Search results for: data protection officer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27099

Search results for: data protection officer

13959 Implementation of a Web-Based Wireless ECG Measuring and Recording System

Authors: Onder Yakut, Serdar Solak, Emine Dogru Bolat

Abstract:

Measuring the Electrocardiogram (ECG) signal is an essential process for the diagnosis of the heart diseases. The ECG signal has the information of the degree of how much the heart performs its functions. In medical diagnosis and treatment systems, Decision Support Systems processing the ECG signal are being developed for the use of clinicians while medical examination. In this study, a modular wireless ECG (WECG) measuring and recording system using a single board computer and e-Health sensor platform is developed. In this designed modular system, after the ECG signal is taken from the body surface by the electrodes first, it is filtered and converted to digital form. Then, it is recorded to the health database using Wi-Fi communication technology. The real time access of the ECG data is provided through the internet utilizing the developed web interface.

Keywords: ECG, e-health sensor shield, Raspberry Pi, wiFi technology

Procedia PDF Downloads 406
13958 Symmetric Arabic Language Encryption Technique Based on Modified Playfair Algorithm

Authors: Fairouz Beggas

Abstract:

Due to the large number of exchanges in the networks, the security of communications is essential. Most ways of keeping communication secure rely on encryption. In this work, a symmetric encryption technique is offered to encrypt and decrypt simple Arabic scripts based on a multi-level security. A proposed technique uses an idea of Playfair encryption with a larger table size and an additional layer of encryption to ensure more security. The idea of the proposed algorithm aims to generate a dynamic table that depends on a secret key. The same secret key is also used to create other secret keys to over-encrypt the plaintext in three steps. The obtained results show that the proposed algorithm is faster in terms of encryption/decryption speed and can resist to many types of attacks.

Keywords: arabic data, encryption, playfair, symmetric algorithm

Procedia PDF Downloads 93
13957 The Batteryless Wi-Fi Backscatter System and Method for Improving the Transmission Range

Authors: Young-Min Ko, Seung-Jun Yu, Seongjoo Lee, Hyoung-Kyu Song

Abstract:

The Internet of things (IoT) system has attracted attention. IoT is a technology to connect all the objects to the internet as well as computer. IoT makes it possible for providing more data interoperability methods for an application purpose. Among the IoT technology, the research of devices so that they can communicate without power supply has been actively conducted. Batteryless system permits us to communicate without power supply devices. In this paper, batteryless backscatter system is used as a tag. And mobile devices which are embedded wireless fidelity (Wi-Fi) chipset are used as a reader. The backscatter tag can be obtained Internet connectivity from the reader. Conventional Wi-Fi backscatter system has limitation in the transmission range. In this paper, the proposed algorithm can be obtained improved reliability as well as overcoming the limitation about transmission range.

Keywords: Ambient RF, Backscatter, Batteryless communication, Energy-harvesting, IoT, RFID, Tag, Wi-Fi

Procedia PDF Downloads 392
13956 Thrust Vectoring Control of Supersonic Flow through an Orifice Injector

Authors: I. Mnafeg, A. Abichou, L. Beji

Abstract:

Traditional mechanical control systems in thrust vectoring are efficient in rocket thrust guidance but their costs and their weights are excessive. The fluidic injection in the nozzle divergent constitutes an alternative procedure to achieve the goal. In this paper, we present a 3D analytical model for fluidic injection in a supersonic nozzle integrating an orifice. The fluidic vectoring uses a sonic secondary injection in the divergent. As a result, the flow and interaction between the main and secondary jet has built in order to express the pressure fields from which the forces and thrust vectoring are deduced. Under various separation criteria, the present analytical model results are compared with the existing numerical and experimental data from the literature.

Keywords: flow separation, fluidic thrust vectoring, nozzle, secondary jet, shock wave

Procedia PDF Downloads 299
13955 Empirical Study and Modelling of Three-Dimensional Pedestrian Flow in Railway Foot-Over-Bridge Stair

Authors: Ujjal Chattaraj, M. Raviteja, Chaitanya Aemala

Abstract:

Over the years vehicular traffic has been given priority over pedestrian traffic. With the increase of population in cities, pedestrian traffic is increasing day by day. Pedestrian safety has become a matter of concern for the Traffic Engineers. Pedestrian comfort is primary important for the Engineers who design different pedestrian facilities. Pedestrian comfort and safety can be measured in terms of different level of service (LOS) of the facilities. In this study video data on pedestrian movement have been collected from different railway foot over bridges (FOB) in India. The level of service of those facilities has been analyzed. A cellular automata based model has been formulated to mimic the route choice behaviour of the pedestrians on the foot over bridges.

