Search results for: ABC-VED inventory classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2910

Search results for: ABC-VED inventory classification

1620 Radio Frequency Identification Chips in Colour Preference Tracking

Authors: A. Ballard

Abstract:

The ability to track goods and products en route in the delivery system, in the warehouse, and on the top floor is a huge advantage to shippers and retailers. Recently the emergence of radio frequency identification (RFID) technology has enabled this better than ever before. However, a significant problem exists in that RFID technology depends on the quality of the information stored for each tagged product. Because of the profusion of names for colours, it is very difficult to ascertain that stored values are recognised by all users who view the product visually. This paper reports the findings of a study in which 50 consumers and 50 logistics workers were shown colour swatches and asked to choose the name of the colour from a multiple choice list. They were then asked to match consumer products, including toasters, jumpers, and toothbrushes, with the identifying inventory information available for each one. The findings show that the ability to match colours was significantly stronger with the color swatches than with the consumer products and that while logistics professionals made more frequent correct identification than the consumers, their results were still unsatisfactorily low. Based on these findings, a proposed universal model of colour identification numbers has been developed.

Keywords: consumer preferences, supply chain logistics, radio frequency identification, RFID, colour preference

Procedia PDF Downloads 122
1619 Hybrid Knowledge Approach for Determining Health Care Provider Specialty from Patient Diagnoses

Authors: Erin Lynne Plettenberg, Jeremy Vickery

Abstract:

In an access-control situation, the role of a user determines whether a data request is appropriate. This paper combines vetted web mining and logic modeling to build a lightweight system for determining the role of a health care provider based only on their prior authorized requests. The model identifies provider roles with 100% recall from very little data. This shows the value of vetted web mining in AI systems, and suggests the impact of the ICD classification on medical practice.

Keywords: electronic medical records, information extraction, logic modeling, ontology, vetted web mining

Procedia PDF Downloads 176
1618 Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: transformers, generative ai, gene expression design, classification

Procedia PDF Downloads 62
1617 Software Architectural Design Ontology

Authors: Muhammad Irfan Marwat, Sadaqat Jan, Syed Zafar Ali Shah

Abstract:

Software architecture plays a key role in software development but absence of formal description of software architecture causes different impede in software development. To cope with these difficulties, ontology has been used as artifact. This paper proposes ontology for software architectural design based on IEEE model for architecture description and Kruchten 4+1 model for viewpoints classification. For categorization of style and views, ISO/IEC 42010 has been used. Corpus method has been used to evaluate ontology. The main aim of the proposed ontology is to classify and locate software architectural design information.

Keywords: semantic-based software architecture, software architecture, ontology, software engineering

Procedia PDF Downloads 552
1616 Optimization Model for Identification of Assembly Alternatives of Large-Scale, Make-to-Order Products

Authors: Henrik Prinzhorn, Peter Nyhuis, Johannes Wagner, Peter Burggräf, Torben Schmitz, Christina Reuter

Abstract:

Assembling large-scale products, such as airplanes, locomotives, or wind turbines, involves frequent process interruptions induced by e.g. delayed material deliveries or missing availability of resources. This leads to a negative impact on the logistical performance of a producer of xxl-products. In industrial practice, in case of interruptions, the identification, evaluation and eventually the selection of an alternative order of assembly activities (‘assembly alternative’) leads to an enormous challenge, especially if an optimized logistical decision should be reached. Therefore, in this paper, an innovative, optimization model for the identification of assembly alternatives that addresses the given problem is presented. It describes make-to-order, large-scale product assembly processes as a resource constrained project scheduling (RCPS) problem which follows given restrictions in practice. For the evaluation of the assembly alternative, a cost-based definition of the logistical objectives (delivery reliability, inventory, make-span and workload) is presented.

Keywords: assembly scheduling, large-scale products, make-to-order, optimization, rescheduling

Procedia PDF Downloads 459
1615 Automatic Differential Diagnosis of Melanocytic Skin Tumours Using Ultrasound and Spectrophotometric Data

Authors: Kristina Sakalauskiene, Renaldas Raisutis, Gintare Linkeviciute, Skaidra Valiukeviciene

Abstract:

Cutaneous melanoma is a melanocytic skin tumour, which has a very poor prognosis while is highly resistant to treatment and tends to metastasize. Thickness of melanoma is one of the most important biomarker for stage of disease, prognosis and surgery planning. In this study, we hypothesized that the automatic analysis of spectrophotometric images and high-frequency ultrasonic 2D data can improve differential diagnosis of cutaneous melanoma and provide additional information about tumour penetration depth. This paper presents the novel complex automatic system for non-invasive melanocytic skin tumour differential diagnosis and penetration depth evaluation. The system is composed of region of interest segmentation in spectrophotometric images and high-frequency ultrasound data, quantitative parameter evaluation, informative feature extraction and classification with linear regression classifier. The segmentation of melanocytic skin tumour region in ultrasound image is based on parametric integrated backscattering coefficient calculation. The segmentation of optical image is based on Otsu thresholding. In total 29 quantitative tissue characterization parameters were evaluated by using ultrasound data (11 acoustical, 4 shape and 15 textural parameters) and 55 quantitative features of dermatoscopic and spectrophotometric images (using total melanin, dermal melanin, blood and collagen SIAgraphs acquired using spectrophotometric imaging device SIAscope). In total 102 melanocytic skin lesions (including 43 cutaneous melanomas) were examined by using SIAscope and ultrasound system with 22 MHz center frequency single element transducer. The diagnosis and Breslow thickness (pT) of each MST were evaluated during routine histological examination after excision and used as a reference. The results of this study have shown that automatic analysis of spectrophotometric and high frequency ultrasound data can improve non-invasive classification accuracy of early-stage cutaneous melanoma and provide supplementary information about tumour penetration depth.

Keywords: cutaneous melanoma, differential diagnosis, high-frequency ultrasound, melanocytic skin tumours, spectrophotometric imaging

Procedia PDF Downloads 271
1614 English Learning Strategy and Proficiency Level of the First Year Students, International College, Suan Sunandha Rajabhat University

Authors: Kanokrat Kunasaraphan

Abstract:

The purpose of the study was to identify whether English language learning strategies commonly used by the first year students at International College, Suan Sunandha Rajabhat University include six direct and indirect strategies. The study served to explore whether there was a difference in these students’ use of six direct and indirect English learning strategies between the different levels of their English proficiency. The questionnaire used as a research instrument was comprised of two parts: General information of participants and the Strategy Inventory for Language Learning (SILL). The researcher employed descriptive statistics and one-way ANOVA (F-test) to analyze the data. The results of the analysis revealed that English learning strategies commonly used by the first year students include six direct and indirect strategies, including differences in strategy use of the students with different levels of English proficiency. Recommendations for future research include the study of language learning strategy use with other research methods focusing on other languages, specific language skills, and/or the relationship of language learning strategy use and other factors in other programs and/or institutions.

Keywords: English learning strategies, direct strategies, indirect strategies, proficiency level

Procedia PDF Downloads 304
1613 The Relationship between Body Esteem and Self-Esteem with Sport-Confidence Students

Authors: Saeid Motevalli, Siti Fatimah Azzahrah Binti Abd Mutalib, Mohd Sahandri Ghani Hamzah, Hazalizah Hamzah

Abstract:

The main purpose of the present study was to investigate the relationship between body esteem and self-esteem with sport-confidence among university students. This study was conducted by using the descriptive and correlational study design. Meanwhile, the method involved in this study was the online survey method. The population of the sample are mainly Universiti Pendidikan Sultan Idris (UPSI) students only which 120 participants were selected by cluster sampling method from two faculties named Fakulti Pembangunan Manusia (FPM) and Fakulti Sains Sukan dan Kejurulatihan (FSSKJ). The instrument used in this study was The Body-Esteem Scale (BES) by Franzoi and Shields (1984), Rosenberg Self-Esteem Scale (RSES) by Rosenberg (1965) and the Vealey’s Trait Sport-Confidence Inventory (TSCI) by (Vealey, 1986). The results of the Pearson product-moment correlation coefficient showed that there was a positive and moderate correlation between students’ body-esteem and sport-confidence and a negative and low correlation between students’ self-esteem and sport-confidence. Likewise, based on the entry method used all two predictor variables were significant in explaining sport confidence among UPSI students. In conclusion, it can be said that students’ sport-confidence affected by students’ self-esteem and body-esteem.

Keywords: body esteem, self-esteem, sport-confidence, students

Procedia PDF Downloads 150
1612 The Development of User Behavior in Urban Regeneration Areas by Utilizing the Floating Population Data

Authors: Jung-Hun Cho, Tae-Heon Moon, Sun-Young Heo

Abstract:

A lot of urban problems, caused by urbanization and industrialization, have occurred around the world. In particular, the creation of satellite towns, which was attributed to the explicit expansion of the city, has led to the traffic problems and the hollowization of old towns, raising the necessity of urban regeneration in old towns along with the aging of existing urban infrastructure. To select urban regeneration priority regions for the strategic execution of urban regeneration in Korea, the number of population, the number of businesses, and deterioration degree were chosen as standards. Existing standards had a limit in coping with solving urban problems fundamentally and rapidly changing reality. Therefore, it was necessary to add new indicators that can reflect the decline in relevant cities and conditions. In this regard, this study selected Busan Metropolitan City, Korea as the target area as a leading city, where urban regeneration such as an international port city has been activated like Yokohama, Japan. Prior to setting the urban regeneration priority region, the conditions of reality should be reflected because uniform and uncharacterized projects have been implemented without a quantitative analysis about population behavior within the region. For this reason, this study conducted a characterization analysis and type classification, based on the user behaviors by using representative floating population of the big data, which is a hot issue all over the society in recent days. The target areas were analyzed in this study. While 23 regions were classified as three types in existing Busan Metropolitan City urban regeneration priority region, 23 regions were classified as four types in existing Busan Metropolitan City urban regeneration priority region in terms of the type classification on the basis of user behaviors. Four types were classified as follows; type (Ⅰ) of young people - morning type, Type (Ⅱ) of the old and middle-aged- general type with sharp floating population, type (Ⅲ) of the old and middle aged-24hour-type, and type (Ⅳ) of the old and middle aged with less floating population. Characteristics were shown in each region of four types, and the study results of user behaviors were different from those of existing urban regeneration priority region. According to the results, in type (Ⅰ) young people were the majority around the existing old built-up area, where floating population at dawn is four times more than in other areas. In Type (Ⅱ), there were many old and middle-aged people around the existing built-up area and general neighborhoods, where the average floating population was more than in other areas due to commuting, while in type (Ⅲ), there was no change in the floating population throughout 24 hours, although there were many old and middle aged people in population around the existing general neighborhoods. Type (Ⅳ) includes existing economy-based type, central built-up area type, and general neighborhood type, where old and middle aged people were the majority as a general type of commuting with less floating population. Unlike existing urban regeneration priority region, these types were sub-divided according to types, and in this study, approach methods and basic orientations of urban regeneration were set to reflect the reality to a certain degree including the indicators of effective floating population to identify the dynamic activity of urban areas and existing regeneration priority areas in connection with urban regeneration projects by regions. Therefore, it is possible to make effective urban plans through offering the substantial ground by utilizing scientific and quantitative data. To induce more realistic and effective regeneration projects, the regeneration projects tailored to the present local conditions should be developed by reflecting the present conditions on the formulation of urban regeneration strategic plans.

Keywords: floating population, big data, urban regeneration, urban regeneration priority region, type classification

Procedia PDF Downloads 215
1611 A Comparative Study of Adjustment Problems of Freshmen and Senior Year Students

Authors: Shimony Agrawal

Abstract:

In this continually evolving world, change is the most imperative component of our identity. The term alteration alludes to degree by which an individual adapts to inward strains, needs, clashes and can bring coordination between his internal requests and those forced by the external world. Adjustment is a way of managing various demands of life. . Entering school is a defining moment for school first year recruits in their adulthood. The progress from school to school can be rationally and in addition physically troubling. Students deal with a unique amount of stressors when they enter college. Introductory months of school are loaded with apprehension and attempting to fit in the new condition. Colleges and schools should ensure their understudies are balanced in the new condition by giving help at whatever point vital.. The main objective of the study was a comparative analysis of adjustment level with respect to overall adjustment level, gender and living environment. This research has been conducted using Adjustment Inventory for College Students (AICS). The total population is comprised of 240 college-going students. The data majority of the population scored poorly on Emotional Adjustment. Also, female students faced more adjustment problems as compared to male students. However, no significant change was noticed in living environment of the students.

Keywords: adjustment, college students, freshmen year, senior year

Procedia PDF Downloads 261
1610 A Deep Learning Approach for the Predictive Quality of Directional Valves in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

The increasing use of deep learning applications in production is becoming a competitive advantage. Predictive quality enables the assurance of product quality by using data-driven forecasts via machine learning models as a basis for decisions on test results. The use of real Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the leakage of directional valves.

Keywords: artificial neural networks, classification, hydraulics, predictive quality, deep learning

Procedia PDF Downloads 248
1609 Riesz Mixture Model for Brain Tumor Detection

Authors: Mouna Zitouni, Mariem Tounsi

Abstract:

This research introduces an application of the Riesz mixture model for medical image segmentation for accurate diagnosis and treatment of brain tumors. We propose a pixel classification technique based on the Riesz distribution, derived from an extended Bartlett decomposition. To our knowledge, this is the first study addressing this approach. The Expectation-Maximization algorithm is implemented for parameter estimation. A comparative analysis, using both synthetic and real brain images, demonstrates the superiority of the Riesz model over a recent method based on the Wishart distribution.

