Search results for: surface and bottom water
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13860

Search results for: surface and bottom water

780 Statistical Optimization of Adsorption of a Harmful Dye from Aqueous Solution

Authors: M. Arun, A. Kannan

Abstract:

Textile industries cater to varied customer preferences and contribute substantially to the economy. However, these textile industries also produce a considerable amount of effluents. Prominent among these are the azo dyes which impart considerable color and toxicity even at low concentrations. Azo dyes are also used as coloring agents in food and pharmaceutical industry. Despite their applications, azo dyes are also notorious pollutants and carcinogens. Popular techniques like photo-degradation, biodegradation and the use of oxidizing agents are not applicable for all kinds of dyes, as most of them are stable to these techniques. Chemical coagulation produces a large amount of toxic sludge which is undesirable and is also ineffective towards a number of dyes. Most of the azo dyes are stable to UV-visible light irradiation and may even resist aerobic degradation. Adsorption has been the most preferred technique owing to its less cost, high capacity and process efficiency and the possibility of regenerating and recycling the adsorbent. Adsorption is also most preferred because it may produce high quality of the treated effluent and it is able to remove different kinds of dyes. However, the adsorption process is influenced by many variables whose inter-dependence makes it difficult to identify optimum conditions. The variables include stirring speed, temperature, initial concentration and adsorbent dosage. Further, the internal diffusional resistance inside the adsorbent particle leads to slow uptake of the solute within the adsorbent. Hence, it is necessary to identify optimum conditions that lead to high capacity and uptake rate of these pollutants. In this work, commercially available activated carbon was chosen as the adsorbent owing to its high surface area. A typical azo dye found in textile effluent waters, viz. the monoazo Acid Orange 10 dye (CAS: 1936-15-8) has been chosen as the representative pollutant. Adsorption studies were mainly focused at obtaining equilibrium and kinetic data for the batch adsorption process at different process conditions. Studies were conducted at different stirring speed, temperature, adsorbent dosage and initial dye concentration settings. The Full Factorial Design was the chosen statistical design framework for carrying out the experiments and identifying the important factors and their interactions. The optimum conditions identified from the experimental model were validated with actual experiments at the recommended settings. The equilibrium and kinetic data obtained were fitted to different models and the model parameters were estimated. This gives more details about the nature of adsorption taking place. Critical data required to design batch adsorption systems for removal of Acid Orange 10 dye and identification of factors that critically influence the separation efficiency are the key outcomes from this research.

Keywords: acid orange 10, activated carbon, optimum adsorption conditions, statistical design

Procedia PDF Downloads 168
779 Strength Performance and Microstructure Characteristics of Natural Bonded Fiber Composites from Malaysian Bamboo

Authors: Shahril Anuar Bahari, Mohd Azrie Mohd Kepli, Mohd Ariff Jamaludin, Kamarulzaman Nordin, Mohamad Jani Saad

Abstract:

