Search results for: antibiotics detection
2613 Rapid Detection of Melamine in Milk Products Based on Modified Gold Electrode
Authors: Rovina Kobun, Shafiquzzaman Siddiquee
Abstract:
A novel and simple electrochemical sensor for the determination of melamine was developed based on modified gold electrode (AuE) with chitosan (CHIT) nanocomposite membrane, zinc oxide nanoparticles (ZnONPs) and ionic liquids ([EMIM][Otf]) to enhance the potential current response of melamine. Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behaviour between melamine and modified AuE in the presence of methylene blue as a redox indicator. The experimental results indicated that the interaction of melamine with CHIT/ZnONPs/([EMIM][Otf])/AuE were based on the strong interaction of hydrogen bonds. The morphological characterization of modified AuE was observed under scanning electron microscope. Under optimal conditions, the current signal was directly proportional to the melamine concentration ranging from 9.6 x 10-5 to 9.6 x 10-11 M, with a correlation coefficient of 0.9656. The detection limit was 9.6 x 10-12 M. Finally, the proposed method was successfully applied and displayed an excellent sensitivity in the determination of melamine in milk samples.Keywords: melamine, gold electrode, zinc oxide nanoparticles, cyclic voltammetries, differential pulse voltammetries
Procedia PDF Downloads 4182612 Analysis of Resistance and Virulence Genes of Gram-Positive Bacteria Detected in Calf Colostrums
Authors: C. Miranda, S. Cunha, R. Soares, M. Maia, G. Igrejas, F. Silva, P. Poeta
Abstract:
The worldwide inappropriate use of antibiotics has increased the emergence of antimicrobial-resistant microorganisms isolated from animals, humans, food, and the environment. To combat this complex and multifaceted problem is essential to know the prevalence in livestock animals and possible ways of transmission among animals and between these and humans. Enterococci species, in particular E. faecalis and E. faecium, are the most common nosocomial bacteria, causing infections in animals and humans. Thus, the aim of this study was to characterize resistance and virulence factors genes among two enterococci species isolated from calf colostrums in Portuguese dairy farms. The 55 enterococci isolates (44 E. faecalis and 11 E. faecium) were tested for the presence of the resistance genes for the following antibiotics: erythromicyn (ermA, ermB, and ermC), tetracycline (tetL, tetM, tetK, and tetO), quinupristin/dalfopristin (vatD and vatE) and vancomycin (vanB). Of which, 25 isolates (15 E. faecalis and 10 E. faecium) were tested until now for 8 virulence factors genes (esp, ace, gelE, agg, cpd, cylA, cylB, and cylLL). The resistance and virulence genes were performed by PCR, using specific primers and conditions. Negative and positive controls were used in all PCR assays. All enterococci isolates showed resistance to erythromicyn and tetracycline through the presence of the genes: ermB (n=29, 53%), ermC (n=10, 18%), tetL (n=49, 89%), tetM (n=39, 71%) and tetK (n=33, 60%). Only two (4%) E. faecalis isolates showed the presence of tetO gene. No resistance genes for vancomycin were found. The virulence genes detected in both species were cpd (n=17, 68%), agg (n=16, 64%), ace (n=15, 60%), esp (n=13, 52%), gelE (n=13, 52%) and cylLL (n=8, 32%). In general, each isolate showed at least three virulence genes. In three E. faecalis isolates was not found virulence genes and only E. faecalis isolates showed virulence genes for cylA (n=4, 16%) and cylB (n=6, 24%). In conclusion, these colostrum samples that were consumed by calves demonstrated the presence of antibiotic-resistant enterococci harbored virulence genes. This genotypic characterization is crucial to control the antibiotic-resistant bacteria through the implementation of restricts measures safeguarding public health. Acknowledgements: This work was funded by the R&D Project CAREBIO2 (Comparative assessment of antimicrobial resistance in environmental biofilms through proteomics - towards innovative theragnostic biomarkers), with reference NORTE-01-0145-FEDER-030101 and PTDC/SAU-INF/30101/2017, financed by the European Regional Development Fund (ERDF) through the Northern Regional Operational Program (NORTE 2020) and the Foundation for Science and Technology (FCT). This work was supported by the Associate Laboratory for Green Chemistry - LAQV which is financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020).Keywords: antimicrobial resistance, calf, colostrums, enterococci
Procedia PDF Downloads 1982611 Novel Aminoglycosides to Target Resistant Pathogens
Authors: Nihar Ranjan, Derrick Watkins, Dev P. Arya
Abstract:
Current methods in the study of antibiotic activity of ribosome targeted antibiotics are dependent on cell based bacterial inhibition assays or various forms of ribosomal binding assays. These assays are typically independent of each other and little direct correlation between the ribosomal binding and bacterial inhibition is established with the complementary assay. We have developed novel high-throughput capable assays for ribosome targeted drug discovery. One such assay examines the compounds ability to bind to a model ribosomal RNA A-site. We have also coupled this assay to other functional orthogonal assays. Such analysis can provide valuable understanding of the relationships between two complementary drug screening methods and could be used as standard analysis to correlate the affinity of a compound for its target and the effect the compound has on a cell.Keywords: bacterial resistance, aminoglycosides, screening, drugs
Procedia PDF Downloads 3702610 Therapeutic Challenges in Treatment of Adults Bacterial Meningitis Cases
Authors: Sadie Namani, Lindita Ajazaj, Arjeta Zogaj, Vera Berisha, Bahrije Halili, Luljeta Hasani, Ajete Aliu
Abstract:
Background: The outcome of bacterial meningitis is strongly related to the resistance of bacterial pathogens to the initial antimicrobial therapy. The objective of the study was to analyze the initial antimicrobial therapy, the resistance of meningeal pathogens and the outcome of adults bacterial meningitis cases. Materials/methods: This prospective study enrolled 46 adults older than 16 years of age, treated for bacterial meningitis during the years 2009 and 2010 at the infectious diseases clinic in Prishtinë. Patients are categorized into specific age groups: > 16-26 years of age (10 patients), > 26-60 years of age (25 patients) and > 60 years of age (11 patients). All p-values < 0.05 were considered statistically significant. Data were analyzed using Stata 7.1 and SPSS 13. Results: During the two year study period 46 patients (28 males) were treated for bacterial meningitis. 33 patients (72%) had a confirmed bacterial etiology; 13 meningococci, 11 pneumococci, 7 gram-negative bacilli (Ps. aeruginosa 2, Proteus sp. 2, Acinetobacter sp. 2 and Klebsiella sp. 1 case) and 2 staphylococci isolates were found. Neurological complications developed in 17 patients (37%) and the overall mortality rate was 13% (6 deaths). Neurological complications observed were: cerebral abscess (7/46; 15.2%), cerebral edema (4/46; 8.7%); haemiparesis (3/46; 6.5%); recurrent seizures (2/46; 4.3%), and single cases of thrombosis sinus cavernosus, facial nerve palsy and decerebration (1/46; 2.1%). The most common meningeal pathogens were meningococcus in the youngest age group, gram negative-bacilli in second age group and pneumococcus in eldery age group. Initial single-agent antibiotic therapy (ceftriaxone) was used in 17 patients (37%): in 60% of patients in the youngest age group and in 44% of cases in the second age group. 