosis produce abundant amounts of cytokines, but the exact mechanisms involved in the effects of these inflammatory cytokines are not clear in atherosclerosis. In a large clinical cohort, we have previously determined that antibodies against phosphorylcholine (anti-PC) are negatively and independently associated with both development of atherosclerosis and also a low risk of cardiovascular disease. Further, we reported that rheumatoid arthritis patients who were non-responders to TNF-inhibitors, where those with low anti-PC levels. Upon anti-TNF treatment, anti-PC levels increased. We, therefore, hypothesised that proinflammatory cytokines such as TNF could play a role in anti-PC regulation. Peripheral blood mononuclear cells (PBMC) were cultured with or without TNF and anti-TNF. The cell supernatants were collected after six days for ELISA measurements. In separate experiments, cells were cultured for 24 hours in both polystyrene plates and ELISPOT plates under a similar condition for ELISA and ELISPOT assays respectively. Total RNA was extracted after 6 hours of cell culture to perform RT-qPCR. Cell viability was confirmed by trypan blue staining and MTT assays. ELISA measurements detected less than 40% of anti-PC in TNF-treated cells, in comparison to control cells, whereas anti-PC production was recovered by anti-TNF treatment. ELISPOT assays showed that TNF suppresses anti-PC production by inhibiting anti-PC producing B-cells. In addition, RT-qPCR and ELISA showed that TNF also has effects also on B-cell activation as BAFF expression was inhibited by TNF treatment. Atherosclerosis is a major cause of cardiovascular diseases, but anti-PC is a protection marker for atherosclerosis development. Our findings show that TNF is a negative regulator of anti-PC production. Immune modulation and rising of anti-PC could be of major significance for the patients.

Keywords: anti-PC, Anti-TNF, atherosclerosis, cardiovascular diseases, phosphorylecholine

Procedia PDF Downloads 237
4214 Co-Culture with Murine Stromal Cells Enhances the In-vitro Expansion of Hematopoietic Stem Cells in Response to Low Concentrations of Trans-Resveratrol

Authors: Mariyah Poonawala, Selvan Ravindran, Anuradha Vaidya

Abstract:

Despite much progress in understanding the regulatory factors and cytokines that support the maturation of the various cell lineages of the hematopoietic system, factors that govern the self-renewal and proliferation of hematopoietic stem cells (HSCs) is still a grey area of research. Hematopoietic stem cell transplantation (HSCT) has evolved over the years and gained tremendous importance in the treatment of both malignant and non-malignant diseases. However, factors such as graft rejection and multiple organ failure have challenged HSCT from time to time, underscoring the urgent need for development of milder processes for successful hematopoietic transplantation. An emerging concept in the field of stem cell biology states that the interactions between the bone-marrow micro-environment and the hematopoietic stem and progenitor cells is essential for regulation, maintenance, commitment and proliferation of stem cells. Understanding the role of mesenchymal stromal cells in modulating the functionality of HSCs is, therefore, an important area of research. Trans-resveratrol has been extensively studied for its various properties to combat and prevent cancer, diabetes and cardiovascular diseases etc. The aim of the present study was to understand the effect of trans-resveratrol on HSCs using single and co-culture systems. We have used KG1a cells since it is a well accepted hematopoietic stem cell model system. Our preliminary experiments showed that low concentrations of trans-resveratrol stimulated the HSCs to undergo proliferation whereas high concentrations of trans-resveratrol did not stimulate the cells to proliferate. We used a murine fibroblast cell line, M210B4, as a stromal feeder layer. On culturing the KG1a cells with M210B4 cells, we observed that the stimulatory as well as inhibitory effects of trans-resveratrol at low and high concentrations respectively, were enhanced. Our further experiments showed that low concentration of trans-resveratrol reduced the generation of reactive oxygen species (ROS) and nitric oxide (NO) whereas high concentrations increased the oxidative stress in KG1a cells. We speculated that perhaps the oxidative stress was imposing inhibitory effects at high concentration and the same was confirmed by performing an apoptotic assay. Furthermore, cell cycle analysis and growth kinetic experiments provided evidence that low concentration of trans-resveratrol reduced the doubling time of the cells. Our hypothesis is that perhaps at low concentration of trans-resveratrol the cells get pushed into the G0/G1 phase and re-enter the cell cycle resulting in their proliferation, whereas at high concentration the cells are perhaps arrested at G2/M phase or at cytokinesis and therefore undergo apoptosis. Liquid Chromatography-Quantitative-Time of Flight–Mass Spectroscopy (LC-Q-TOF MS) analyses indicated the presence of trans-resveratrol and its metabolite(s) in the supernatant of the co-cultured cells incubated with high concentration of trans-resveratrol. We conjecture that perhaps the metabolites of trans-resveratrol are responsible for the apoptosis observed at the high concentration. Our findings may shed light on the unsolved problems in the in vitro expansion of stem cells and may have implications in the ex vivo manipulation of HSCs for therapeutic purposes.