Formaldehyde release from wood-based panel composites can be very toxicity and may increase the risk of human health as well as environmental problems. A new bio-composites product without synthetic adhesive or resin is possible to be developed in order to reduce these problems. Apart from formaldehyde release, adhesive is also considered to be expensive, especially in the manufacturing of composite products. Natural bonded composites can be termed as a panel product composed with any type of cellulosic materials without the addition of synthetic resins. It is composed with chemical content activation in the cellulosic materials. Pulp and paper making method (chemical pulping) was used as a general guide in the composites manufacturing. This method will also generally reduce the manufacturing cost and the risk of formaldehyde emission and has potential to be used as an alternative technology in fiber composites industries. In this study, the natural bonded bamboo fiber composite was produced from virgin Malaysian bamboo fiber (Bambusa vulgaris). The bamboo culms were chipped and digested into fiber using this pulping method. The black liquor collected from the pulping process was used as a natural binding agent in the composition. Then the fibers were mixed and blended with black liquor without any resin addition. The amount of black liquor used per composite board was 20%, with approximately 37% solid content. The composites were fabricated using a hot press machine at two different board densities, 850 and 950 kg/m³, with two sets of hot pressing time, 25 and 35 minutes. Samples of the composites from different densities and hot pressing times were tested in flexural strength and internal bonding (IB) for strength performance according to British Standard. Modulus of elasticity (MOE) and modulus of rupture (MOR) was determined in flexural test, while tensile force perpendicular to the surface was recorded in IB test. Results show that the strength performance of the composites with 850 kg/m³ density were significantly higher than 950 kg/m³ density, especially for samples from 25 minutes hot pressing time. Strength performance of composites from 25 minutes hot pressing time were generally greater than 35 minutes. Results show that the maximum mean values of strength performance were recorded from composites with 850 kg/m³ density and 25 minutes pressing time. The maximum mean values for MOE, MOR and IB were 3251.84, 16.88 and 0.27 MPa, respectively. Only MOE result has conformed to high density fiberboard (HDF) standard (2700 MPa) in British Standard for Fiberboard Specification, BS EN 622-5: 2006. Microstructure characteristics of composites can also be related to the strength performance of the composites, in which, the observed fiber damage in composites from 950 kg/m³ density and overheat of black liquor led to the low strength properties, especially in IB test.

Keywords: bamboo fiber, natural bonded, black liquor, mechanical tests, microstructure observations

Procedia PDF Downloads 252
778 Seroepidemiological Study of Toxoplasma gondii Infection in Women of Child-Bearing Age in Communities in Osun State, Nigeria

Authors: Olarinde Olaniran, Oluyomi A. Sowemimo

Abstract:

Toxoplasmosis is frequently misdiagnosed or underdiagnosed, and it is the third most common cause of hospitalization due to food-borne infection. Intra-uterine infection with Toxoplasma gondii due to active parasitaemia during pregnancy can cause severe and often fatal cerebral damage, abortion, and stillbirth of a fetus. The aim of the study was to investigate the prevalence of T. gondii infection in women of childbearing age in selected communities of Osun State with a view to determining the risk factors which predispose to the T. gondii infection. Five (5) ml of blood was collected by venopuncture into a plain blood collection tube by a medical laboratory scientist. Serum samples were separated by centrifuging the blood samples at 3000 rpm for 5 mins. The sera were collected with Eppendorf tubes and stored at -20°C analysis for the presence of IgG and IgM antibodies against T. gondii by commercially available enzyme-linked immunosorbent assay (ELISA) kit (Demeditec Diagnostics GmbH, Germany) conducted according to the manufacturer’s instructions. The optical densities of wells were measured by a photometer at a wavelength of 450 nm. Data collected were analysed using appropriate computer software. The overall seroprevalence of T. gondii among the women of child-bearing age in selected seven communities in Osun state was 76.3%. Out of 76.3% positive for Toxoplasma gondii infection, 70.0% were positive for anti- T. gondii IgG, and 32.3% were positive for IgM, and 26.7% for both IgG and IgM. The prevalence of T. gondii was lowest (58.9%) among women from Ile Ife, a peri-urban community, and highest (100%) in women residing in Alajue, a rural community. The prevalence of infection was significantly higher (P= 0.000) among Islamic women (87.5%) than in Christian women (70.8%). The highest prevalence (86.3%) was recorded in women with primary education, while the lowest (61.2%) was recorded in women with tertiary education (p =0.016). The highest prevalence (79.7%) was recorded in women that reside in rural areas, and the lowest (70.1%) was recorded in women that reside in peri-urban area (p=0.025). The prevalence of T. gondii infection was highest (81.4%) in women with one miscarriage, while the prevalence was lowest in women with no miscarriages (75.9%). The age of the women (p=0.042), Islamic religion (p=0.001), the residence of the women (p=0.001), and water source were all positively associated with T. gondii infection. The study concluded that there was a high seroprevalence of T. gondii recorded among women of child-bearing age in the study area. Hence, there is a need for health education and create awareness of the disease and its transmission to women of reproductive age group in general and pregnant women in particular to reduce the risk of T. gondii in pregnant women.