29 patients (63%) were treated with initial dual-agent antibiotic therapy; ceftriaxone in combination with vancomycin or ampicillin. Ceftriaxone and ampicillin were the most commonly used antibiotics for the initial empirical therapy in adults > 50 years of age. All adults > 60 years of age were treated with the initial dual-agent antibiotic therapy as in this age group was recorded the highest mortality rate (M=27%) and adverse outcome (64%). Resistance of pathogens to antimicrobics was recorded in cases caused by gram-negative bacilli and was associated with greater risk for developing neurological complications (p=0.09). None of the gram-negative bacilli were resistant to carbapenems; all were resistant to ampicillin while 5/7 isolates were resistant to cefalosporins. Resistance of meningococci and pneumococci to beta-lactams was not recorded. There were no statistical differences in the occurrence of neurological complications (p > 0.05), resistance of meningeal pathogens to antimicrobics (p > 0.05) and the inital antimicrobial therapy (one vs. two antibiotics) concerning group-ages in adults. Conclusions: The initial antibiotic therapy with ceftriaxone alone or in combination with vancomycin or ampicillin did not cover cases caused by gram-negative bacilli.Keywords: adults, bacterial meningitis, outcomes, therapy
Procedia PDF Downloads 1732609 A Comparative Analysis on QRS Peak Detection Using BIOPAC and MATLAB Software
Authors: Chandra Mukherjee
Abstract:
The present paper is a representation of the work done in the field of ECG signal analysis using MATLAB 7.1 Platform. An accurate and simple ECG feature extraction algorithm is presented in this paper and developed algorithm is validated using BIOPAC software. To detect the QRS peak, ECG signal is processed by following mentioned stages- First Derivative, Second Derivative and then squaring of that second derivative. Efficiency of developed algorithm is tested on ECG samples from different database and real time ECG signals acquired using BIOPAC system. Firstly we have lead wise specified threshold value the samples above that value is marked and in the original signal, where these marked samples face change of slope are spotted as R-peak. On the left and right side of the R-peak, faces change of slope identified as Q and S peak, respectively. Now the inbuilt Detection algorithm of BIOPAC software is performed on same output sample and both outputs are compared. ECG baseline modulation correction is done after detecting characteristics points. The efficiency of the algorithm is tested using some validation parameters like Sensitivity, Positive Predictivity and we got satisfied value of these parameters.Keywords: first derivative, variable threshold, slope reversal, baseline modulation correction
Procedia PDF Downloads 4112608 Chikungunya Virus Detection Utilizing an Origami Based Electrochemical Paper Analytical Device
Authors: Pradakshina Sharma, Jagriti Narang
Abstract:
Due to the critical significance in the early identification of infectious diseases, electrochemical sensors have garnered considerable interest. Here, we develop a detection platform for the chikungunya virus by rationally implementing the extremely high charge-transfer efficiency of a ternary nanocomposite of graphene oxide, silver, and gold (G/Ag/Au) (CHIKV). Because paper is an inexpensive substrate and can be produced in large quantities, the use of electrochemical paper analytical device (EPAD) origami further enhances the sensor's appealing qualities. A cost-effective platform for point-of-care diagnostics is provided by paper-based testing. These types of sensors are referred to as eco-designed analytical tools due to their efficient production, usage of the eco-friendly substrate, and potential to reduce waste management after measuring by incinerating the sensor. In this research, the paper's foldability property has been used to develop and create 3D multifaceted biosensors that can specifically detect the CHIKVX-ray diffraction, scanning electron microscopy, UV-vis spectroscopy, and transmission electron microscopy (TEM) were used to characterize the produced nanoparticles. In this work, aptamers are used since they are thought to be a unique and sensitive tool for use in rapid diagnostic methods. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV), which were both validated with a potentiostat, were used to measure the analytical response of the biosensor. The target CHIKV antigen was hybridized with using the aptamer-modified electrode as a signal modulation platform, and its presence was determined by a decline in the current produced by its interaction with an anionic mediator, Methylene Blue (MB). Additionally, a detection limit of 1ng/ml and a broad linear range of 1ng/ml-10µg/ml for the CHIKV antigen were reported.Keywords: biosensors, ePAD, arboviral infections, point of care
Procedia PDF Downloads 972607 Reduction of Multiple User Interference for Optical CDMA Systems Using Successive Interference Cancellation Scheme
Authors: Tawfig Eltaif, Hesham A. Bakarman, N. Alsowaidi, M. R. Mokhtar, Malek Harbawi
Abstract:
In Commonly, it is primary problem that there is multiple user interference (MUI) noise resulting from the overlapping among the users in optical code-division multiple access (OCDMA) system. In this article, we aim to mitigate this problem by studying an interference cancellation scheme called successive interference cancellation (SIC) scheme. This scheme will be tested on two different detection schemes, spectral amplitude coding (SAC) and direct detection systems (DS), using partial modified prime (PMP) as the signature codes. It was found that SIC scheme based on both SAC and DS methods had a potential to suppress the intensity noise, that is to say, it can mitigate MUI noise. Furthermore, SIC/DS scheme showed much lower bit error rate (BER) performance relative to SIC/SAC scheme for different magnitude of effective power. Hence, many more users can be supported by SIC/DS receiver system.Keywords: optical code-division multiple access (OCDMA), successive interference cancellation (SIC), multiple user interference (MUI), spectral amplitude coding (SAC), partial modified prime code (PMP)
Procedia PDF Downloads 5212606 Tumor Cell Detection, Isolation and Monitoring Using Bi-Layer Magnetic Microfluidic Chip
Authors: Amir Seyfoori, Ehsan Samiei, Mohsen Akbari
Abstract:
The use of microtechnology for detection and high yield isolation of circulating tumor cells (CTCs) has shown enormous promise as an indication of clinical metastasis prognosis and cancer treatment monitoring. The Immunomagnetic assay has been also coupled to microtechnology to improve the selectivity and efficiency of the current methods of cancer biomarker isolation. In this way, generation and configuration of the local high gradient magnetic field play essential roles in such assay. Additionally, considering the intrinsic heterogeneity of cancer cells, real-time analysis of isolated cells is necessary to characterize their responses to therapy. Totally, on-chip isolation and monitoring of the specific tumor cells is considered as a pressing need in the way of modified cancer therapy. To address these challenges, we have developed a bi-layer magnetic-based microfluidic chip for enhanced CTC detection and capturing. Micromagnet arrays at the bottom layer of the chip were fabricated using a new method of magnetic nanoparticle paste deposition so that they were arranged at the center of the chain microchannel with the lowest fluid velocity zone. Breast cancer cells labelled with EPCAM-conjugated smart microgels were immobilized on the tip of the micromagnets with greater localized magnetic field and stronger cell-micromagnet interaction. Considering different magnetic nano-powder usage (MnFe2O4 & gamma-Fe2O3) and micromagnet shapes (ellipsoidal & arrow), the capture efficiency of the systems was adjusted while the higher CTC capture efficiency was acquired for MnFe2O4 arrow micromagnet as around 95.5%. As a proof of concept of on-chip tumor cell monitoring, magnetic smart microgels made of thermo-responsive poly N-isopropylacrylamide-co-acrylic acid (PNIPAM-AA) composition were used for both purposes of targeted cell capturing as well as cell monitoring using antibody conjugation and fluorescent dye loading at the same time. In this regard, magnetic microgels were successfully used as cell tracker after isolation process so that by raising the temperature up to 37⁰ C, they released the contained dye and stained the targeted cell just after capturing. This microfluidic device was able to provide a platform for detection, isolation and efficient real-time analysis of specific CTCs in the liquid biopsy of breast cancer patients.Keywords: circulating tumor cells, microfluidic, immunomagnetic, cell isolation
Procedia PDF Downloads 1432605 Synthesis of (S)-Naproxen Based Amide Bond Forming Chiral Reagent and Application for Liquid Chromatographic Resolution of (RS)-Salbutamol
Authors: Poonam Malik, Ravi Bhushan
Abstract:
This work describes a very efficient approach for synthesis of activated ester of (S)-naproxen which was characterized by UV, IR, ¹HNMR, elemental analysis and polarimetric studies. It was used as a C-N bond forming chiral derivatizing reagent for further synthesis of diastereomeric amides of (RS)-salbutamol (a β₂ agonist that belongs to the group β-adrenolytic and is marketed as racamate) under microwave irradiation. The diastereomeric pair was separated by achiral phase HPLC, using mobile phase in gradient mode containing methanol and aqueous triethylaminephosphate (TEAP); separation conditions were optimized with respect to pH, flow rate, and buffer concentration and the method of separation was validated as per International Council for Harmonisation (ICH) guidelines. The reagent proved to be very effective for on-line sensitive detection of the diastereomers with very low limit of detection (LOD) values of 0.69 and 0.57 ng mL⁻¹ for diastereomeric derivatives of (S)- and (R)-salbutamol, respectively. The retention times were greatly reduced (2.7 min) with less consumption of organic solvents and large (α) as compared to literature reports. Besides, the diastereomeric derivatives were separated and isolated by preparative HPLC; these were characterized and were used as standard reference samples for recording ¹HNMR and IR spectra for determining absolute configuration and elution order; it ensured the success of diastereomeric synthesis and established the reliability of enantioseparation and eliminated the requirement of pure enantiomer of the analyte which is generally not available. The newly developed reagent can suitably be applied to several other amino group containing compounds either from organic syntheses or pharmaceutical industries because the presence of (S)-Npx as a strong chromophore would allow sensitive detection.This work is significant not only in the area of enantioseparation and determination of absolute configuration of diastereomeric derivatives but also in the area of developing new chiral derivatizing reagents (CDRs).Keywords: chiral derivatizing reagent, naproxen, salbutamol, synthesis
Procedia PDF Downloads 1552604 Comparison of Methods for Detecting and Quantifying Amplitude Modulation of Wind Farm Noise
Authors: Phuc D. Nguyen, Kristy L. Hansen, Branko Zajamsek
Abstract:
The existence of special characteristics of wind farm noise such as amplitude modulation (AM) contributes significantly to annoyance, which could ultimately result in sleep disturbance and other adverse health effects for residents living near wind farms. In order to detect and quantify this phenomenon, several methods have been developed which can be separated into three types: time-domain, frequency-domain and hybrid methods. However, due to a lack of systematic validation of these methods, it is still difficult to select the best method for identifying AM. Furthermore, previous comparisons between AM methods have been predominantly qualitative or based on synthesised signals, which are not representative of the actual noise. In this study, a comparison between methods for detecting and quantifying AM has been carried out. The results are based on analysis of real noise data which were measured at a wind farm in South Australia. In order to evaluate the performance of these methods in terms of detecting AM, an approach has been developed to select the most successful method of AM detection. This approach uses a receiver operating characteristic (ROC) curve which is based on detection of AM in audio files by experts.Keywords: amplitude modulation, wind farm noise, ROC curve
Procedia PDF Downloads 1452603 Pathogenic Escherichia Coli Strains and Their Antibiotic Susceptibility Profiles in Cases of Child Diarrhea at Addis Ababa University, College of Health Sciences, Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia
Authors: Benyam Zenebe, Tesfaye Sisay, Gurja Belay, Workabeba Abebe
Abstract:
Background: The prevalence and antibiogram of pathogenic E. coli strains, which cause diarrhea vary from region to region, and even within countries in the same geographical area. In Ethiopia, diagnostic approaches to E. coli induced diarrhea in children less than five years of age are not standardized. The aim of this study was to determine the involvement of pathogenic E. coli strains in child diarrhea and determine the antibiograms of the isolates in children less than 5 years of age with diarrhea at Addis Ababa University College of Health Sciences TikurAnbessa Specialized Hospital, Addis Ababa, Ethiopia. Methods: A purposive study that included 98 diarrheic children less than five years of age was conducted at Addis Ababa University College of Health Sciences, TikurAnbessa Specialized Hospital, Addis Ababa, Ethiopia to detect pathogenic E. coli biotypes. Stool culture was used to identify presumptive E. coliisolates. Presumptive isolates were confirmed by biochemical tests, and antimicrobial susceptibility tests were performed on confirmed E. coli isolates by the disk diffusion method. DNA was extracted from confirmed isolates by a heating method and subjected to Polymerase Chain Reaction or the presence of virulence genes. Amplified PCR products were analyzed by agarose gel electrophoresis. Data were collected on child demographics and clinical conditions using administered questionnaires. The prevalence of E. coli strains from the total diarrheic children, and the prevalence of pathogenic strains from total E. coli isolates along with their susceptibility profiles; the