Keywords: co-culture system, hematopoietic micro-environment, KG1a cell line, M210B4 cell line, trans-resveratrol

Procedia PDF Downloads 253
4213 Effect of Current Density, Temperature and Pressure on Proton Exchange Membrane Electrolyser Stack

Authors: Na Li, Samuel Simon Araya, Søren Knudsen Kær

Abstract:

This study investigates the effects of operating parameters of different current density, temperature and pressure on the performance of a proton exchange membrane (PEM) water electrolysis stack. A 7-cell PEM water electrolysis stack was assembled and tested under different operation modules. The voltage change and polarization curves under different test conditions, namely current density, temperature and pressure, were recorded. Results show that higher temperature has positive effect on overall stack performance, where temperature of 80 ℃ improved the cell performance greatly. However, the cathode pressure and current density has little effect on stack performance.

Keywords: PEM electrolysis stack, current density, temperature, pressure

Procedia PDF Downloads 193
4212 Phosphorus Recovery Optimization in Microbial Fuel Cell

Authors: Abdullah Almatouq

Abstract:

Understanding the impact of key operational variables on concurrent energy generation and phosphorus recovery in microbial fuel cell is required to improve the process and reduce the operational cost. In this study, full factorial design (FFD) and central composite designs (CCD) were employed to identify the effect of influent COD concentration and cathode aeration flow rate on energy generation and phosphorus (P) recovery and to optimise MFC power density and P recovery. Results showed that influent chemical oxygen demand (COD) concentration and cathode aeration flow rate had a significant effect on power density, coulombic efficiency, phosphorus precipitation efficiency and phosphorus precipitation rate at the cathode. P precipitation was negatively affected by the generated current during the batch duration. The generated energy was reduced due to struvite being precipitated on the cathode surface, which might obstruct the mass transfer of ions and oxygen. Response surface mathematical model was used to predict the optimum operating conditions that resulted in a maximum power density and phosphorus precipitation efficiency of 184 mW/m² and 84%, and this corresponds to COD= 1700 mg/L and aeration flow rate=210 mL/min. The findings highlight the importance of the operational conditions of energy generation and phosphorus recovery.

Keywords: energy, microbial fuel cell, phosphorus, struvite

Procedia PDF Downloads 151
4211 Role of Nano Gelatin and Hydrogel Based Scaffolds in Odontogenic Differentiation of Human Dental Pulp Stem Cells

Authors: Husain S. Yawer, Vasim Raja Panwar, Nidhi Priya

Abstract:

The objective of this study is to evaluate and compare the role of nano-gelatin and Bioengineered Scaffolds on the attachment, proliferation, and osteogenic differentiation of human dental pulp stem cells (DPSCs). Tooth decay and early fall have each been one of the most prevailing dental disorders which cause physical and emotional suffering and compromise the patient's quality of life. The design of novel scaffolding materials will be based on mimicking the architecture of natural dental extracellular matrix which may provide as in vivo environments for proper cell growth. This methodology will involve the combination of nano-fibred gelatin as well as biodegradable hydrogel based tooth scaffold. We have measured and optimized the Dental Pulp Stem Cells growth profile in cultures carried out on collagen-coated plastic surface, however, for tissue regeneration study, we aim to develop an enhanced microenvironment for stem cell growth and dental tissue regeneration. We believe biomimetic cell adhesion and scaffolds might provide a near in vivo growth environment for proper growth and differentiation of human DPSCs, which further help in dentin/pulp tissue regeneration.