Keywords: EM algorithm, segmentation, Riesz probability distribution, Wishart probability distribution

Procedia PDF Downloads 21
1608 Case Studies in Three Domains of Learning: Cognitive, Affective, Psychomotor

Authors: Zeinabsadat Haghshenas

Abstract:

Bloom’s Taxonomy has been changed during the years. The idea of this writing is about the revision that has happened in both facts and terms. It also contains case studies of using cognitive Bloom’s taxonomy in teaching geometric solids to the secondary school students, affective objectives in a creative workshop for adults and psychomotor objectives in fixing a malfunctioned refrigerator lamp. There is also pointed to the important role of classification objectives in adult education as a way to prevent memory loss.

Keywords: adult education, affective domain, cognitive domain, memory loss, psychomotor domain

Procedia PDF Downloads 470
1607 Research on the Strategy of Old City Reconstruction under Market Orientation: Taking Mutoulong Community in Shenzhen as an Example

Authors: Ziwei Huang

Abstract:

In order to promote Inventory development in Shenzhen, the market-oriented real estate development mode has occupied a dominant position in the urban renewal activities of Shenzhen. This research is based on the theory of role relationship and urban regime, taking the Mutoulong community as the research object. Carries on the case depth analysis found that: Under the situation of absence and dislocation of the government's role, land property rights disputes and lack of communication platforms is the main reason for the problems of nail households and market failures, and the long-term delay in the progress of old city reconstruction. Through the analysis of the cause of the transformation problem and the upper planning and interest coordination mechanism, the optimization strategy of the old city transformation is finally proposed as follows: the establishment of interest coordination platform, the risk assessment of the government's intervention in the preliminary construction of the land, the adaptive construction of laws and regulations, and the re-examination of the interest relationship between the government and the market.

Keywords: Shenzhen city, Mutoulong community, urban regeneration, urban regime theory, role relationship theory

Procedia PDF Downloads 98
1606 Strategic Management for Corporate Social Responsibility in Colombian Industries: A Typology of CSR

Authors: Iris Maria Velez Osorio

Abstract:

There has been in the last decade a concern about the environment, particularly about clean and enough water for human consumption but, some enterprises had some trouble to understand the limited resources in the environment. This research tries to understand how some industries are better oriented to the preservation of the environment through investment for strategic management of scarce resources and try in the best way possible, the contaminants. It was made an industry classification since four different group of theories for Corporate Social Responsibility agree with variables of: investment in environmental care, water protection, and residues treatment finding different levels of commitment with CSR.

Keywords: corporate social responsibility, environment, strategic management, water

Procedia PDF Downloads 378
1605 Effects of the Gratitude Program on the Gratitude, Well-Being, Perceived Stress, and Stress Coping of Nurses

Authors: Yu H. Chen, Li C. Chen, Hsiang Y. Wu, Wan Y. Chen, Yin S. Lai, Sarah S. Chen

Abstract:

Little has been done to customize an appropriate program on gratitude for nurses, who work in high-stress environments. The purpose of this study is to design an appropriate program on gratitude for nurses and to investigate the effects of the program. Based on research done by Kaohsiung Medical University’s Positive Psychology Center, the only one of its kind in Taiwan, one of the top five strengths of nurses is gratitude. Instead of adapting from an older model created from past research, the Gratitude Workshop is developed from a quasi-experimental approach and designed with five additional dimensions that emphasize gratitude: thanking others, thanking one's surroundings, cherishing what one has, appreciating hardships, and appreciating the present. A sample of 84 nurses was randomly selected from the Kaohsiung Municipal Ta-Tung Hospital; 43 of who participated in the nine-hour Gratitude Workshop that spanned over three weeks, while the other 41 were part of the waitlist control group. The pretest and posttest included five questionnaires: Inventory of Undergraduates' Gratitude, The Gratitude Questionnaire-6, Mental Health Continuum‐Short Form, Perceived Stress Scale, and the Stress Coping Strategies Questionnaire. Results of the research showed that the Gratitude Workshop elevates gratitude, well-being, and perceived stress on the nurses; however, it was also found in the Stress Coping Strategies Questionnaire that the Gratitude Workshop only heightened the regulation of emotions.

Keywords: gratitude, nurses, positive psychology, well-being

Procedia PDF Downloads 387
1604 The Condition Testing of Damaged Plates Using Acoustic Features and Machine Learning

Authors: Kyle Saltmarsh

Abstract:

Acoustic testing possesses many benefits due to its non-destructive nature and practicality. There hence exists many scenarios in which using acoustic testing for condition testing shows powerful feasibility. A wealth of information is contained within the acoustic and vibration characteristics of structures, allowing the development meaningful features for the classification of their respective condition. In this paper, methods, results, and discussions are presented on the use of non-destructive acoustic testing coupled with acoustic feature extraction and machine learning techniques for the condition testing of manufactured circular steel plates subjected to varied levels of damage.