distribution of pathogenic E.coli biotypes among different age groups and between the sexes were determined by using descriptive statistics. Result: Out of 98 stool specimens collected from diarrheic children less than 5 years of age, 75 presumptive E. coli isolates were identified by culture; further confirmation by biochemical tests showed that only 56 of the isolates were E. coli; 29 of the isolates were found in male children and 27 of them in female children. Out of the 58 isolates of E. coli, 25 pathotypes belonging to different classes of pathogenic strains: STEC, EPEC, EHEC, EAEC were detected by using the PCR technique. Pathogenic E. coli exhibited high rates of antibiotic resistance to many of the antibiotics tested. Moreover, they exhibited multiple drug resistance. Conclusion: This study found that the isolation rate of E. coli and the involvement of antibiotic-resistant pathogenic E. coli in diarrheic children is prominent, and hence focus should be given on the diagnosis and antimicrobial sensitivity testing of pathogenic E. coli at Addis Ababa University College of Health Sciences TikurAnbessa Specialized Hospital. Among antibiotics tested, Cefotitan could be a drug of choice to treat E. coli.Keywords: antibiotic susceptibility profile, children, diarrhea, E. coli, pathogenic
Procedia PDF Downloads 2342602 Electrochemiluminescent Detection of DNA Damage Induced by Tetrachloro-1,4- Benzoquinone Using DNA Sensor
Authors: Tian-Fang Kang, Xue Sun
Abstract:
DNA damage induced by tetrachloro-1,4-benzoquinone (TCBQ), a reactive metabolite of pentachloro-phenol (PCP), was investigated using a glassy carbon electrode (GCE) modified with calf thymus double-stranded DNA (ds-DNA) in this work. DNA modified films were constructed by layer-by-layer adsorption of polycationic poly(diallyldimethyl- ammonium chloride) (PDDA) and negatively charged ds-DNA on the surface of a glassy carbon electrode. The DNA intercalator [Ru(bpy)2(dppz)]2+ (bpy=2, 2′-bipyridine, dppz0dipyrido [3, 2-a: 2′,3′-c] phenazine) was chosen as an electrochemical probe to detect DNA damage. After the sensor was incubated in 0.1 M pH 7.3 phosphate buffer solution (PBS) for 30min, the intact PDDA/DNA film produced a sensitive electrochemiluminescent (ECL) signal. However, after the sensor was incubated in 100 μM TCBQ or a mixed solution of 100 μM TCBQ and 2 mM H2O2, ECL signal decreased significantly. During the incubation of DNA in TCBQ or TCBQ-H2O2 solution, the double-helix of DNA was damaged, which resulted in the decrease of Ru-dppz bound to DNA. Additionally, the results were verified independently by fluorescence experiments. This paper provides a sensitive method to directly screen DNA damage induced by chemicals in the environment.Keywords: DNA damage, detection, electrochemiluminescence, sensor
Procedia PDF Downloads 4102601 Directional Search for Dark Matter Using Nuclear Emulsion
Authors: Ali Murat Guler
Abstract:
A variety of experiments have been developed over the past decades, aiming at the detection of Weakly Interactive Massive Particles (WIMPs) via their scattering in an instrumented medium. The sensitivity of these experiments has improved with a tremendous speed, thanks to a constant development of detectors and analysis methods. Detectors capable of reconstructing the direction of the nuclear recoil induced by the WIMP scattering are opening a new frontier to possibly extend Dark Matter searches beyond the neutrino background. Measurement of WIMP’s direction will allow us to detect the galactic origin of dark matter and, therefore to have a clear signal-background separation. The NEWSdm experiment, based on nuclear emulsions, is intended to measure the direction of WIMP-induced nuclear coils with a solid-state detector, thus with high sensitivity. We discuss the discovery potential of a directional experiment based on the use of a solid target made of newly developed nuclear emulsions and novel read-out systems achieving nanometric resolution. We also report results of a technical test conducted in Gran Sasso.Keywords: dark matter, direct detection, nuclear emulsion, WIMPS
Procedia PDF Downloads 2722600 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier
Authors: Atanu K Samanta, Asim Ali Khan
Abstract:
Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.Keywords: brain tumor, computer-aided diagnostic (CAD) system, gray-level co-occurrence matrix (GLCM), tumor segmentation, level set method
Procedia PDF Downloads 5122599 Cut-Off of CMV Cobas® Taqman® (CAP/CTM Roche®) for Introduction of Ganciclovir Pre-Emptive Therapy in Allogeneic Hematopoietic Stem Cell Transplant Recipients
Authors: B. B. S. Pereira, M. O. Souza, L. P. Zanetti, L. C. S. Oliveira, J. R. P. Moreno, M. P. Souza, V. R. Colturato, C. M. Machado
Abstract:
Background: The introduction of prophylactic or preemptive therapies has effectively decreased the CMV mortality rates after hematopoietic stem cell transplantation (HSCT). CMV antigenemia (pp65) or quantitative PCR are methods currently approved for CMV surveillance in pre-emptive strategies. Commercial assays are preferred as cut-off levels defined by in-house assays may vary among different protocols and in general show low reproducibility. Moreover, comparison of published data among different centers is only possible if international standards of quantification are included in the assays. Recently, the World Health Organization (WHO) established the first international standard for CMV detection. The real time PCR COBAS Ampliprep/ CobasTaqMan (CAP/CTM) (Roche®) was developed using the WHO standard for CMV quantification. However, the cut-off for the introduction of antiviral has not been determined yet. Methods: We conducted a retrospective study to determine: 1) the sensitivity and specificity of the new CMV CAP/CTM test in comparison with pp65 antigenemia to detect episodes of CMV infection/reactivation, and 2) the cut-off of viral load for introduction of ganciclovir (GCV). Pp65 antigenemia was performed and the corresponding plasma samples were stored at -20°C for further CMV detection by CAP/CTM. Comparison of tests was performed by kappa index. The appearance of positive antigenemia was considered the state variable to determine the cut-off of CMV viral load by ROC curve. Statistical analysis was performed using SPSS software version 19 (SPSS, Chicago, IL, USA.). Results: Thirty-eight patients were included and followed from August 2014 through May 2015. The antigenemia test detected 53 episodes of CMV infection in 34 patients (89.5%), while CAP/CTM detected 37 episodes in 33 patients (86.8%). AG and PCR results were compared in 431 samples and Kappa index was 30.9%. The median time for first AG detection was 42 (28-140) days, while CAP/CTM detected at a median of 7 days earlier (34 days, ranging from 7 to 110 days). The optimum cut-off value of CMV DNA was 34.25 IU/mL to detect positive antigenemia with 88.2% of sensibility, 100% of specificity and AUC of 0.91. This cut-off value is below the limit of detection and quantification of the equipment which is 56 IU/mL. According to CMV recurrence definition, 16 episodes of CMV recurrence were detected by antigenemia (47.1%) and 4 (12.1%) by CAP/CTM. The duration of viremia as detected by antigenemia was shorter (60.5% of the episodes lasted ≤ 7 days) in comparison to CAP/CTM (57.9% of the episodes lasting 15 days or more). This data suggests that the use of antigenemia to define the duration of GCV therapy might prompt early interruption of antiviral, which may favor CMV reactivation. The CAP/CTM PCR could possibly provide a safer information concerning the duration of GCV therapy. As prolonged treatment may increase the risk of toxicity, this hypothesis should be confirmed in prospective trials. Conclusions: Even though CAP/CTM by ROCHE showed great qualitative correlation with the antigenemia technique, the fully automated CAP/CTM did not demonstrate increased sensitivity. The cut-off value below the limit of detection and quantification may result in delayed introduction of pre-emptive therapy.Keywords: antigenemia, CMV COBAS/TAQMAN, cytomegalovirus, antiviral cut-off