Keywords: nano-gelatin, stem cells, dental pulp, scaffold

Procedia PDF Downloads 327
4210 Recognition of a Thinly Bedded Distal Turbidite: A Case Study from a Proterozoic Delta System, Chaossa Formation, Simla Group, Western Lesser Himalaya, India

Authors: Priyanka Mazumdar, Ananya Mukhopadhyay

Abstract:

A lot of progress has been achieved in the research of turbidites during the last decades. However, their relationship to delta systems still deserves further attention. This paper addresses example of fine grained turbidite from a pro-deltaic deposit of a Proterozoic mixed energy delta system exposed along Chaossa-Baliana river section of the Chaossa Formation of the Simla Basin. Lithostratigraphic analysis of the Chaossa Formation reveals three major facies associations (prodelta deposit-FA1, delta slope deposit-FA2 and delta front deposit-FA3) based on lithofacies types, petrography and sedimentary structures. Detailed process-based facies and paleoenvironmental analysis of the study area have led to identification of more than150 m thick coarsening-upwards deltaic successions composed of fine grained turbidites overlain by delta slope deposits. Erosional features are locally common at the base of turbidite beds and still more widespread at the top. The complete sequence has eight sub-divisions that are here termed T1 to T8. The basal subdivision (T1) comprises a massive graded unit with a sharp, scoured base, internal parallel-lamination and cross-lamination. The overlying sequence shows textural and compositional grading through alternating silt and mud laminae (T2). T2 is overlying by T3 which is characterized by climbing ripple and cross lamination. Parallel laminae are the predominant facies attributes of T4 which caps the T3 unit. T5 has a loaded scour base and is mainly characterized laminated silt. The topmost three divisions, graded mud (T6), ungraded mud (T7) and laminated mud (T8). The proposed sequence is analogous to the Bouma (1962) structural scheme for sandy turbidites. Repetition of partial sequences represents deposition from different stages of evolution of a large, muddy, turbidity flow. Detailed facies analysis of the study area reveals that the sediments of the turbidites developed during normal regression at the stage of stable or marginally rising sea level. Thin-bedded turbidites were deposited predominantly by turbidity currents in the relatively shallower part of the Simla basin. The fine-grained turbidites are developed by resedimentation of delta-front sands and slumping of upper pro-delta muds.

Keywords: turbidites, prodelta, proterozoic, Simla Basin, Bouma sequence

Procedia PDF Downloads 263
4209 Biocompatible Porous Titanium Scaffolds Produced Using a Novel Space Holder Technique

Authors: Yunhui Chen, Damon Kent, Matthew Dargusch

Abstract:

Synthetic scaffolds are a highly promising new approach to replace both autografts and allografts to repair and remodel damaged bone tissue. Biocompatible porous titanium scaffold was manufactured through a powder metallurgy approach. Magnesium powder was used as space holder material which was compacted with titanium powder and removed during sintering. Evaluation of the porosity and mechanical properties showed a high level of compatibility with human bone. Interconnectivity between pores is higher than 95% for porosity as low as 30%. The elastic moduli are 39 GPa, 16 GPa and 9 GPa for 30%, 40% and 50% porosity samples which match well to that of natural bone (4-30 GPa). The yield strengths for 30% and 40% porosity samples of 315 MPa and 175 MPa are superior to that of human bone (130-180 MPa). In-vitro cell culture tests on the scaffold samples using Human Mesenchymal Stem Cells (hMSCs) demonstrated their biocompatibility and indicated osseointegration potential. The scaffolds allowed cells to adhere and spread both on the surface and inside the pore structures. With increasing levels of porosity/interconnectivity, improved cell proliferation is obtained within the pores. It is concluded that samples with 30% porosity exhibit the best biocompatibility. The results suggest that porous titanium scaffolds generated using this manufacturing route have excellent potential for hard tissue engineering applications.

Keywords: scaffolds, MG-63 cell culture, titanium, space holder

Procedia PDF Downloads 232
4208 CFD Simulation on Gas Turbine Blade and Effect of Twisted Hole Shape on Film Cooling Effectiveness

Authors: Thulodin Mat Lazim, Aminuddin Saat, Ammar Fakhir Abdulwahid, Zaid Sattar Kareem

Abstract:

Film cooling is one of the cooling systems investigated for the application to gas turbine blades. Gas turbines use film cooling in addition to turbulence internal cooling to protect the blades outer surface from hot gases. The present study concentrates on the numerical investigation of film cooling performance for a row of twisted cylindrical holes in modern turbine blade. The adiabatic film effectiveness and the heat transfer coefficient are determined numerical on a flat plate downstream of a row of inclined different cross section area hole exit by using Computational Fluid Dynamics (CFD). The swirling motion of the film coolant was induced the twisted angle of film cooling holes, which inclined an angle of α toward the vertical direction and surface of blade turbine. The holes angle α of the impingement mainstream was changed from 90°, 65°, 45°, 30° and 20°. The film cooling effectiveness on surface of blade turbine wall was measured by using 3D Computational Fluid Dynamics (CFD). Results showed that the effectiveness of rectangular twisted hole has the effectiveness among other cross section area of the hole at blowing ratio (0.5, 1, 1.5 and 2).