Keywords: plates, deformation, acoustic features, machine learning

Procedia PDF Downloads 338
1603 Post Traumatic Growth: A Qualitative Exploration among the Divorcees

Authors: Jaseel C. K., Surya M.

Abstract:

The study explored the post-traumatic growth experiences among divorcees. Although research studies on post-traumatic growth (PTG) are not few in number, the ones conducted in the population are quite rare and lack depth as most of them were solely dependent on the post-traumatic growth inventory scale and its statistical analyses. A total of 10 participants were interviewed (telephonic) using a semi-structured interview schedule prepared based on the research questions and the theoretical framework of post traumatic growth. The interviews were analyzed using thematic analysis, which generated five major themes and 17 subthemes. From the analysis, it was found that enhanced interpersonal relationships, changed perceptions about love and marriage, better management of emotions, prioritization of self, increased pro-social behavior, better character strengths, etc., are the most prominent positive shifts in the lives of divorcees. It was also found that factors like good relationships, professional support, work engagement, response to social stigma, and time facilitated post-traumatic growth in the population. Another interesting finding that came out of the study was that socio-economic status, educational background, and occupational status all have a positive impact on the PTG experiences among the divorced. The results of the study can hopefully help professionals working with divorcees to impart positivity to them and facilitate post-traumatic growth.

Keywords: divorcees, meaning making, positive changes, post traumatic growth, trauma

Procedia PDF Downloads 131
1602 Pyramid Binary Pattern for Age Invariant Face Verification

Authors: Saroj Bijarnia, Preety Singh

Abstract:

We propose a simple and effective biometrics system based on face verification across aging using a new variant of texture feature, Pyramid Binary Pattern. This employs Local Binary Pattern along with its hierarchical information. Dimension reduction of generated texture feature vector is done using Principal Component Analysis. Support Vector Machine is used for classification. Our proposed method achieves an accuracy of 92:24% and can be used in an automated age-invariant face verification system.

Keywords: biometrics, age invariant, verification, support vector machine

Procedia PDF Downloads 355
1601 On the Utility of Bidirectional Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of the flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on the spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts, as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with an attention mechanism. In previous works on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work, with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on the presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: machine learning, classification and regression, gene circuit design, bidirectional transformers

Procedia PDF Downloads 63
1600 Positive Psychology and the Social Emotional Ability Instrument (SEAI)

Authors: Victor William Harris

Abstract:

This research is a validation study of the Social Emotional Ability Inventory (SEAI), a multi-dimensional self-report instrument informed by positive psychology, emotional intelligence, social intelligence, and sociocultural learning theory. Designed for use in tandem with the Social Emotional Development (SEAD) theoretical model, the SEAI provides diagnostic-level guidance for professionals and individuals interested in investigating, identifying, and understanding social, emotional strengths, as well as remediating specific social competency deficiencies. The SEAI was shown to be psychometrically sound, exhibited strong internal reliability, and supported the a priori hypotheses of the SEAD. Additionally, confirmatory factor analysis provided evidence of goodness of fit, convergent and divergent validity, and supported a theoretical model that reflected SEAD expectations. The SEAI and SEAD hold potentially far-reaching and important practical implications for theoretical guidance and diagnostic-level measurement of social, emotional competency across a wide range of domains. Strategies researchers, practitioners, educators, and individuals might use to deploy SEAI in order to improve quality of life outcomes are discussed.

Keywords: emotion, emotional ability, positive psychology-social emotional ability, social emotional ability, social emotional ability instrument

Procedia PDF Downloads 260
1599 Phenotype and Psychometric Characterization of Phelan-Mcdermid Syndrome Patients

Authors: C. Bel, J. Nevado, F. Ciceri, M. Ropacki, T. Hoffmann, P. Lapunzina, C. Buesa

Abstract:

Background: The Phelan-McDermid syndrome (PMS) is a genetic disorder caused by the deletion of the terminal region of chromosome 22 or mutation of the SHANK3 gene. Shank3 disruption in mice leads to dysfunction of synaptic transmission, which can be restored by epigenetic regulation with both Lysine Specific Demethylase 1 (LSD1) inhibitors. PMS subjects result in a variable degree of intellectual disability, delay or absence of speech, autistic spectrum disorders symptoms, low muscle tone, motor delays and epilepsy. Vafidemstat is an LSD1 inhibitor in Phase II clinical development with a well-established and favorable safety profile, and data supporting the restoration of memory and cognition defects as well as reduction of agitation and aggression in several animal models and clinical studies. Therefore, vafidemstat has the potential to become a first-in-class precision medicine approach to treat PMS patients. Aims: The goal of this research is to perform an observational trial to psychometrically characterize individuals carrying deletions in SHANK3 and build a foundation for subsequent precision psychiatry clinical trials with vafidemstat. Methodology: This study is characterizing the clinical profile of 20 to 40 subjects, > 16-year-old, with genotypically confirmed PMS diagnosis. Subjects will complete a battery of neuropsychological scales, including the Repetitive Behavior Questionnaire (RBQ), Vineland Adaptive Behavior Scales, Escala de Observación para el Diagnostico del Autismo (Autism Diagnostic Observational Scale) (ADOS)-2, the Battelle Developmental Inventory and the Behavior Problems Inventory (BPI). Results: By March 2021, 19 patients have been enrolled. Unsupervised hierarchical clustering of the results obtained so far identifies 3 groups of patients, characterized by different profiles of cognitive and behavioral scores. The first cluster is characterized by low Battelle age, high ADOS and low Vineland, RBQ and BPI scores. Low Vineland, RBQ and BPI scores are also detected in the second cluster, which in contrast has high Battelle age and low ADOS scores. The third cluster is somewhat in the middle for the Battelle, Vineland and ADOS scores while displaying the highest levels of aggression (high BPI) and repeated behaviors (high RBQ). In line with the observation that female patients are generally affected by milder forms of autistic symptoms, no male patients are present in the second cluster. Dividing the results by gender highlights that male patients in the third cluster are characterized by a higher frequency of aggression, whereas female patients from the same cluster display a tendency toward higher repetitive behavior. Finally, statistically significant differences in deletion sizes are detected comparing the three clusters (also after correcting for gender), and deletion size appears to be positively correlated with ADOS and negatively correlated with Vineland A and C scores. No correlation is detected between deletion size and the BPI and RBQ scores. Conclusions: Precision medicine may open a new way to understand and treat Central Nervous System disorders. Epigenetic dysregulation has been proposed to be an important mechanism in the pathogenesis of schizophrenia and autism. Vafidemstat holds exciting therapeutic potential in PMS, and this study will provide data regarding the optimal endpoints for a future clinical study to explore vafidemstat ability to treat shank3-associated psychiatric disorders.

Keywords: autism, epigenetics, LSD1, personalized medicine

Procedia PDF Downloads 167
1598 Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification

Authors: Abdelhadi Lotfi, Abdelkader Benyettou

Abstract:

In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance.

Keywords: classification, probabilistic neural networks, network optimization, pattern recognition

Procedia PDF Downloads 265
1597 Effects of Gamification on Lower Secondary School Students’ Motivation and Engagement

Authors: Goh Yung Hong, Mona Masood

Abstract:

This paper explores the effects of gamification on lower secondary school students’ motivation and engagement in the classroom. Two-group posttest-only experimental design were employed to study the influence of gamification teaching method (GTM) when compared with conventional teaching method (CTM) on 60 lower secondary school students. The Student Engagement Instrument (SEI) and Intrinsic Motivation Inventory (IMI) were used to assess students’ intrinsic motivation and engagement level towards the respective teaching method. Finding indicates that students who completed the GTM lesson were significantly higher in intrinsic motivation to learn than those from the CTM. Although the result were insignificant and only marginal difference in the engagement mean, GTM still show better potential in raising student’s engagement in class when compared with CTM. This finding proves that the GTM is likely to solve the current issue of low motivation to learn and low engagement in class among lower secondary school students in Malaysia. On the other hand, despite being not significant, higher mean indicates that CTM positively contribute to higher peer support for learning and better teacher and student relationship when compared with GTM. As a conclusion, gamification approach is flexible and can be adapted into many learning content to enhance the intrinsic motivation to learn and to some extent, encourage better student engagement in class.