Keywords: seroepidemiology, Toxoplasma gondii, women, child-bearing, age, communities, Ile -Ife, Nigeria

Procedia PDF Downloads 174
777 Yield Loss in Maize Due to Stem Borers and Their Integrated Management

Authors: C. P. Mallapur, U. K. Hulihalli, D. N. Kambrekar

Abstract:

Maize (Zea mays L.) an important cereal crop in the world has diversified uses including human consumption, animal feed, and industrial uses. A major constraint in low productivity of maize in India is undoubtedly insect pests particularly two species of stem borers, Chilo partellus (Swinhoe) and Sesamia inferens (Walker). The stem borers cause varying level of yield losses in different agro-climate regions (25.7 to 80.4%) resulting in a huge economic loss to the farmers. Although these pests are rather difficult to manage, efforts have been made to combat the menace by using effective insecticides. However, efforts have been made in the present study to integrate various possible approaches for sustainable management of these borers. Two field experiments were conducted separately during 2016-17 at Main Agricultural Research Station, University of Agricultural Sciences, Dharwad, Karnataka, India. In the first experiment, six treatments were randomized in RBD. The insect eggs at pinhead stage (@ 40 eggs/plant) were stapled to the under surface of leaves covering 15-20 % of plants in each plot after 15 days of sowing. The second experiment was planned with nine treatments replicated thrice. The border crop with NB -21 grass was planted all around the plots in the specific treatments while, cowpea intercrop (@6:1-row proportion) was sown along with the main crop and later, the insecticidal spray with chlorantraniliprole and nimbecidine was taken upon need basis in the specific treatments. The results indicated that the leaf injury and dead heart incidence were relatively more in the treatments T₂ and T₄ wherein, no insect control measures were made after the insect release (58.30 & 40.0 % leaf injury and 33.42 and 25.74% dead heart). On the contrary, these treatments recorded higher stem tunneling (32.4 and 24.8%) and resulted in lower grain yield (17.49 and 26.79 q/ha) compared to 29.04, 32.68, 40.93 and 46.38 q/ha recorded in T₁, T₃, T₅ and T₆ treatments, respectively. A maximum yield loss of 28.89 percent was noticed in T₂ followed by 19.59 percent in T₄ where no sprays were imposed. The data on integrated management trial revealed the lowest stem borer damage (19.28% leaf injury and 1.21% dead heart) in T₅ (seed treatment with thiamethoxam 70FS @ 8ml/kg seed + cow intercrop along with nimbecidine 0.03EC @ 5.0 ml/l and chlorantraniliprole 18.5SC spray @ 0.2 ml/l). The next best treatment was T₆ (ST+ NB-21 borer with nimbecidine and chlorantraniliprole spray) with 21.3 and 1.99 percent leaf injury and dead heart incidence, respectively. These treatments resulted in highest grain yield (77.71 and 75.53 q/ha in T₅ and T₆, respectively) compared to the standard check, T₁ (ST+ chlorantraniliprole spray) wherein, 27.63 percent leaf injury and 3.68 percent dead heart were noticed with 60.14 q/ha grain yield. The stem borers can cause yield loss up to 25-30 percent in maize which can be well tackled by seed treatment with thiamethoxam 70FS @ 8ml/kg seed and sowing the crop along with cowpea as intercrop (6:1 row proportion) or NB-21 grass as border crop followed by application of nimbecidine 0.03EC @ 5.0 ml/l and chlorantraniliprole 18.5SC @ 0.2 ml/l on need basis.