Keywords: turbine blade cooling, film cooling, geometry shape of hole, turbulent flow

Procedia PDF Downloads 534
4207 A Case of Mantle Cell Lymphoma Presenting With GI Symptoms and Noted to Have Extranodal Involvement of the Stomach and Colon on Presentation

Authors: Saba Amreen Syeda, Summaiah Asim, Syeda, Hafsa, Essam Quraishi

Abstract:

Mantle Cell Lymphoma (MCL) is a relatively uncommon type of lymphoma that comprises approximately 7 percent of non hodgkin's lymphomas (NHL), Classic MCL presents mostly in lymph nodes and occasionally in extranodal sites. About 26 % of MCL is present primarily in the Gastrointestinal tract. While both the upper GI tract and the lower GI tract could be involved, it is rare to present with concurrent upper and lower GI involvement with MCL. We present the case of a 51-year-old Asian Indian male that presented to our clinic with complaints of chronic diarrhea for the last one year, progressively worsening over the past three months. The Patient also reported black stool as well as bright red blood per rectum. Patient reported severe fatigue on minimal exertion. On a physical exam, the patient was noted to have matted lymphadenopathy in the neck. Patient was noted to be anemic with a hemoglobin to be 8 g/dl. Esophagogastroduodenoscopy and colonoscopy was performed. EGD showed a large 4 cm ulcer in the gastric antrum with thick heaped up edges. There was bleeding on contact. Colonoscopy showed a large 35 mm multilobulated polyp in the ascending colon, which was biopsied. The patient was also noted to have nodular proctitis in the mid rectum. This was localized and extended to about 5 cm. This area was biopsied as well. Biopsies from the stomach, colon, as well as the rectum, returned with findings of mantle cell lymphoma on pathology. Lymphoid cells in the biopsy were stained strongly positive for CD 20, cyclin D1, and CD 5. There was the absence of stain for CD 3 and CD 10. The IHC stain for CD 23 was negative. Biopsies from neck LAD were obtained and were also positive for MCL. The patient was referred to oncology for staging and treatment.

Keywords: mantle cell lymphoma, GI bleed, diarrhea, gastric ulcer, colon polyp

Procedia PDF Downloads 147
4206 Simulation of Carbon Nanotubes/GaAs Hybrid PV Using AMPS-1D

Authors: Nima E. Gorji

Abstract:

The performance and characteristics of a hybrid heterojunction single-walled carbon nanotube and GaAs solar cell is modelled and numerically simulated using AMPS-1D device simulation tool. The device physics and performance parameters with different junction parameters are analysed. The results suggest that the open-circuit voltage changes very slightly by changing the work function, acceptor and donor density while the other electrical parameters reach to an optimum value. Increasing the concentration of a discrete defect density in the absorber layer decreases the electrical parameters. The current-voltage characteristics, quantum efficiency, band gap and thickness variation of the photovoltaic response will be quantitatively considered.

Keywords: carbon nanotube, GaAs, hybrid solar cell, AMPS-1D modelling

Procedia PDF Downloads 328
4205 Breech Versus Cephalic Elective Caesarean Deliveries – A Comparison of Immediate Neonatal Outcomes

Authors: Genevieve R. Kan, Jolyon Ford

Abstract:

Background: Caesarean section has become the routine route of delivery for breech fetuses, but breech cesarean deliveries are hypothesized to have poorer immediate neonatal outcomes when compared to cephalic deliveries. In accordance with this, in many Australian hospitals, the pediatric team is routinely required to attend every elective breech cesarean section in case urgent resuscitation is required. Our study aimed to determine whether term elective breech deliveries indeed had worse immediate neonatal outcomes at delivery, which will justify the necessity of pediatric staff presence at every elective breech cesarean delivery and influence the workload for the pediatric team. Objective: Elective breech cesarean deliveries were compared to elective cephalic cesarean deliveries at 37 weeks gestation or above to evaluate the immediate neonatal outcomes (Apgar scores <7 at 5 minutes, and Special Care Nursery admissions on Day 1 of life) of each group. Design: A retrospective cohort study Method: This study examined 2035 elective breech and cephalic singleton cesarean deliveries at term over 5 years from July 2017 to July 2022 at Frankston Hospital, a metropolitan hospital in Melbourne, Australia. There were 260 breech deliveries and 1775 cephalic deliveries. De-identified patient data were collected retrospectively from the hospital’s electronically integrated pregnancy and birth records to assess demographics and neonatal outcomes. Results: Apgar scores <7 at 5 minutes of life were worse in the breech group compared to the cephalic group (3.4% vs 1.6%). Special Care Nursery admissions on Day 1 of life were also higher for the breech cohort compared to the cephalic cohort (9.6% vs 8.7%). Conclusions: Our results support the expected findings that breech deliveries are associated with worse immediate neonatal outcomes. It, therefore, suggests that routine attendance at elective breech cesarean deliveries by the pediatric team is indeed required to assist with potentially higher needs for neonatal resuscitation and special care nursery admission.

Keywords: breech, cesarean section, Apgar scores, special care nursery admission

Procedia PDF Downloads 101
4204 Caged Compounds as Light-Dependent Initiators for Enzyme Catalysis Reactions

Authors: Emma Castiglioni, Nigel Scrutton, Derren Heyes, Alistair Fielding

Abstract:

By using light as trigger, it is possible to study many biological processes, such as the activity of genes, proteins, and other molecules, with precise spatiotemporal control. Caged compounds, where biologically active molecules are generated from an inert precursor upon laser photolysis, offer the potential to initiate such biological reactions with high temporal resolution. As light acts as the trigger for cleaving the protecting group, the ‘caging’ technique provides a number of advantages as it can be intracellular, rapid and controlled in a quantitative manner. We are developing caging strategies to study the catalytic cycle of a number of enzyme systems, such as nitric oxide synthase and ethanolamine ammonia lyase. These include the use of caged substrates, caged electrons and the possibility of caging the enzyme itself. In addition, we are developing a novel freeze-quench instrument to study these reactions, which combines rapid mixing and flashing capabilities. Reaction intermediates will be trapped at low temperatures and will be analysed by using electron paramagnetic resonance (EPR) spectroscopy to identify the involvement of any radical species during catalysis. EPR techniques typically require relatively long measurement times and very often, low temperatures to fully characterise these short-lived species. Therefore, common rapid mixing techniques, such as stopped-flow or quench-flow are not directly suitable. However, the combination of rapid freeze-quench (RFQ) followed by EPR analysis provides the ideal approach to kinetically trap and spectroscopically characterise these transient radical species. In a typical RFQ experiment, two reagent solutions are delivered to the mixer via two syringes driven by a pneumatic actuator or stepper motor. The new mixed solution is then sprayed into a cryogenic liquid or surface, and the frozen sample is then collected and packed into an EPR tube for analysis. The earliest RFQ instrument consisted of a hydraulic ram unit as a drive unit with direct spraying of the sample into a cryogenic liquid (nitrogen, isopentane or petroleum). Improvements to the RFQ technique have arisen from the design of new mixers in order to reduce both the volume and the mixing time. In addition, the cryogenic isopentane bath has been coupled to a filtering system or replaced by spraying the solution onto a surface that is frozen via thermal conductivity with a cryogenic liquid. In our work, we are developing a novel RFQ instrument which combines the freeze-quench technology with flashing capabilities to enable the studies of both thermally-activated and light-activated biological reactions. This instrument also uses a new rotating plate design based on magnetic couplings and removes the need for mechanical motorised rotation, which can otherwise be problematic at cryogenic temperatures.

Keywords: caged compounds, freeze-quench apparatus, photolysis, radicals

Procedia PDF Downloads 205
4203 Medium Design and Optimization for High Β-Galactosidase Producing Microbial Strains from Dairy Waste through Fermentation

Authors: Ashish Shukla, K. P. Mishra, Pushplata Tripathi

Abstract:

This paper investigates the production and optimization of β-galactosidase enzyme using synthetic medium by isolated wild strains (S1, S2) mutated strains (M1, M2) through SSF and SmF. Among the different cell disintegration methods used, the highest specific activity was obtained when the cells were permeabilized using isoamyl alcohol. Wet lab experiments were performed to investigate the effects of carbon and nitrogen substrates present in Vogel’s medium on β-galactosidase enzyme activity using S1, S2, and M1, M2 strains through SSF. SmF experiments were performed for effects of carbon and nitrogen sources in YLK2Mg medium on β-galactosidase enzyme activity using S1, S2 and M1, M2 strains. Effect of pH on β-galactosidase enzyme production was also done using S1, S2, and M1, M2 strains. Results were found to be very appreciable in all the cases.