Keywords: cellular automata model, foot over bridge, level of service, pedestrian

Procedia PDF Downloads 267
13954 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack

Authors: Varun Agarwal

Abstract:

Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.

Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images

Procedia PDF Downloads 136
13953 ePAM: Advancing Sustainable Mobility through Digital Parking, AI-Driven Vehicle Recognition, and CO₂ Reporting

Authors: Robert Monsberger

Abstract:

The increasing scarcity of resources and the pressing challenge of climate change demand transformative technological, economic, and societal approaches. In alignment with the European Green Deal's goal to achieve net-zero greenhouse gas emissions by 2050, this paper presents the development and implementation of an electronic parking and mobility system (ePAM). This system offers a distinct, integrated solution aimed at promoting climate-positive mobility, reducing individual vehicle use, and advancing the digital transformation of off-street parking. The core objectives include the accurate recognition of electric vehicles and occupant counts using advanced camera-based systems, achieving a very high accuracy. This capability enables the dynamic categorization and classification of vehicles to provide fair and automated tariff adjustments. The study also seeks to replace physical barriers with virtual ‘digital gates’ using augmented reality, significantly improving user acceptance as shown in studies conducted. The system is designed to operate as an end-to-end software solution, enabling a fully digital and paperless parking management system by leveraging license plate recognition (LPR) and metadata processing. By eliminating physical infrastructure like gates and terminals, the system significantly reduces resource consumption, maintenance complexity, and operational costs while enhancing energy efficiency. The platform also integrates CO₂ reporting tools to support compliance with upcoming EU emission trading schemes and to incentivize eco-friendly transportation behaviors. By fostering the adoption of electric vehicles and ride-sharing models, the system contributes to the optimization of traffic flows and the minimization of search traffic in urban centers. The platform's open data interfaces enable seamless integration into multimodal transport systems, facilitating a transition from individual to public transportation modes. This study emphasizes sustainability, data privacy, and compliance with the AI Act, aiming to achieve a market share of at least 4.5% in the DACH region by 2030. ePAM sets a benchmark for innovative mobility solutions, driving significant progress toward climate-neutral urban mobility.

Keywords: sustainable mobility, digital parking, AI-driven vehicle recognition, license plate recognition, virtual gates, multimodal transport integration

Procedia PDF Downloads 10
13952 The Trumping of Science: Exploratory Study into Discrepancy between Politician and Scientist Sources in American Covid-19 News Coverage

Authors: Wafa Unus

Abstract:

Science journalism has been vanishing from America’s national newspapers for decades. Reportage on scientific topics is limited to only a handful of newspapers and of those, few employ dedicated science journalists to cover stories that require this specialized expertise. News organizations' lack of readiness to convey complex scientific concepts to a mass populace becomes particularly problematic when events like the Covid-19 pandemic occur. The lack of coverage of Covid-19 prior to its onset in the United States, suggests something more troubling - that the deprioritization of reporting on hard science as an educational tool in favor of political frames of coverage, places dangerous blinders on the American public. This research looks at the disparity between voices of health and science experts in news articles and the voices of political figures, in order to better understand the approach of American newspapers in conveying expert opinion on Covid-19. A content analysis of 300 articles on Covid-19 by major newspapers in the United States between January 1st, 2020 and April 30th, 2020 illuminates this investigation. The Boston Globe, the New York Times, and the Los Angeles Times are included in the content analysis. Initial findings reveal a significant disparity in the number of articles that mention Anthony Fauci, the director of the National Institute Allergy and Infectious Disease, and the number that make reference to political figures. Covid-related articles in the New York Times that focused on health topics (as opposed to economic or social issues) contained the voices of 54 different politicians who were mentioned a total of 608 times. Only five members of the scientific community were mentioned a total of 24 times (out of 674 articles). In the Boston Globe, 36 different politicians were mentioned a total of 147 times, and only two members of the scientific community, one being Anthony Fauci, were mentioned a total of nine times (out of 423 articles). In the Los Angeles Times, 52 different politicians were mentioned a total of 600 times, and only six members of the scientific community were included and were mentioned a total of 82 times with Fauci being mentioned 48 times (out of 851 articles). Results provide a better understanding of the frames in which American journalists in Covid hotspots conveyed information of expert analysis on Covid-19 during one of the most pressing news events of the century. Ultimately, the objective of this study is to utilize the exploratory data to evaluate the nature, extent and impact of Covid-19 reporting in the context of trustworthiness and scientific expertise. Secondarily, this data will illuminate the degree to which Covid-19 reporting focused on politics over science.