Procedia PDF Downloads 1912598 Volatile Organic Compounds Detection by Surface Acoustic Wave Sensors with Nanoparticles Embedded in Polymer Sensitive Layers
Authors: Cristian Viespe, Dana Miu
Abstract:
Surface acoustic wave (SAW) sensors with nanoparticles (NPs) of various dimensions and concentrations embedded in different types of polymer sensing films for detecting volatile organic compounds (VOCs) were studied. The sensors were ‘delay line’ type with a center frequency of 69.4 MHz on ST-X quartz substrates. NPs with different diameters of 7 nm or 13 nm were obtained by laser ablation with lasers having 5 ns or 10 ps pulse durations, respectively. The influence of NPs dimensions and concentrations on sensor properties such as frequency shift, sensitivity, noise and response time were investigated. To the best of our knowledge, the influence of NP dimensions on SAW sensor properties with has not been investigated. The frequency shift and sensitivity increased with increasing NP concentration in the polymer for a given NP dimension and with decreasing NP diameter for a given concentration. The best performances were obtained for the smallest NPs used. The SAW sensor with NPs of 7 nm had a limit of detection (LOD) of 65 ppm (almost five times better than the sensor with polymer alone), and a response time of about 9 s for ethanol.Keywords: surface acoustic wave sensor, nanoparticles, volatile organic compounds, laser ablation
Procedia PDF Downloads 1502597 Temperature-Based Detection of Initial Yielding Point in Loading of Tensile Specimens Made of Structural Steel
Authors: Aqsa Jamil, Tamura Hiroshi, Katsuchi Hiroshi, Wang Jiaqi
Abstract:
The yield point represents the upper limit of forces which can be applied to a specimen without causing any permanent deformation. After yielding, the behavior of the specimen suddenly changes, including the possibility of cracking or buckling. So, the accumulation of damage or type of fracture changes depending on this condition. As it is difficult to accurately detect yield points of the several stress concentration points in structural steel specimens, an effort has been made in this research work to develop a convenient technique using thermography (temperature-based detection) during tensile tests for the precise detection of yield point initiation. To verify the applicability of thermography camera, tests were conducted under different loading conditions and measuring the deformation by installing various strain gauges and monitoring the surface temperature with the help of a thermography camera. The yield point of specimens was estimated with the help of temperature dip, which occurs due to the thermoelastic effect during the plastic deformation. The scattering of the data has been checked by performing a repeatability analysis. The effects of temperature imperfection and light source have been checked by carrying out the tests at daytime as well as midnight and by calculating the signal to noise ratio (SNR) of the noised data from the infrared thermography camera, it can be concluded that the camera is independent of testing time and the presence of a visible light source. Furthermore, a fully coupled thermal-stress analysis has been performed by using Abaqus/Standard exact implementation technique to validate the temperature profiles obtained from the thermography camera and to check the feasibility of numerical simulation for the prediction of results extracted with the help of the thermographic technique.Keywords: signal to noise ratio, thermoelastic effect, thermography, yield point
Procedia PDF Downloads 1072596 A Convolutional Neural Network Based Vehicle Theft Detection, Location, and Reporting System
Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala
Abstract:
One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets especially in the motorist industry, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. Sixty (60) vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.Keywords: CNN, location identification, tracking, GPS, GSM
Procedia PDF Downloads 1662595 Surface Elevation Dynamics Assessment Using Digital Elevation Models, Light Detection and Ranging, GPS and Geospatial Information Science Analysis: Ecosystem Modelling Approach
Authors: Ali K. M. Al-Nasrawi, Uday A. Al-Hamdany, Sarah M. Hamylton, Brian G. Jones, Yasir M. Alyazichi
Abstract:
Surface elevation dynamics have always responded to disturbance regimes. Creating Digital Elevation Models (DEMs) to detect surface dynamics has led to the development of several methods, devices and data clouds. DEMs can provide accurate and quick results with cost efficiency, in comparison to the inherited geomatics survey techniques. Nowadays, remote sensing datasets have become a primary source to create DEMs, including LiDAR point clouds with GIS analytic tools. However, these data need to be tested for error detection and correction. This paper evaluates various DEMs from different data sources over time for Apple Orchard Island, a coastal site in southeastern Australia, in order to detect surface dynamics. Subsequently, 30 chosen locations were examined in the field to test the error of the DEMs surface detection using high resolution global positioning systems (GPSs). Results show significant surface elevation changes on Apple Orchard Island. Accretion occurred on most of the island while surface elevation loss due to erosion is limited to the northern and southern parts. Concurrently, the projected differential correction and validation method aimed to identify errors in the dataset. The resultant DEMs demonstrated a small error ratio (≤ 3%) from the gathered datasets when compared with the fieldwork survey using RTK-GPS. As modern modelling approaches need to become more effective and accurate, applying several tools to create different DEMs on a multi-temporal scale would allow easy predictions in time-cost-frames with more comprehensive coverage and greater accuracy. With a DEM technique for the eco-geomorphic context, such insights about the ecosystem dynamic detection, at such a coastal intertidal system, would be valuable to assess the accuracy of the predicted eco-geomorphic risk for the conservation management sustainability. Demonstrating this framework to evaluate the historical and current anthropogenic and environmental stressors on coastal surface elevation dynamism could be profitably applied worldwide.Keywords: DEMs, eco-geomorphic-dynamic processes, geospatial Information Science, remote sensing, surface elevation changes,
Procedia PDF Downloads 2672594 Nano-Sensors: Search for New Features
Authors: I. Filikhin, B. Vlahovic
Abstract:
We focus on a novel type of detection based on electron tunneling properties of double nanoscale structures in semiconductor materials. Semiconductor heterostructures as quantum wells (QWs), quantum dots (QDs), and quantum rings (QRs) may have energy level structure of several hundred of electron confinement states. The single electron spectra of the double quantum objects (DQW, DQD, and DQR) were studied in our previous works with relation to the electron localization and tunneling between the objects. The wave function of electron may be localized in one of the QDs or be delocalized when it is spread over the whole system. The localizing-delocalizing tunneling occurs when an electron transition between both states is possible. The tunneling properties of spectra differ strongly for “regular” and “chaotic” systems. We have shown that a small violation of the geometry drastically affects localization of electron. In particular, such violations lead to the elimination of the delocalized states of the system. The same symmetry violation effect happens if electrical or magnetic fields are applied. These phenomena could be used to propose a new type of detection based on the high sensitivity of charge transport between double nanostructures and small violations of the shapes. It may have significant technological implications.Keywords: double quantum dots, single electron levels, tunneling, electron localizations
Procedia PDF Downloads 5052593 Disaster Management Using Wireless Sensor Networks
Authors: Akila Murali, Prithika Manivel
Abstract:
Disasters are defined as a serious disruption of the functioning of a community or a society, which involves widespread human, material, economic or environmental impacts. The number of people suffering food crisis as a result of natural disasters has tripled in the last thirty years. The economic losses due to natural disasters have shown an increase with a factor of eight over the past four decades, caused by the increased vulnerability of the global society, and also due to an increase in the number of weather-related disasters. Efficient disaster detection and alerting systems could reduce the loss of life and properties. In the event of a disaster, another important issue is a good search and rescue system with high levels of precision, timeliness and safety for both the victims and the rescuers. Wireless Sensor Networks technology has the capability of quick capturing, processing, and transmission of critical data in real-time with high resolution. This paper studies the capacity of sensors and a Wireless Sensor Network to collect, collate and analyze valuable and worthwhile data, in an ordered manner to help with disaster management.Keywords: alerting systems, disaster detection, Ad Hoc network, WSN technology
Procedia PDF Downloads 4042592 Contextual Toxicity Detection with Data Augmentation
Authors: Julia Ive, Lucia Specia
Abstract:
Understanding and detecting toxicity is an important problem to support safer human interactions online. Our work focuses on the important problem of contextual toxicity detection, where automated classifiers are tasked with determining whether a short textual segment (usually a sentence) is toxic within its conversational context. We use “toxicity” as an umbrella term to denote a number of variants commonly named in the literature, including hate, abuse, offence, among others. Detecting toxicity in context is a non-trivial problem and has been addressed by very few previous studies. These previous studies have analysed the influence of conversational context in human perception of toxicity in controlled experiments and concluded that humans rarely change their judgements in the presence of context. They have also evaluated contextual detection models based on state-of-the-art Deep Learning and Natural Language Processing (NLP) techniques. Counterintuitively, they reached the general conclusion that computational models tend to suffer performance degradation in the presence of context. We challenge these empirical observations by devising better contextual predictive models that also rely on NLP data augmentation techniques to create larger and better data. In our study, we start by further analysing the human perception of toxicity in conversational data (i.e., tweets), in the absence versus presence of context, in this case, previous tweets in the same conversational thread. We observed that the conclusions of previous work on human perception are mainly due to data issues: The contextual data available does not provide sufficient evidence that context is indeed important (even for humans). The data problem is common in current toxicity datasets: cases labelled as toxic are either obviously toxic (i.e., overt toxicity with swear, racist, etc. words), and thus context does is not needed for a decision, or are ambiguous, vague or unclear even in the presence of context; in addition, the data contains labeling inconsistencies. To address this problem, we propose to automatically generate contextual samples where toxicity is not obvious (i.e., covert cases) without context or where different contexts can lead to different toxicity judgements for the same tweet. We generate toxic and non-toxic utterances conditioned on the context or on target tweets using a range of techniques for controlled text generation(e.g., Generative Adversarial Networks and steering techniques). On the contextual detection models, we posit that their poor performance is due to limitations on both of the data they are trained on (same problems stated above) and the architectures they use, which are not able to leverage context in effective ways. To improve on that, we propose text classification architectures that take the hierarchy of conversational utterances into account. In experiments benchmarking ours against previous models on existing and automatically generated data, we show that both data and architectural choices are very important. Our model achieves substantial performance improvements as compared to the baselines that are non-contextual or contextual but agnostic of the conversation structure.Keywords: contextual toxicity detection, data augmentation, hierarchical text classification models, natural language processing
Procedia PDF Downloads 1702591 Mechanical Properties and Antibiotic Release Characteristics of Poly(methyl methacrylate)-based Bone Cement Formulated with Mesoporous Silica Nanoparticles
Authors: Kumaran Letchmanan, Shou-Cang Shen, Wai Kiong Ng
Abstract:
Postoperative implant-associated infections in soft tissues and bones remain a serious complication in orthopaedic surgery, which leads to impaired healing, re-implantation, prolong hospital stay and increase cost. Drug-loaded implants with sustained release of antibiotics at the local site are current research interest to reduce the risk of post-operative infections and osteomyelitis, thus, minimize the need for follow-up care and increase patient comfort. However, the improved drug release of the drug-loaded bone cements is usually accompanied by a loss in mechanical strength, which is critical for weight-bearing bone cement. Recently, more attempts have been undertaken to develop techniques to enhance the antibiotic elution as well as preserve the mechanical properties of the bone cements. The present study investigates the potential influence of addition of mesoporous silica nanoparticles (MSN) on the in vitro drug release kinetics of gentamicin (GTMC), along with the mechanical properties of bone cements. Simplex P was formulated with MSN and loaded with GTMC by direct impregnation. Meanwhile, Simplex P with water soluble poragen (xylitol) and high loading of GTMC as well as commercial bone cement CMW Smartset GHV were used as controls. MSN-formulated bone cements are able to increase the drug release of GTMC by 3-fold with a cumulative release of more than 46% as compared with other control groups. Furthermore, a sustained release could be achieved for two months. The loaded nano-sized MSN with uniform pore channels significantly build up an effective nano-network path in the bone cement facilitates the diffusion and extended release of GTMC. Compared with formulations using xylitol and high GTMC loading, incorporation of MSN shows no detrimental effect on biomechanical properties of the bone cements as no significant changes in the mechanical properties as compared with original bone cement. After drug release for two months, the bending modulus of MSN-formulated bone cements is 4.49 ± 0.75 GPa and the compression strength is 92.7 ± 2.1 MPa (similar to the compression strength of Simplex-P: 93.0 ± 1.2 MPa). The unaffected mechanical properties of MSN-formulated bone cements was due to the unchanged microstructures of bone cement, whereby more than 98% of MSN remains in the matrix and supports the bone cement structures. In contrast, the large portions of extra voids can be observed for the formulations using xylitol and high drug loading after the drug release study, thus caused compressive strength below the ASTM F541 and ISO 5833 minimum of 70 MPa. These results demonstrate the potential applicability of MSN-functionalized poly(methyl methacrylate)-based bone cement as a highly efficient, sustained and local drug delivery system with good mechanical properties.Keywords: antibiotics, biomechanical properties, bone cement, sustained release
Procedia PDF Downloads 2572590 Comparison of Techniques for Detection and Diagnosis of Eccentricity in the Air-Gap Fault in Induction Motors
Authors: Abrahão S. Fontes, Carlos A. V. Cardoso, Levi P. B. Oliveira
Abstract:
The induction motors are used worldwide in various industries. Several maintenance techniques are applied to increase the operating time and the lifespan of these motors. Among these, the predictive maintenance techniques such as Motor Current Signature Analysis (MCSA), Motor Square Current Signature Analysis (MSCSA), Park's Vector Approach (PVA) and Park's Vector Square Modulus (PVSM) are used to detect and diagnose faults in electric motors, characterized by patterns in the stator current frequency spectrum. In this article, these techniques are applied and compared on a real motor, which has the fault of eccentricity in the air-gap. It was used as a theoretical model of an electric induction motor without fault in order to assist comparison between the stator current frequency spectrum patterns with and without faults. Metrics were purposed and applied to evaluate the sensitivity of each technique fault detection. The results presented here show that the above techniques are suitable for the fault of eccentricity in the air gap, whose comparison between these showed the suitability of each one.Keywords: eccentricity in the air-gap, fault diagnosis, induction motors, predictive maintenance
Procedia PDF Downloads 3502589 Detection of Biomechanical Stress for the Prevention of Disability Derived from Musculoskeletal Disorders
Authors: Leydi Noemi Peraza Gómez, Jose Álvarez Nemegyei, Damaris Francis Estrella Castillo
Abstract:
In order to have an epidemiological tool to detect biomechanical stress (ERGO-Mex), which impose physical labor or recreational activities, a questionnaire is constructed in Spanish, validated and culturally adapted to the Mayan indigenous population of Yucatan. Through the seven steps proposed by Guillemin and Beaton the procedure was: initial translation, synthesis of the translations, feed back of the translation. After that review by a committee of experts, pre-test of the preliminary version, and presentation of the results to the committee of experts and members of the community. Finally the evaluation of its internal validity (Cronbach's α coefficient) and external (intraclass correlation coefficient). The results for the validation in Spanish indicated that 45% of the participants have biomechanical stress. The ERGO-Mex correlation was 0.69 (p <0.0001). Subjects with high biomechanical stress had a higher score than subjects with low biomechanical stress (17.4 ± 8.9 vs.9.8 ± 2.8, p = 0.003). The Cronbach's α coefficient was 0.92; and for validation in Cronbach's α maya it was 0.82 and CCI = 0.70 (95% CI: 0.58-0.79; p˂0.0001); ERGO-Mex is suitable for performing early detection of musculoskeletal diseases and helping to prevent disability.Keywords: biomechanical stress, disability, musculoskeletal disorders, prevention
Procedia PDF Downloads 1802588 Deep Learning Based Fall Detection Using Simplified Human Posture
Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif
Abstract:
Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.Keywords: fall detection, machine learning, deep learning, pose estimation, tracking
Procedia PDF Downloads 1892587 Deep Learning based Image Classifiers for Detection of CSSVD in Cacao Plants
Authors: Atuhurra Jesse, N'guessan Yves-Roland Douha, Pabitra Lenka
Abstract:
The detection of diseases within plants has attracted a lot of attention from computer vision enthusiasts. Despite the progress made to detect diseases in many plants, there remains a research gap to train image classifiers to detect the cacao swollen shoot virus disease or CSSVD for short, pertinent to cacao plants. This gap has mainly been due to the unavailability of high quality labeled training data. Moreover, institutions have been hesitant to share their data related to CSSVD. To fill these gaps, image classifiers to detect CSSVD-infected cacao plants are presented in this study. The classifiers are based on VGG16, ResNet50 and Vision Transformer (ViT). The image classifiers are evaluated on a recently released and publicly accessible KaraAgroAI Cocoa dataset. The best performing image classifier, based on ResNet50, achieves 95.39\% precision, 93.75\% recall, 94.34\% F1-score and 94\% accuracy on only 20 epochs. There is a +9.75\% improvement in recall when compared to previous works. These results indicate that the image classifiers learn to identify cacao plants infected with CSSVD.Keywords: CSSVD, image classification, ResNet50, vision transformer, KaraAgroAI cocoa dataset
Procedia PDF Downloads 1032586 A Framework for Automated Nuclear Waste Classification
Authors: Seonaid Hume, Gordon Dobie, Graeme West
Abstract:
Detecting and localizing radioactive sources is a necessity for safe and secure decommissioning of nuclear facilities. An important aspect for the management of the sort-and-segregation process is establishing the spatial distributions and quantities of the waste radionuclides, their type, corresponding activity, and ultimately classification for disposal. The data received from surveys directly informs decommissioning plans, on-site incident management strategies, the approach needed for a new cell, as well as protecting the workforce and the public. Manual classification of nuclear waste from a nuclear cell is time-consuming, expensive, and requires significant expertise to make the classification judgment call. Also, in-cell decommissioning is still in its relative infancy, and few techniques are well-developed. As with any repetitive and routine tasks, there is the opportunity to improve the task of classifying nuclear waste using autonomous systems. Hence, this paper proposes a new framework for the automatic classification of nuclear waste. This framework consists of five main stages; 3D spatial mapping and object detection, object classification, radiological mapping, source localisation based on gathered evidence and finally, waste classification. The first stage of the framework, 3D visual mapping, involves object detection from point cloud data. A review of related applications in other industries is provided, and recommendations for approaches for waste classification are made. Object detection focusses initially on cylindrical objects since pipework is significant in nuclear cells and indeed any industrial site. The approach can be extended to other commonly occurring primitives such as spheres and cubes. This is in preparation of stage two, characterizing the point cloud data and estimating the dimensions, material, degradation, and mass of the objects detected in order to feature match them to an inventory of possible items found in that nuclear cell. Many items in nuclear cells are one-offs, have limited or poor drawings available, or have been modified since installation, and have complex interiors, which often and inadvertently pose difficulties when accessing certain zones and identifying waste remotely. Hence, this may require expert input to feature match objects. The third stage, radiological mapping, is similar in order to facilitate the characterization of the nuclear cell in terms of radiation fields, including the type of radiation, activity, and location within the nuclear cell. The fourth stage of the framework takes the visual map for stage 1, the object characterization from stage 2, and radiation map from stage 3 and fuses them together, providing a more detailed scene of the nuclear cell by identifying the location of radioactive materials in three dimensions. The last stage involves combining the evidence from the fused data sets to reveal the classification of the waste in Bq/kg, thus enabling better decision making and monitoring for in-cell decommissioning. The presentation of the framework is supported by representative case study data drawn from an application in decommissioning from a UK nuclear facility. This framework utilises recent advancements of the detection and mapping capabilities of complex radiation fields in three dimensions to make the process of classifying nuclear waste faster, more reliable, cost-effective and safer.Keywords: nuclear decommissioning, radiation detection, object detection, waste classification
Procedia PDF Downloads 2002585 DISGAN: Efficient Generative Adversarial Network-Based Method for Cyber-Intrusion Detection
Authors: Hongyu Chen, Li Jiang
Abstract:
Ubiquitous anomalies endanger the security of our system con- stantly. They may bring irreversible damages to the system and cause leakage of privacy. Thus, it is of vital importance to promptly detect these anomalies. Traditional supervised methods such as Decision Trees and Support Vector Machine (SVM) are used to classify normality and abnormality. However, in some case, the abnormal status are largely rarer than normal status, which leads to decision bias of these methods. Generative adversarial network (GAN) has been proposed to handle the case. With its strong generative ability, it only needs to learn the distribution of normal status, and identify the abnormal status through the gap between it and the learned distribution. Nevertheless, existing GAN-based models are not suitable to process data with discrete values, leading to immense degradation of detection performance. To cope with the discrete features, in this paper, we propose an efficient GAN-based model with specifically-designed loss function. Experiment results show that our model outperforms state-of-the-art models on discrete dataset and remarkably reduce the overhead.Keywords: GAN, discrete feature, Wasserstein distance, multiple intermediate layers
Procedia PDF Downloads 1292584 Audio-Visual Co-Data Processing Pipeline
Authors: Rita Chattopadhyay, Vivek Anand Thoutam
Abstract:
Speech is the most acceptable means of communication where we can quickly exchange our feelings and thoughts. Quite often, people can communicate orally but cannot interact or work with computers or devices. It’s easy and quick to give speech commands than typing commands to computers. In the same way, it’s easy listening to audio played from a device than extract output from computers or devices. Especially with Robotics being an emerging market with applications in warehouses, the hospitality industry, consumer electronics, assistive technology, etc., speech-based human-machine interaction is emerging as a lucrative feature for robot manufacturers. Considering this factor, the objective of this paper is to design the “Audio-Visual Co-Data Processing Pipeline.” This pipeline is an integrated version of Automatic speech recognition, a Natural language model for text understanding, object detection, and text-to-speech modules. There are many Deep Learning models for each type of the modules mentioned above, but OpenVINO Model Zoo models are used because the OpenVINO toolkit covers both computer vision and non-computer vision workloads across Intel hardware and maximizes performance, and accelerates application development. A speech command is given as input that has information about target objects to be detected and start and end times to extract the required interval from the video. Speech is converted to text using the Automatic speech recognition QuartzNet model. The summary is extracted from text using a natural language model Generative Pre-Trained Transformer-3 (GPT-3). Based on the summary, essential frames from the video are extracted, and the You Only Look Once (YOLO) object detection model detects You Only Look Once (YOLO) objects on these extracted frames. Frame numbers that have target objects (specified objects in the speech command) are saved as text. Finally, this text (frame numbers) is converted to speech using text to speech model and will be played from the device. This project is developed for 80 You Only Look Once (YOLO) labels, and the user can extract frames based on only one or two target labels. This pipeline can be extended for more than two target labels easily by making appropriate changes in the object detection module. This project is developed for four different speech command formats by including sample examples in the prompt used by Generative Pre-Trained Transformer-3 (GPT-3) model. Based on user preference, one can come up with a new speech command format by including some examples of the respective format in the prompt used by the Generative Pre-Trained Transformer-3 (GPT-3) model. This pipeline can be used in many projects like human-machine interface, human-robot interaction, and surveillance through speech commands. All object detection projects can be upgraded using this pipeline so that one can give speech commands and output is played from the device.Keywords: OpenVINO, automatic speech recognition, natural language processing, object detection, text to speech
Procedia PDF Downloads 80