Keywords: β-galactosidase, cell disintegration, permeabilized, SSF, SmF

Procedia PDF Downloads 266
4202 Determining Cellular Biomarkers Sensitive to Low Damaging Exposure

Authors: Svetlana Guryeva, Inna Kornienko, Elena Petersen

Abstract:

At present, translational medicine is a rapidly developing branch of biomedicine. The main idea of translational medicine is a practical application of fundamental research. One of the possible applications for translational medicine is researching therapies that improve human age-related organism condition. To fill the gap between experiments and clinical practice, it is necessary to create the standardized system for the investigation of different effects on cellular aging models. In this study, primary human fibroblasts derived from patients of different ages were used as a cellular aging model. The senescence-associated β-galactosidase activity, lipofuscin, γ-H2AX, the reactive oxygen species level, and cell death markers (annexin V/propidium iodide) were used as biomarkers of the cell functional state. The effects of damaging exposures (oxidative stress and heat shock), potential positive factors (metformin and acetaminophen), and their combinations were investigated using the described biomarkers. Oxidative stress and heat shock caused the increase in the levels of all biomarkers, and only the cells from young patients partly coped with stress 3 days after the exposures. Metformin improved the state of pretreatment cells from young and old patients. The acetaminophen did not show significant changes in the biomarker levels compare to the action of metformin. This study proved the opportunity to develop a standardized screening system based on biomarkers of the cell functional state to identify potential positive or negative effects of some physical and chemical exposures. Moreover, such a system can be useful for the aims of regenerative medicine to determine the effect of cell pretreatment before transplantation.

Keywords: biomarkers, primary fibroblasts, regenerative medicine, senescence, test system, translational medicine

Procedia PDF Downloads 395
4201 Hot Carrier Photocurrent as a Candidate for an Intrinsic Loss in a Single Junction Solar Cell

Authors: Jonas Gradauskas, Oleksandr Masalskyi, Ihor Zharchenko

Abstract:

The advancement in improving the efficiency of conventional solar cells toward the Shockley-Queisser limit seems to be slowing down or reaching a point of saturation. The challenges hindering the reduction of this efficiency gap can be categorized into extrinsic and intrinsic losses, with the former being theoretically avoidable. Among the five intrinsic losses, two — the below-Eg loss (resulting from non-absorption of photons with energy below the semiconductor bandgap) and thermalization loss —contribute to approximately 55% of the overall lost fraction of solar radiation at energy bandgap values corresponding to silicon and gallium arsenide. Efforts to minimize the disparity between theoretically predicted and experimentally achieved efficiencies in solar cells necessitate the integration of innovative physical concepts. Hot carriers (HC) present a contemporary approach to addressing this challenge. The significance of hot carriers in photovoltaics is not fully understood. Although their excessive energy is thought to indirectly impact a cell's performance through thermalization loss — where the excess energy heats the lattice, leading to efficiency loss — evidence suggests the presence of hot carriers in solar cells. Despite their exceptionally brief lifespan, tangible benefits arise from their existence. The study highlights direct experimental evidence of hot carrier effect induced by both below- and above-bandgap radiation in a singlejunction solar cell. Photocurrent flowing across silicon and GaAs p-n junctions is analyzed. The photoresponse consists, on the whole, of three components caused by electron-hole pair generation, hot carriers, and lattice heating. The last two components counteract the conventional electron-hole generation-caused current required for successful solar cell operation. Also, a model of the temperature coefficient of the voltage change of the current–voltage characteristic is used to obtain the hot carrier temperature. The distribution of cold and hot carriers is analyzed with regard to the potential barrier height of the p-n junction. These discoveries contribute to a better understanding of hot carrier phenomena in photovoltaic devices and are likely to prompt a reevaluation of intrinsic losses in solar cells.