Keywords: science reporting, science journalism, covid, misinformation, news

Procedia PDF Downloads 223
13951 Energy Efficient Firefly Algorithm in Wireless Sensor Network

Authors: Wafa’ Alsharafat, Khalid Batiha, Alaa Kassab

Abstract:

Wireless sensor network (WSN) is comprised of a huge number of small and cheap devices known as sensor nodes. Usually, these sensor nodes are massively and deployed randomly as in Ad-hoc over hostile and harsh environment to sense, collect and transmit data to the needed locations (i.e., base station). One of the main advantages of WSN is that the ability to work in unattended and scattered environments regardless the presence of humans such as remote active volcanoes environments or earthquakes. In WSN expanding network, lifetime is a major concern. Clustering technique is more important to maximize network lifetime. Nature-inspired algorithms are developed and optimized to find optimized solutions for various optimization problems. We proposed Energy Efficient Firefly Algorithm to improve network lifetime as long as possible.

Keywords: wireless network, SN, Firefly, energy efficiency

Procedia PDF Downloads 389
13950 Employing Bayesian Artificial Neural Network for Evaluation of Cold Rolling Force

Authors: P. Kooche Baghy, S. Eskandari, E.javanmard

Abstract:

Neural network has been used as a predictive means of cold rolling force in this dissertation. Thus, imposed average force on rollers as a mere input and five pertaining parameters to its as a outputs are regarded. According to our study, feed-forward multilayer perceptron network has been selected. Besides, Bayesian algorithm based on the feed-forward back propagation method has been selected due to noisy data. Further, 470 out of 585 all tests were used for network learning and others (115 tests) were considered as assessment criteria. Eventually, by 30 times running the MATLAB software, mean error was obtained 3.84 percent as a criteria of network learning. As a consequence, this the mentioned error on par with other approaches such as numerical and empirical methods is acceptable admittedly.

Keywords: artificial neural network, Bayesian, cold rolling, force evaluation

Procedia PDF Downloads 447
13949 A Decision Support System for Flight Disruptions Management

Authors: Burak Erkayman, Emin Gundogar, Hayrettin Evirgen, Murat Sarı

Abstract:

With the increasing competition in recent years, airline companies tend to manage their operations aiming fewer losses in a robust manner. Airline operations are complex operations and have the necessity of being performed just in time and more knock-on relevant elements in the event of a disruption. In this study a knowledge based decision support system is suggested and software is developed. The developed software includes knowledge bases which are based on expert experience and government regulations, model bases and data bases. The results of the suggested approach are presented and improvable aspects of the approach are discussed.

Keywords: knowledge based systems, irregular operations, decision support systems, flight disruptions management

Procedia PDF Downloads 318
13948 HRV Analysis Based Arrhythmic Beat Detection Using kNN Classifier

Authors: Onder Yakut, Oguzhan Timus, Emine Dogru Bolat

Abstract:

Health diseases have a vital significance affecting human being's life and life quality. Sudden death events can be prevented owing to early diagnosis and treatment methods. Electrical signals, taken from the human being's body using non-invasive methods and showing the heart activity is called Electrocardiogram (ECG). The ECG signal is used for following daily activity of the heart by clinicians. Heart Rate Variability (HRV) is a physiological parameter giving the variation between the heart beats. ECG data taken from MITBIH Arrhythmia Database is used in the model employed in this study. The detection of arrhythmic heart beats is aimed utilizing the features extracted from the HRV time domain parameters. The developed model provides a satisfactory performance with ~89% accuracy, 91.7 % sensitivity and 85% specificity rates for the detection of arrhythmic beats.