Keywords: Maize stem borers, Chilo partellus, Sesamia inferens, crop loss, integrated management

Procedia PDF Downloads 174
776 Algae Biofertilizers Promote Sustainable Food Production and Nutrient Efficiency: An Integrated Empirical-Modeling Study

Authors: Zeenat Rupawalla, Nicole Robinson, Susanne Schmidt, Sijie Li, Selina Carruthers, Elodie Buisset, John Roles, Ben Hankamer, Juliane Wolf

Abstract:

Agriculture has radically changed the global biogeochemical cycle of nitrogen (N). Fossil fuel-enabled synthetic N-fertiliser is a foundation of modern agriculture but applied to soil crops only use about half of it. To address N-pollution from cropping and the large carbon and energy footprint of N-fertiliser synthesis, new technologies delivering enhanced energy efficiency, decarbonisation, and a circular nutrient economy are needed. We characterised algae fertiliser (AF) as an alternative to synthetic N-fertiliser (SF) using empirical and modelling approaches. We cultivated microalgae in nutrient solution and modelled up-scaled production in nutrient-rich wastewater. Over four weeks, AF released 63.5% of N as ammonium and nitrate, and 25% of phosphorous (P) as phosphate to the growth substrate, while SF released 100% N and 20% P. To maximise crop N-use and minimise N-leaching, we explored AF and SF dose-response-curves with spinach in glasshouse conditions. AF-grown spinach produced 36% less biomass than SF-grown plants due to AF’s slower and linear N-release, while SF resulted in 5-times higher N-leaching loss than AF. Optimised blends of AF and SF boosted crop yield and minimised N-loss due to greater synchrony of N-release and crop uptake. Additional benefits of AF included greener leaves, lower leaf nitrate concentration, and higher microbial diversity and water holding capacity in the growth substrate. Life-cycle-analysis showed that replacing the most effective SF dosage with AF lowered the carbon footprint of fertiliser production from 2.02 g CO₂ (C-producing) to -4.62 g CO₂ (C-sequestering), with a further 12% reduction when AF is produced on wastewater. Embodied energy was lowest for AF-SF blends and could be reduced by 32% when cultivating algae on wastewater. We conclude that (i) microalgae offer a sustainable alternative to synthetic N-fertiliser in spinach production and potentially other crop systems, and (ii) microalgae biofertilisers support the circular nutrient economy and several sustainable development goals.

Keywords: bioeconomy, decarbonisation, energy footprint, microalgae

Procedia PDF Downloads 135
775 Seasonal Variations, Environmental Parameters, and Standing Crop Assessment of Benthic Foraminifera in Western Bahrain, Arabian Gulf

Authors: Muhammad Arslan, Michael A. Kaminski, Bassam S. Tawabini, Fabrizio Frontalini

Abstract:

We conducted a survey of living benthic foraminifera in a relatively unpolluted site of Bahrain in the Arabian Gulf, with the aim of determining the seasonal variability in their populations, as well as various environmental parameters that affect their distribution. The maximum standing crop was observed during winter, with highest population of rotaliids, followed by a peak in miliolids. The highest population is attributed to an increasing number juveniles observed along the depth transect. A strong correlation between sediment grain size and the foraminiferal population indicates that juveniles were most abundant on coarser sandy substrate and less abundant on fine substrate. In spring, the total living population decreased, and lowest values are observed in the summer. The population started to increase again in the autumn with highest juveniles/adult ratios. Moreover, results of relative abundance and species consistency show that Ammonia is found to be consistent from the shallowest to the deepest station, whereas miliolids start appearing in the deeper stations. The average numbers of Peneroplis and Elphidium also increases along the depth transect. Environmental characterization reveals that although the site is subjected to eutrophication caused by nitrates and sulfates, pollution caused by hydrocarbons and heavy metals is not significant. The assessment of 63 heavy metals showed that none of the metals had concentrations that exceed internationally accepted norms [the devised level of Effect Range-Low], with the exception of strontium. The lack of a significant environmental effect of heavy metals is confirmed by a Foraminiferal Deformities Index value of less than 2%. Likewise, no hydrocarbon contamination was detected in the water or sediment samples. Lastly, observations of cytoplasmic streaming and pseudopodial activity in Petri dishes suggest that the foraminiferal population is not stressed. We conclude that the site in Bahrain is not yet adversely affected by human development, and therefore can provide baseline information for future comparison and assessment of foraminiferal assemblages in contaminated zones of the Arabian Gulf.