Keywords: solar cell, hot carriers, intrinsic losses, efficiency, photocurrent

Procedia PDF Downloads 61
4200 CD97 and Its Role in Glioblastoma Stem Cell Self-Renewal

Authors: Niklas Ravn-Boess, Nainita Bhowmick, Takamitsu Hattori, Shohei Koide, Christopher Park, Dimitris Placantonakis

Abstract:

Background: Glioblastoma (GBM) is the most common and deadly primary brain malignancy in adults. Tumor propagation, brain invasion, and resistance to therapy critically depend on GBM stem-like cells (GSCs); however, the mechanisms that regulate GSC self-renewal are incompletely understood. Given the aggressiveness and poor prognosis of GBM, it is imperative to find biomarkers that could also translate into novel drug targets. Along these lines, we have identified a cell surface antigen, CD97 (ADGRE5), an adhesion G protein-coupled receptor (GPCR), that is expressed on GBM cells but is absent from non-neoplastic brain tissue. CD97 has been shown to promote invasiveness, angiogenesis, and migration in several human cancers, but its frequency of expression and functional role in regulating GBM growth and survival, and its potential as a therapeutic target has not been investigated. Design: We assessed CD97 mRNA and protein expression in patient derived GBM samples and cell lines using publicly available RNA-sequencing datasets and flow cytometry, respectively. To assess CD97 function, we generated shRNA lentiviral constructs that target a sequence in the CD97 extracellular domain (ECD). A scrambled shRNA (scr) with no predicted targets in the genome was used as a control. We evaluated CD97 shRNA lentivirally transduced GBM cells for Ki67, Annexin V, and DAPI. We also tested CD97 KD cells for their ability to self-renew using clonogenic tumorsphere formation assays. Further, we utilized synthetic Abs (sAbs) generated against the ECD of CD97 to test for potential antitumor effects using patient-derived GBM cell lines. Results: CD97 mRNA expression was expressed at high levels in all GBM samples available in the TCGA cohort. We found high levels of surface CD97 protein expression in 6/6 patient-derived GBM cell cultures, but not human neural stem cells. Flow cytometry confirmed downregulation of CD97 in CD97 shRNA lentivirally transduced cells. CD97 KD induced a significant reduction in cell growth in 3 independent GBM cell lines representing mesenchymal and proneural subtypes, which was accompanied by reduced (~20%) Ki67 staining and increased (~30%) apoptosis. Incubation of GBM cells with sAbs (20 ug/ ml) against the ECD of CD97 for 3 days induced GSC differentiation, as determined by the expression of GFAP and Tubulin. Using three unique GBM patient derived cultures, we found that CD97 KD attenuated the ability of GBM cells to initiate sphere formation by over 300 fold, consistent with an impairment in GSC self-renewal. Conclusion: Loss of CD97 expression in patient-derived GBM cells markedly decreases proliferation, induces cell death, and reduces tumorsphere formation. sAbs against the ECD of CD97 reduce tumorsphere formation, recapitulating the phenotype of CD97 KD, suggesting that sAbs that inhibit CD97 function exhibit anti-tumor activity. Collectively, these findings indicate that CD97 is necessary for the proliferation and survival of human GBM cells and identify CD97 as a promising therapeutically targetable vulnerability in GBM.

Keywords: adhesion GPCR, CD97, GBM stem cell, glioblastoma

Procedia PDF Downloads 128
4199 Research on the Role of Platelet Derived Growth Factor Receptor Beta in Promoting Dedifferentiation and Pulmonary Metastasis of Osteosarcoma Under Hypoxic Microenvironment

Authors: Enjie Xu, Zhen Huang, Kunpeng Zhu, Jianping Hu, Xiaolong Ma, Yongjie Wang, Jiazhuang Zhu, Chunlin Zhang

Abstract:

Abstract: Hypoxia and dedifferentiation of osteosarcoma (OS) cells leads to poor prognosis. We plan to identify the role of hypoxia on dedifferentiation and the associated signaling pathways. We performed a sphere formation assay and determined spheroid cells as dedifferentiated cells by detecting stem cell-like markers. RNAi assay was used to explore the expression relationship between hypoxia inducible factor 1 subunit alpha (HIF1A) and platelet derived growth factor receptor beta (PDGFRB). We obtained PDGFRB knockdown and overexpression cells through lentiviral infection experiments and the effects of PDGFRB on cytoskeleton rearrangement and cell adhesion were explored by immunocytochemistry. Wound-healing experiments, transwell assays, and animal trials were employed to investigate the effect of PDGFRB on OS metastasis. Dedifferentiated OS cells were found to exhibit high expression of HIF1A and PDGFRB, and HIF1A promoted the expression of PDGFRB, subsequently activated ras homolog family member A (RhoA), and increased the phosphorylation of myosin light chain (MLC). PDGFRB also enhanced the phosphorylation of focal adhesion kinase (FAK). The OS cell morphology and vinculin distribution were altered by PDGFRB. PDGFRB also promoted cell dedifferentiation and had a significant impact on the metastasis of OS cells both in vitro and in vivo. Our results demonstrated that HIF1A up-regulated PDGFRB under hypoxic conditions, and PDGFRB regulated the actin cytoskeleton by activating RhoA and subsequently phosphorylating MLC, thereby promoting OS dedifferentiation and pulmonary metastasis.