Keywords: arrhythmic beat detection, ECG, HRV, kNN classifier

Procedia PDF Downloads 353
13947 Changes in Geospatial Structure of Households in the Czech Republic: Findings from Population and Housing Census

Authors: Jaroslav Kraus

Abstract:

Spatial information about demographic processes are a standard part of outputs in the Czech Republic. That was also the case of Population and Housing Census which was held on 2011. This is a starting point for a follow up study devoted to two basic types of households: single person households and households of one completed family. Single person households and one family households create more than 80 percent of all households, but the share and spatial structure is in long-term changing. The increase of single households is results of long-term fertility decrease and divorce increase, but also possibility of separate living. There are regions in the Czech Republic with traditional demographic behavior, and regions like capital Prague and some others with changing pattern. Population census is based - according to international standards - on the concept of currently living population. Three types of geospatial approaches will be used for analysis: (i) firstly measures of geographic distribution, (ii) secondly mapping clusters to identify the locations of statistically significant hot spots, cold spots, spatial outliers, and similar features and (iii) finally analyzing pattern approach as a starting point for more in-depth analyses (geospatial regression) in the future will be also applied. For analysis of this type of data, number of households by types should be distinct objects. All events in a meaningful delimited study region (e.g. municipalities) will be included in an analysis. Commonly produced measures of central tendency and spread will include: identification of the location of the center of the point set (by NUTS3 level); identification of the median center and standard distance, weighted standard distance and standard deviational ellipses will be also used. Identifying that clustering exists in census households datasets does not provide a detailed picture of the nature and pattern of clustering but will be helpful to apply simple hot-spot (and cold spot) identification techniques to such datasets. Once the spatial structure of households will be determined, any particular measure of autocorrelation can be constructed by defining a way of measuring the difference between location attribute values. The most widely used measure is Moran’s I that will be applied to municipal units where numerical ratio is calculated. Local statistics arise naturally out of any of the methods for measuring spatial autocorrelation and will be applied to development of localized variants of almost any standard summary statistic. Local Moran’s I will give an indication of household data homogeneity and diversity on a municipal level.

Keywords: census, geo-demography, households, the Czech Republic

Procedia PDF Downloads 100
13946 Comparing the Willingness to Communicate in a Foreign Language of Bilinguals and Monolinguals

Authors: S. Tarighat, F. Shateri

Abstract:

This study explored the relationship between L2 Willingness to Communicate (WTC) of bilinguals and monolinguals in a foreign language using a snowball sampling method to collect questionnaire data from 200 bilinguals and monolinguals studying a foreign language (FL). The results indicated a higher willingness to communicate in a foreign language (WTC-FL) performed by bilinguals compared to that of the monolinguals with a weak significance. Yet a stronger significance was found in the relationship between the age of onset of bilingualism and WTC-FL. The researcher proposed that L2 WTC is indirectly influenced by knowledge of other languages, which can boost L2 confidence and reduce L2 anxiety and consequently lead to higher L2 WTC when learning a different L2. The study also found the age of onset of bilingualism to be a predictor of L2 WTC when learning a FL. The results emphasize the importance of bilingualism and early bilingualism in particular.

Keywords: bilingualism, foreign language learning, l2 acquisition, willingness to communicate

Procedia PDF Downloads 305
13945 Random Subspace Ensemble of CMAC Classifiers

Authors: Somaiyeh Dehghan, Mohammad Reza Kheirkhahan Haghighi

Abstract:

The rapid growth of domains that have data with a large number of features, while the number of samples is limited has caused difficulty in constructing strong classifiers. To reduce the dimensionality of the feature space becomes an essential step in classification task. Random subspace method (or attribute bagging) is an ensemble classifier that consists of several classifiers that each base learner in ensemble has subset of features. In the present paper, we introduce Random Subspace Ensemble of CMAC neural network (RSE-CMAC), each of which has training with subset of features. Then we use this model for classification task. For evaluation performance of our model, we compare it with bagging algorithm on 36 UCI datasets. The results reveal that the new model has better performance.

Keywords: classification, random subspace, ensemble, CMAC neural network

Procedia PDF Downloads 336
13944 The Use of Webquests in Developing Inquiry Based Learning: Views of Teachers and Students in Qatar

Authors: Abdullah Abu-Tineh, Carol Murphy, Nigel Calder, Nasser Mansour

Abstract:

This paper reports on an aspect of e-learning in developing inquiry-based learning (IBL). We present data on the views of teachers and students in Qatar following a professional development programme intended to help teachers implement IBL in their science and mathematics classrooms. Key to this programme was the use of WebQuests. Views of the teachers and students suggested that WebQuests helped students to develop technical skills, work collaboratively and become independent in their learning. The use of WebQuests also enabled a combination of digital and non-digital tools that helped students connect ideas and enhance their understanding of topics.