Keywords: conventional teaching method, gamification teaching method, motivation, engagement

Procedia PDF Downloads 528
1596 The Role of Personality Traits and Self-Efficacy in Shaping Teaching Styles: Insights from Indian Higher Education Faculty

Authors: Pritha Niraj Arya

Abstract:

Education plays a crucial role in societal evolution by promoting economic expansion and creativity. The varied demands of students in India’s higher education setting signify inclusive and efficient teaching methods. The present study examined how teaching styles, self-efficacy, and personality traits interact among Indian higher education faculty members and how these factors collectively affect pedagogical practices. Specifically, the research explored differences in personality traits -agreeableness, conscientiousness, neuroticism, openness, and extraversion- between teachers with high and low self-efficacy and examined how these traits shape teaching strategies, either student-focused or teacher-focused. Data collection took place for three months, ensuring confidentiality and ethical compliance. 268 faculty members from Indian higher education institutions participated in this comparative study. An online questionnaire was used to gather data in which participants completed three well-established tools: the approaches to teaching inventory, which measures teaching styles; the teacher self-efficacy questionnaire, which measures self-efficacy levels; and the big five inventory, which measures personality traits. The results showed that while teachers with low self-efficacy had higher levels of neuroticism, those with high self-efficacy scored much higher on traits such as agreeableness, conscientiousness, openness, and extraversion. Despite the traditional belief that high self-efficacy is only associated with student-focused teaching, the findings suggest that teachers with high self-efficacy have cognitive flexibility, which enables them to skillfully use both teacher-focused and student-focused approaches to cater to a wide range of classroom needs. Teachers with low self-efficacy, on the other hand, are less flexible and adopt fewer different strategies in their teaching practice. The findings challenge simplistic associations between self-efficacy and teaching strategies, emphasising that high self-efficacy promotes adaptability rather than a fixed preference for specific teaching methods. This adaptability is crucial in India’s diverse educational settings, where teachers must balance standardised curricula with the varied learning needs of students. This study highlights the importance of integrating personality traits and self-efficacy into teacher training programs. By promoting self-efficacy and tailoring professional development to consider individual personality traits, institutions can enhance teachers’ teaching flexibility, hence improving student engagement and learning outcomes. These findings have practical implications for teacher education, suggesting that adopting cognitive flexibility among teachers can improve instructional quality and classroom dynamics. To gain a deeper knowledge of how personality traits and self-efficacy impact teaching practices over time, future research should investigate causal relationships using longitudinal studies. Examining external factors like institutional policies, availability of resources, and cultural settings will help to clarify the dynamics at play. Furthermore, this study emphasises the need to strike a balance between teacher-focused and student-focused approaches to provide a comprehensive education that covers both conceptual understanding and the delivery of key information. This study offers insights into how the Indian educational system is changing and how, to achieve global standards, effective teaching techniques are becoming increasingly important. This study promotes the larger objective of educational excellence by exploring the interaction of internal and external factors impacting teaching styles and providing practical policy and practice recommendations.

Keywords: higher education, personality traits, self-efficacy, teaching styles

Procedia PDF Downloads 15
1595 Relationships among Parentification, Self-Differentiation, and Ambivalence over Emotional Expression for Children of Migratory Families

Authors: Wan-Chun Chang, Yi-Jung Lee

Abstract:

Due to cultural factors, expressing emotions may not be encouraged in collectivist cultures, which emphasize the needs of the group over the needs of the individual. This phenomenon is more prominent for children of migratory families. Due to the absence of one parent, children were often parentified by adults, which then impacted on their self-differentiation process. It made them more difficult to express their needs and emotions freely and openly. This study aimed to investigate the meditation effect of self-differentiation between parentification, and ambivalence over emotional expression for children of migratory families in Taiwan. Participants included 460 (326 females, 134 males) Taiwanese adults (age 18-25 years). The data were collected through questionnaires and analyzed using descriptive statistics and multiple regression analysis. The questionnaire included informed consent form, 'Filial Responsibility Scale-Adult', 'Chinese version of the Differentiation of Self Inventory', 'Ambivalence over Emotion Expressiveness Questionnaire', and the demographic sheet. Results indicated that self-differentiation mediated the relationship between parentified experience and ambivalence over emotional expression. In other words, parentified experience itself does not have the power to affect ambivalence over emotional expression. Only by affecting self-differentiation can it make an actual difference. The results were as expected and confirmed the hypothesis. Implications for clinical practice, research, and training were discussed.

Keywords: ambivalence over emotional expression, children of migratory families, parentification, self-differentiation

Procedia PDF Downloads 137
1594 Mitigating the Cost of Empty Container Repositioning through the Virtual Container Yard: An Appraisal of Carriers’ Perceptions

Authors: L. Edirisinghe, Z. Jin, A. W. Wijeratne, R. Mudunkotuwa

Abstract:

Empty container repositioning is a fundamental problem faced by the shipping industry. The virtual container yard is a novel strategy underpinning the container interchange between carriers that could substantially reduce this ever-increasing shipping cost. This paper evaluates the shipping industry perception of the virtual container yard using chi-square tests. It examines if the carriers perceive that the selected independent variables, namely culture, organization, decision, marketing, attitudes, legal, independent, complexity, and stakeholders of carriers, impact the efficiency and benefits of the virtual container yard. There are two major findings of the research. Firstly, carriers view that complexity, attitudes, and stakeholders may impact the effectiveness of container interchange and may influence the perceived benefits of the virtual container yard. Secondly, the three factors of legal, organization, and decision influence only the perceived benefits of the virtual container yard. Accordingly, the implementation of the virtual container yard will be influenced by six key factors, namely complexity, attitudes, stakeholders, legal, organization and decision. Since the virtual container yard could reduce overall shipping costs, it is vital to examine the carriers’ perception of this concept.