Keywords: Arabian Gulf, benthic foraminifera, standing crop, Western Bahrain

Procedia PDF Downloads 639
774 Antioxidant Activity and Microbiological Quality of Functional Bread Enriched with Morus Alba Leaf Extract during Storage

Authors: Joanna Kobus-Cisowska, Daria Szymanowska, Piotr Szulc, Oskar Szczepaniak, Marcin Dziedzinski, Szymon Byczkiewicz

Abstract:

A wide range of food products is offered on the market. However, increasing consumer awareness of the impact of food on health causes a growing interest in enriched products. Cereal products are an important element of the daily diet of man. In the literature, no data was found on the impact of Morus alba preparations on the content of active ingredients and properties of wholemeal bread. Mulberry leaves (Morus alba L) are a rich source of bioactive compounds with multidirectional antioxidant activity, which means that they can be a component of new foods that prevent disease or support therapy and improve the patient's health. The aim of the study was to assess the impact of the addition of white mulberry leaf extract on the antioxidant activity of bread. It has been shown that bread can be a carrier of biologically active substances from mulberry leaves, because the addition of mulberry at a sensory acceptable level and meeting microbiological requirements significantly influenced the increase in the content of bioactive ingredients and the antioxidant activity of bread. The addition of mulberry leaf water extract to bread increased the level of flavonols and phenolic acids, in particular protocatechic, chlorogenic gallic and caffeic acid and isoquercetin and rutine, and also increased the antioxidant potential, which were microbiological stable during 5 days storage. It has been shown also that the addition of Morus alba preparations has a statistically significant effect on anti-radical activity. In addition, there were no differences in activity in DPPH · and ABTS · + tests between post-storage samples. This means that the compounds responsible for the anti-radical activity present in the bread were not inactivated during storage. It was found that the tested bread was characterized by high microbiological purity, which is indicated by the obtained results of analyzes performed for the titers of indicator microorganisms and the absence of pathogens. In the tested products from the moment of production throughout the entire storage period, no undesirable microflora was found, which proves their safety and guarantees microbiological stability during the storage period.

Keywords: antioxidants, bread, extract, quality

Procedia PDF Downloads 172
773 Management of Meskit (Prosopis juliflora) Tree in Oman: The Case of Using Meskit (Prosopis juliflora) Pods for Feeding Omani Sheep

Authors: S. Al-Khalasi, O. Mahgoub, H. Yaakub

Abstract:

This study evaluated the use of raw or processed Prosopis juliflora (Meskit) pods as a major ingredient in a formulated ration to provide an alternative non-conventional concentrate for livestock feeding in Oman. Dry Meskit pods were reduced to lengths of 0.5- 1.0 cm to ensure thorough mixing into three diets. Meskit pods were subjected to two types of treatments; roasting and soaking. They were roasted at 150оC for 30 minutes using a locally-made roasting device (40 kg barrel container rotated by electric motor and heated by flame gas cooker). Chopped pods were soaked in tap water for 24 hours and dried for 2 days under the sun with frequent turning. The Meskit-pod-based diets (MPBD) were formulated and pelleted from 500 g/kg ground Meskit pods, 240 g/kg wheat bran, 200 g/kg barley grain, 50 g/kg local dried sardines and 10 g/kg of salt. Twenty four 10 months-old intact Omani male lambs with average body weight of 27.3 kg (± 0.5 kg) were used in a feeding trial for 84 days. They were divided (on body weight basis) and allocated to four diet combination groups. These were: Rhodes grass hay (RGH) plus a general ruminant concentrate (GRC); RGH plus raw Meskit pods (RMP) based concentrate; RGH plus roasted Meskit pods (ROMP) based concentrate; RGH plus soaked Meskit pods (SMP) based concentrate Daily feed intakes and bi-weekly body weights were recorded. MPBD had higher contents of crude protein (CP), acid detergent fibre (ADF) and neutral detergent fibre (NDF) than the GRC. Animals fed various types of MPBD did not show signs of ill health. There was a significant effect of feeding ROMP on the performance of Omani sheep compared to RMP and SMP. The ROMP fed animals had similar performance to those fed the GRC in terms of feed intake, body weight gain and feed conversion ratio (FCR).This study indicated that roasted Meskit pods based diet may be used instead of the commercial concentrate for feeding Omani sheep without adverse effects on performance. It offers a cheap alternative source of protein and energy for feeding Omani sheep. Also, it might help in solving the spread impact of Meskit trees, maintain the ecosystem and helping in preserving the local tree species.