Keywords: digital technology, inquiry-based learning, mathematics and science education, professional development

Procedia PDF Downloads 146
13943 Exploring Neural Responses to Urban Spaces in Older People Using Mobile EEG

Authors: Chris Neale, Jenny Roe, Peter Aspinall, Sara Tilley, Steve Cinderby, Panos Mavros, Richard Coyne, Neil Thin, Catharine Ward Thompson

Abstract:

This research directly assesses older people’s neural activation in response to walking through a changing urban environment, as measured by electroencephalography (EEG). As the global urban population is predicted to grow, there is a need to understand the role that the urban environment may play on the health of its older inhabitants. There is a large body of evidence suggesting green space has a beneficial restorative effect, but this effect remains largely understudied in both older people and by using a neuroimaging assessment. For this study, participants aged 65 years and over were required to walk between a busy urban built environment and a green urban environment, in a counterbalanced design, wearing an Emotiv EEG headset to record real-time neural responses to place. Here we report on the outputs for these responses derived from both the proprietary Affectiv Suite software, which creates emotional parameters with a real time value assigned to them, as well as the raw EEG output focusing on alpha and beta changes, associated with changes in relaxation and attention respectively. Each walk lasted around fifteen minutes and was undertaken at the natural walking pace of the participant. The two walking environments were compared using a form of high dimensional correlated component regression (CCR) on difference data between the urban busy and urban green spaces. For the Emotiv parameters, results showed that levels of ‘engagement’ increased in the urban green space (with a subsequent decrease in the urban busy built space) whereas levels of ‘excitement’ increased in the urban busy environment (with a subsequent decrease in the urban green space). In the raw data, low beta (13 – 19 Hz) increased in the urban busy space with a subsequent decrease shown in the green space, similar to the pattern shown with the ‘excitement’ result. Alpha activity (9 – 13 Hz) shows a correlation with low beta, but not with dependent change in the regression model. This suggests that alpha is acting as a suppressor variable. These results suggest that there are neural signatures associated with the experience of urban spaces which may reflect the age of the cohort or the spatiality of the settings themselves. These are shown both in the outputs of the proprietary software as well as the raw EEG output. Built busy urban spaces appear to induce neural activity associated with vigilance and low level stress, while this effect is ameliorated in the urban green space, potentially suggesting a beneficial effect on attentional capacity in urban green space in this participant group. The interaction between low beta and alpha requires further investigation, in particular the role of alpha in this relationship.

Keywords: ageing, EEG, green space, urban space

Procedia PDF Downloads 227
13942 Problems and Challenges Facing Refugees and Internally Displaced Persons In Iraq

Authors: Rebin Kamal Hama Gharib

Abstract:

This research paper aims to identify the common and current problems and challenges faced by refugees and internally displaced persons (IDPs) in Iraq. The objective of this research is to highlight the urgent need for policy measures and support to address these issues. The research methodology includes a review of academic literature, government reports, and data collected by international organizations such as the United Nations High Commissioner for Refugees (UNHCR) and the International Organization for Migration (IOM). The main contribution of this research is to provide a comprehensive overview of the challenges faced by refugees and IDPs in Iraq, including their legal status, access to basic services, economic opportunities, and social integration.

Keywords: efugees, internally displaced persons, Iraq, challenges, policy measures

Procedia PDF Downloads 87
13941 The Effect of Impact on the Knee Joint Due to the Shocks during Double Impact Phase of Gait Cycle

Authors: Jobin Varghese, V. M. Akhil, P. K. Rajendrakumar, K. S. Sivanandan

Abstract:

The major contributor to the human locomotion is the knee flexion and extension. During heel strike, a huge amount of energy is transmitted through the leg towards knee joint, which in fact is damped at heel and leg muscles. During high shocks, although it is damped to a certain extent, the balance force transmits towards knee joint which could damage the knee. Due to the vital function of the knee joint, it should be protected against damage due to additional load acting on it. This work concentrates on the development of spring mass damper system which exactly replicates the stiffness at the heel and muscles and the objective function is optimized to minimize the force acting at the knee joint. Further, the data collected using force plate are put into the model to verify its integrity and are found to be in good agreement.