Keywords: osteosarcoma, dedifferentiation, metastasis, cytoskeleton rearrangement, PDGFRB, hypoxia

Procedia PDF Downloads 44
4198 Flow Field Optimization for Proton Exchange Membrane Fuel Cells

Authors: Xiao-Dong Wang, Wei-Mon Yan

Abstract:

The flow field design in the bipolar plates affects the performance of the proton exchange membrane (PEM) fuel cell. This work adopted a combined optimization procedure, including a simplified conjugate-gradient method and a completely three-dimensional, two-phase, non-isothermal fuel cell model, to look for optimal flow field design for a single serpentine fuel cell of size 9×9 mm with five channels. For the direct solution, the two-fluid method was adopted to incorporate the heat effects using energy equations for entire cells. The model assumes that the system is steady; the inlet reactants are ideal gases; the flow is laminar; and the porous layers such as the diffusion layer, catalyst layer and PEM are isotropic. The model includes continuity, momentum and species equations for gaseous species, liquid water transport equations in the channels, gas diffusion layers, and catalyst layers, water transport equation in the membrane, electron and proton transport equations. The Bulter-Volumer equation was used to describe electrochemical reactions in the catalyst layers. The cell output power density Pcell is maximized subjected to an optimal set of channel heights, H1-H5, and channel widths, W2-W5. The basic case with all channel heights and widths set at 1 mm yields a Pcell=7260 Wm-2. The optimal design displays a tapered characteristic for channels 1, 3 and 4, and a diverging characteristic in height for channels 2 and 5, producing a Pcell=8894 Wm-2, about 22.5% increment. The reduced channel heights of channels 2-4 significantly increase the sub-rib convection and widths for effectively removing liquid water and oxygen transport in gas diffusion layer. The final diverging channel minimizes the leakage of fuel to outlet via sub-rib convection from channel 4 to channel 5. Near-optimal design without huge loss in cell performance but is easily manufactured is tested. The use of a straight, final channel of 0.1 mm height has led to 7.37% power loss, while the design with all channel widths to be 1 mm with optimal channel heights obtained above yields only 1.68% loss of current density. The presence of a final, diverging channel has greater impact on cell performance than the fine adjustment of channel width at the simulation conditions set herein studied.

Keywords: optimization, flow field design, simplified conjugate-gradient method, serpentine flow field, sub-rib convection

Procedia PDF Downloads 294
4197 Activation of Mitophagy and Autophagy in Familial Forms of Parkinson's Disease, as a Potential Strategy for Cell Protection

Authors: Nafisa Komilova, Plamena Angelova, Andrey Abramov, Ulugbek Mirkhodjaev

Abstract:

Parkinson’s disease (PD) is a progressive neurodegenerative disorder which is induced by the loss of dopaminergic neurons in the midbrain. The mechanism of neurodegeneration is associated with the aggregation of misfolded proteins, oxidative stress, and mitochondrial disfunction. Considering this, the process of removal of unwanted organelles or proteins by autophagy is vitally important in neurons, and activation of these processes could be protective in PD. Short-time acidification of cytosol can activate mitophagy and autophagy, and here we used sodium pyruvate and sodium lactate in human fibroblasts with PD mutations (Pink1, Pink1/Park2, α-syn triplication, A53T) to induce changes in intracellular pH. We have found that both lactate and pyruvate in millimolar concentrations can induce short-time acidification of cytosol in these cells. It induced activation of mitophagy and autophagy in control and PD fibroblasts and protected against cell death. Importantly, the application of lactate to acute brain slices of control and Pink1 knockout mice also induced a reduction of pH in neurons and astrocytes that increase the level of mitophagy. Thus, acidification of cytosol by compounds which play important role in cell metabolism also can activate mitophagy and autophagy and protect cells in the familial form of PD.

Keywords: Parkinson's disease, mutations, mitophagy, autophagy

Procedia PDF Downloads 191