Keywords: virtual container yard, imbalance, management, inventory

Procedia PDF Downloads 197
1593 Exploring Students’ Visual Conception of Matter and Its Implications to Teaching and Learning Chemistry

Authors: Allen A. Espinosa, Arlyne C. Marasigan, Janir T. Datukan

Abstract:

The study explored how students visualize the states and classifications of matter using scientific models. It also identified misconceptions of students in using scientific models. In general, high percentage of students was able to use scientific models correctly and only a little misconception was identified. From the result of the study, a teaching framework was formulated wherein scientific models should be employed in classroom instruction to visualize abstract concepts in chemistry and for better conceptual understanding.

Keywords: visual conception, scientific models, mental models, states of matter, classification of matter

Procedia PDF Downloads 403
1592 The Predicted Values of the California Bearing Ratio (CBR) by Using the Measurements of the Soil Resistivity Method (DC)

Authors: Fathi Ali Swaid

Abstract:

The CBR test is widely used in the assessment of granular materials in base, subbase and subgrade layers of road and airfield pavements. Despite the success of this method, but it depends on a limited numbers of soil samples. This limitation do not adequately account for the spatial variability of soil properties. Thus, assessment is derived using these cursory soil data are likely to contain errors and thus make interpretation and soil characterization difficult. On the other hand quantitative methods of soil inventory at the field scale involve the design and adoption of sampling regimes and laboratory analysis that are time consuming and costly. In the latter case new technologies are required to efficiently sample and observe the soil in the field. This is particularly the case where soil bearing capacity is prevalent, and detailed quantitative information for determining its cause is required. In this paper, an electrical resistivity method DC is described and its application in Elg'deem Dirt road, located in Gasser Ahmad - Misurata, Libya. Results from the DC instrument were found to be correlated with the CBR values (r2 = 0.89). Finally, it is noticed that, the correlation can be used with experience for determining CBR value using basic soil electrical resistivity measurements and checked by few CBR test representing a similar range of CBR.

Keywords: California bearing ratio, basic soil electrical resistivity, CBR, soil, subgrade, new technologies

Procedia PDF Downloads 450
1591 Landsat Data from Pre Crop Season to Estimate the Area to Be Planted with Summer Crops

Authors: Valdir Moura, Raniele dos Anjos de Souza, Fernando Gomes de Souza, Jose Vagner da Silva, Jerry Adriani Johann

Abstract:

The estimate of the Area of Land to be planted with annual crops and its stratification by the municipality are important variables in crop forecast. Nowadays in Brazil, these information’s are obtained by the Brazilian Institute of Geography and Statistics (IBGE) and published under the report Assessment of the Agricultural Production. Due to the high cloud cover in the main crop growing season (October to March) it is difficult to acquire good orbital images. Thus, one alternative is to work with remote sensing data from dates before the crop growing season. This work presents the use of multitemporal Landsat data gathered on July and September (before the summer growing season) in order to estimate the area of land to be planted with summer crops in an area of São Paulo State, Brazil. Geographic Information Systems (GIS) and digital image processing techniques were applied for the treatment of the available data. Supervised and non-supervised classifications were used for data in digital number and reflectance formats and the multitemporal Normalized Difference Vegetation Index (NDVI) images. The objective was to discriminate the tracts with higher probability to become planted with summer crops. Classification accuracies were evaluated using a sampling system developed basically for this study region. The estimated areas were corrected using the error matrix derived from these evaluations. The classification techniques presented an excellent level according to the kappa index. The proportion of crops stratified by municipalities was derived by a field work during the crop growing season. These proportion coefficients were applied onto the area of land to be planted with summer crops (derived from Landsat data). Thus, it was possible to derive the area of each summer crop by the municipality. The discrepancies between official statistics and our results were attributed to the sampling and the stratification procedures. Nevertheless, this methodology can be improved in order to provide good crop area estimates using remote sensing data, despite the cloud cover during the growing season.

Keywords: area intended for summer culture, estimated area planted, agriculture, Landsat, planting schedule

Procedia PDF Downloads 152