Keywords: spring, mass, damper, knee joint

Procedia PDF Downloads 274
13940 The Anti-Globalization Movement, Brexit, Outsourcing and the Current State of Globalization

Authors: Alexis Naranjo

Abstract:

In the current global stage, a new sense and mix feelings against the globalization has started to take shape thanks to events such as Brexit and the 2016 US election. The perceptions towards the globalization have started to focus in a resistance movement called the 'anti-globalization movement'. This paper examines the current global stage vs. leadership decisions in a time when market integrations are not longer seeing as an opportunity for an economic growth buster. The biggest economy in the world the United States of America has started to face a new beginning of something called 'anti-globalization', in the current global stage starting with the United Kingdom to the United States a new strategy to help local economies has started to emerge. A new nationalist movement has started to focus on their local economies which now represents a direct threat to the globalization, trade agreements, wages and free markets. Business leaders of multinationals now in our days face a new dilemma, how to address the feeling that globalization and outsourcing destroy and take away jobs from local economies. The initial perception of the literature and data rebels that companies in Western countries like the US sees many risks associate with outsourcing, however, saving cost associated with outsourcing is greater than the firm’s local reputation. Starting with India as a good example of a supplier of IT developers, analysts and call centers we can start saying that India is an industrialized nation which has not yet secured its spot and title. India has emerged as a powerhouse in the outsource industry, which makes India hold the number one spot in the world to outsource IT services. Thanks to the globalization of economies and markets around the globe that new ideas to increase productivity at a lower cost has been existing for years and has started to offer new ideas and options to businesses in different industries. The economic growth of the information technology (IT) industry in India is an example of the power of the globalization which in the case of India has been tremendous and significant especially in the economic arena. This research paper concentrates in understand the behavior of business leaders: First, how multinational’s leaders will face the new challenges and what actions help them to lead in turbulent times. Second, if outsourcing or withdraw from a market is an option what are the consequences and how you communicate and negotiate from the business leader perspective. Finally, is the perception of leaders focusing on financial results or they have a different goal? To answer these questions, this study focuses on the most recent data available to outline and present the findings of the reason why outsourcing is and option and second, how and why those decisions are made. This research also explores the perception of the phenomenon of outsourcing in many ways and explores how the globalization has contributed to its own questioning.

Keywords: anti-globalization, globalization, leadership, outsourcing

Procedia PDF Downloads 196
13939 First Principle Calculation of The Magnetic Properties of Mn-doped 6H-SiC

Authors: M. Al Azri, M. Elzain, K. Bouziane, S. M. Chérif

Abstract:

The electronic and magnetic properties of 6H-SiC with Mn impurities have been calculated using ab-initio calculations. Various configurations of Mn sites and Si and C vacancies were considered. The magnetic coupling between the two Mn atoms at substitutional and interstitials sites with and without vacancies is studied as a function of Mn atoms interatomic distance. It was found that the magnetic interaction energy decreases with increasing distance between the magnetic atoms. The energy levels appearing in the band gap due to vacancies and due to Mn impurities are determined. The calculated DOS’s are used to analyze the nature of the exchange interaction between the impurities. The band coupling model based on the p-d and d-d level repulsions between Mn and SiC has been used to describe the magnetism observed in each configuration. Furthermore, the impacts of applying U to Mn-d orbital on the magnetic moment have also been investigated. The results are used to understand the experimental data obtained on Mn- 6H-SiC (as-implanted and as –annealed) for various Mn concentration (CMn = 0.7%, 1.6%, 7%).

Keywords: ab-initio calculations, diluted magnetic semiconductors, magnetic properties, silicon carbide

Procedia PDF Downloads 296
13938 Psychological and Ethical Factors in African American Custody Litigation

Authors: Brian Carey Sims

Abstract:

The current study examines psychological factors relevant to child custody litigation among African American fathers. Thirty-seven fathers engaged in various stages of custody litigation involving their children were surveyed about their perceptions of racial stereotypes, parental motivations, and racialized dynamics of the court/ legal process. Data were analyzed using a Critical Race Theory model designed to statistically isolate fathers’ perceptions of the existence and maintenance of structural racism through the legal process. Results indicate significant correlations between fathers’ psychological measures and structural outcomes of their cases. Findings are discussed in terms of ethical implications for family court judicial systems and attorney practice.

Keywords: ethics, family, legal psychology, policy, race

Procedia PDF Downloads 354
13937 Level up Entrepreneurial Behaviors: A Case Study on the Use of Gamification to Encourage Entrepreneurial Acting and Thinking

Authors: Lena Murawski

Abstract:

Currently, researchers and experts from the business world recognize entrepreneurial behaviors as a decisive factor for economic success, allowing firms to adapt to changing internal and external needs. The purpose of this study is to explore how gamification can enhance entrepreneurial behaviors, reporting on a gamification project in a new venture operating in the IT sector in Germany. This article is based on data gathered from observations of pre‐ and post‐implementation in the case company. Results have indicated that the use of gamification encourages entrepreneurial behaviors, especially relating to seeking ways on how to integrate new employees, improve teamwork and communication, and to adapt existing processes to increase productivity. The interdisciplinary dialogue furthers our understanding of factors that foster entrepreneurial behaviors. The matter is of practical relevance, guiding practitioners on how to exploit the potentials of gamification to exhibit an entrepreneurial orientation in organizations.

Keywords: case study, entrepreneurial behaviors, gamification, new venture

Procedia PDF Downloads 167
13936 Youthful Population Sexual Activity in Malawi: A Health Scenario

Authors: A. Sathiya Susuman, N. Wilson

Abstract:

Background: The sexual behaviour of youths is believed to play an important role in the spread of sexually transmitted infections (STIs). Method: The data from the Malawi Demographic and Health Survey 2010 and a sample of 16,217 youth’s age 15 to 24 years (with each household 27.2% female and 72.8% male) was the basis for analysis. Bivariate and logistic regression analysis was performed. Results: The result shows married youth were not interested in condom use (94.2%, p<0.05). Those who were living together were 69 times (OR=1.69, 95% CI, 1.26–2.26) more likely to be involved in early sexual activity compared to those who were not living together. Conclusion: This scientific paper will help other researchers, policy makers, and planners to create strategies to encourage these youths to make use of contraception.

Keywords: sexually transmitted infections (STIs), reproductive tract infections (RTIs), condom use, sexual partners, early sexual debut, youths

Procedia PDF Downloads 440
13935 Multivariate Dependent Frequency-Severity Modeling of Insurance Claims: A Vine Copula Approach

Authors: Islem Kedidi, Rihab Bedoui Bensalem, Faysal Manssouri

Abstract:

In traditional models of insurance data, the number and size of claims are assumed to be independent. Relaxing the independence assumption, this article explores the Vine copula to model dependence structure between multivariate frequency and average severity of insurance claim. To illustrate this approach, we use the Wisconsin local government property insurance fund which offers several insurance protections for motor vehicles, property and contractor’s equipment claims. Results show that the C-vine copula can better characterize the multivariate dependence structure between frequency and severity. Furthermore, we find significant dependencies especially between frequency and average severity among different coverage types.

Keywords: dependency modeling, government insurance, insurance claims, vine copula

Procedia PDF Downloads 215
13934 Zero Net Energy Communities and the Impacts to the Grid

Authors: Heidi von Korff

Abstract:

The electricity grid is changing in terms of flexibility. Distributed generation (DG) policy is being discussed worldwide and implemented. Developers and utilities are seeking a pathway towards Zero Net Energy (ZNE) communities and the interconnection to the distribution grid. Using the VISDOM platform for establishing a method for managing and monitoring energy consumption loads of ZNE communities as a capacity resource for the grid. Reductions in greenhouse gas emissions and energy security are primary policy drivers for incorporating high-performance energy standards and sustainability practices in residential households, such as a market transformation of ZNE and nearly ZNE (nZNE) communities. This research investigates how load data impacts ZNE, to see if there is a correlation to the daily load variations in a single ZNE home. Case studies will include a ZNE community in California and a nearly ZNE community (All – Electric) in the Netherlands, which both are in measurement and verification (M&V) phases and connected to the grid for simulations of methods.

Keywords: zero net energy, distributed generation, renewable energy, zero net energy community

Procedia PDF Downloads 311
13933 Software Defect Analysis- Eclipse Dataset

Authors: Amrane Meriem, Oukid Salyha

Abstract:

The presence of defects or bugs in software can lead to costly setbacks, operational inefficiencies, and compromised user experiences. The integration of Machine Learning(ML) techniques has emerged to predict and preemptively address software defects. ML represents a proactive strategy aimed at identifying potential anomalies, errors, or vulnerabilities within code before they manifest as operational issues. By analyzing historical data, such as code changes, feature im- plementations, and defect occurrences. This en- ables development teams to anticipate and mitigate these issues, thus enhancing software quality, reducing maintenance costs, and ensuring smoother user interactions. In this work, we used a recommendation system to improve the performance of ML models in terms of predicting the code severity and effort estimation.

Keywords: software engineering, machine learning, bugs detection, effort estimation

Procedia PDF Downloads 91
13932 Application of Remote Sensing and GIS in Assessing Land Cover Changes within Granite Quarries around Brits Area, South Africa

Authors: Refilwe Moeletsi

Abstract:

Dimension stone quarrying around Brits and Belfast areas started in the early 1930s and has been growing rapidly since then. Environmental impacts associated with these quarries have not been documented, and hence this study aims at detecting any change in the environment that might have been caused by these activities. Landsat images that were used to assess land use/land cover changes in Brits quarries from 1998 - 2015. A supervised classification using maximum likelihood classifier was applied to classify each image into different land use/land cover types. Classification accuracy was assessed using Google Earth™ as a source of reference data. Post-classification change detection method was used to determine changes. The results revealed significant increase in granite quarries and corresponding decrease in vegetation cover within the study region.

Keywords: remote sensing, GIS, change detection, granite quarries

Procedia PDF Downloads 317
13931 Assessing Autism Spectrum Disorders (ASD) Challenges in Young Children in Dubai: A Qualitative Study, 2016

Authors: Kadhim Alabady

Abstract:

Background: Autism poses a particularly large public health challenge and an inspiring lifelong challenge for many families; it is a lifelong challenge of a different kind. Purpose: Therefore, it is important to understand what the key challenges are and how to improve the lives of children who are affected with autism in Dubai. Method: In order to carry out this research we have used a qualitative methodology. We performed structured in–depth interviews and focus groups with mental health professionals working at: Al Jalila hospital (AJH), Dubai Autism Centre (DAC), Dubai Rehabilitation Centre for Disabilities, Latifa hospital, Private Sector Healthcare (PSH). In addition to that, we conducted quantitative approach to estimate ASD prevalence or incidence data due to lack of registry. ASD estimates are based on research from national and international documents. This approach was applied to increase the validity of the findings by using a variety of data collection techniques in order to explore issues that might not be highlighted through one method alone. Key findings: Autism is the most common of the Pervasive Developmental Disorders. Dubai Autism Center estimates it affects 1 in 146 births (0.68%). If we apply these estimates to the total number of births in Dubai for 2014, it is predicted there would be approximately 199 children (of which 58 were Nationals and 141 were Non–Nationals) suffering from autism at some stage. 16.4% of children (through their families) seek help for ASD assessment between the age group 6–18+. It is critical to understand and address factors for seeking late–stage diagnosis, as ASD can be diagnosed much earlier and how many of these later presenters are actually diagnosed with ASD. Autism spectrum disorder (ASD) is a public health concern in Dubai. Families do not consult GPs for early diagnosis for a variety of reasons including cultural reasons. Recommendations: Effective school health strategies is needed and implemented by nurses who are qualified and experienced in identifying children with ASD. There is a need for the DAC to identify and develop a closer link with neurologists specializing in Autism, to work alongside and for referrals. Autism can be attributed to many factors, some of those are neurological. Currently, when families need their child to see a neurologist they have to go independently and search through the many that are available in Dubai and who are not necessarily specialists in Autism. Training of GP’s to aid early diagnosis of Autism and increase awareness. Since not all GP’s are trained to make such assessments increasing awareness about where to send families for a complete assessment and the necessary support. There is an urgent need for an adult autism center for when the children leave the safe environment of the school at 18 years. These individuals require a day center or suitable job training/placements where appropriate. There is a need for further studies to cover the needs of people with an Autism Spectrum Disorder (ASD).

Keywords: autism spectrum disorder, autism, pervasive developmental disorders, incidence

Procedia PDF Downloads 223
13930 Predictive Semi-Empirical NOx Model for Diesel Engine

Authors: Saurabh Sharma, Yong Sun, Bruce Vernham

Abstract:

Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model.  Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.

Keywords: diesel engine, machine learning, NOₓ emission, semi-empirical

Procedia PDF Downloads 116