Keywords: growth, Meskit, Omani sheep, Prosopis juliflora

Procedia PDF Downloads 471
772 Developing a Tissue-Engineered Aortic Heart Valve Based on an Electrospun Scaffold

Authors: Sara R. Knigge, Sugat R. Tuladhar, Alexander Becker, Tobias Schilling, Birgit Glasmacher

Abstract:

Commercially available mechanical or biological heart valve prostheses both tend to fail long-term due to thrombosis, calcific degeneration, infection, or immunogenic rejection. Moreover, these prostheses are non-viable and do not grow with the patients, which is a problem for young patients. As a result, patients often need to undergo redo-operations. Tissue-engineered (TE) heart valves based on degradable electrospun fiber scaffolds represent a promising approach to overcome these limitations. Such scaffolds need sufficient mechanical properties to withstand the hydrodynamic stress of intracardiac hemodynamics. Additionally, the scaffolds should be colonized by autologous or homologous cells to facilitate the in vivo remodeling of the scaffolds to a viable structure. This study investigates how process parameters of electrospinning and degradation affect the mechanical properties of electrospun scaffolds made of FDA-approved, biodegradable polymer polycaprolactone (PCL). Fiber mats were produced from a PCL/tetrafluoroethylene solution by electrospinning. The e-spinning process was varied in terms of scaffold thickness, fiber diameter, fiber orientation, and fiber interconnectivity. The morphology of the fiber mats was characterized with a scanning electron microscope (SEM). The mats were degraded in different solutions (cell culture media, SBF, PBS and 10 M NaOH-Solution). At different time points of degradation (2, 4 and 6 weeks), tensile and cyclic loading tests were performed. Fresh porcine pericardium and heart valves served as a control for the mechanical assessment. The progression of polymer degradation was quantified by SEM and differential scanning calorimetry (DSC). Primary Human aortic endothelial cells (HAECs) and Human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) were seeded on the fiber mats to investigate the cell colonization potential. The results showed that both the electrospinning parameters and the degradation significantly influenced the mechanical properties. Especially the fiber orientation has a considerable impact and leads to a pronounced anisotropic behavior of the scaffold. Preliminary results showed that the polymer became strongly more brittle over time. However, the embrittlement can initially only be detected in the mechanical test. In the SEM and DSC investigations, neither morphological nor thermodynamic changes are significantly detectable. Live/Dead staining and SEM imaging of the cell-seeded scaffolds showed that HAECs and iPSC-ECs were able to grow on the surface of the polymer. In summary, this study's results indicate a promising approach to the development of a TE aortic heart valve based on an electrospun scaffold.

Keywords: electrospun scaffolds, long-term polymer degradation, mechanical behavior of electrospun PCL, tissue engineered aortic heart valve

Procedia PDF Downloads 135
771 Changes in Some Bioactive Content and Antioxidant Capacity of Different Brassica Herbals after Pretreatment and Herbal Infusion

Authors: Evren C. Eroglu, Ridvan Arslan

Abstract:

Over the course of herbal production, various pretreatments are performed and some of which have serious effect on the bioactive properties. Especially in the production of herbal tea from fresh herbals, it is considered that elapsed time from blending to last product may affect the bioactive properties and antioxidant contents. Herbal infusion is basically prepared by mixing herbs with hot water for 10-20 min. During the brewing of these herbs, it is supposed to be significant decrease in the antioxidant and phenolics content. The first aim of this study was to evaluate the changes of vitamin C (VitC), total phenolic content (TPC) and antioxidant contents (AO) of two brassica varieties (brussel sprouts and white head cabbage) with different holding time after blending. Second aim of this study was to understand the effect of herbal infusion on VitC, TPC and AO contents. In this study, fresh samples were subjected to 0-30 min holding time after blending. Then, samples was immediately taken to -80 °C and freeze drying process was performed. Herbal infusion was performed for 20 minutes. According to results, VitC contents in brussel sprouts was not changed significantly (p=0.12). However, there was a significant decreasing of VitC content in cabbage sample (p=0.034). 20 min of brewing caused a significant decrement in VitC of brussel sprouts by approximately 76% (1071 ppm dw), while decline in cabbage VitC content was 87% (531 ppm dw). AO and TPC values of unprocessed cabbage control sample (13791.87 ppm FeSO4·7H2O eq. dw and 5301.85 ppm gallic acid eq. dw) were higher than brussel sprouts control samples (11571.75 ppm FeSO4·7H2O dw and 5202.76 ppm, respectively). The change in AO and TPC of both brussel sprouts and cabbage samples were not statistically significant at the end of 30 minutes holding time (p=0.24 and p=0.38). After 20 minutes of brewing, AO content in brussel sprouts significantly decreased by 44% (p ˂0.05). Although, the decreasing of AO in white head cabbage was statistically important (p=0.034), decreasing was just 8%. TPC values were found to decrease by 54% in cabbage, while it was 35% in brussel sprouts after herbal infusion. It was observed that 30 min holding time had no statistically important effect on TPC values of both cabbage and brussel sprouts. As a conclusion, herbal infusion has more or less effect on VitC, TPC and AO contents of samples. Therefore, it is important to decrease brewing time. Another result was that there were no significant differences in TPC and AO content of both samples when holding samples 30 min outside after blending. However, this process had significant effect on VitC content of white head cabbage.

Keywords: Antioxidant content, brussel sprouts, herbal infusion, total phenolic content, white head cabbage, vitamin c

Procedia PDF Downloads 125
770 Combustion Characteristics and Pollutant Emissions in Gasoline/Ethanol Mixed Fuels

Authors: Shin Woo Kim, Eui Ju Lee

Abstract:

The recent development of biofuel production technology facilitates the use of bioethanol and biodiesel on automobile. Bioethanol, especially, can be used as a fuel for gasoline vehicles because the addition of ethanol has been known to increase octane number and reduce soot emissions. However, the wide application of biofuel has been still limited because of lack of detailed combustion properties such as auto-ignition temperature and pollutant emissions such as NOx and soot, which has been concerned mainly on the vehicle fire safety and environmental safety. In this study, the combustion characteristics of gasoline/ethanol fuel were investigated both numerically and experimentally. For auto-ignition temperature and NOx emission, the numerical simulation was performed on the well-stirred reactor (WSR) to simulate the homogeneous gasoline engine and to clarify the effect of ethanol addition in the gasoline fuel. Also, the response surface method (RSM) was introduced as a design of experiment (DOE), which enables the various combustion properties to be predicted and optimized systematically with respect to three independent variables, i.e., ethanol mole fraction, equivalence ratio and residence time. The results of stoichiometric gasoline surrogate show that the auto-ignition temperature increases but NOx yields decrease with increasing ethanol mole fraction. This implies that the bioethanol added gasoline is an eco-friendly fuel on engine running condition. However, unburned hydrocarbon is increased dramatically with increasing ethanol content, which results from the incomplete combustion and hence needs to adjust combustion itself rather than an after-treatment system. RSM results analyzed with three independent variables predict the auto-ignition temperature accurately. However, NOx emission had a big difference between the calculated values and the predicted values using conventional RSM because NOx emission varies very steeply and hence the obtained second order polynomial cannot follow the rates. To relax the increasing rate of dependent variable, NOx emission is taken as common logarithms and worked again with RSM. NOx emission predicted through logarithm transformation is in a fairly good agreement with the experimental results. For more tangible understanding of gasoline/ethanol fuel on pollutant emissions, experimental measurements of combustion products were performed in gasoline/ethanol pool fires, which is widely used as a fire source of laboratory scale experiments. Three measurement methods were introduced to clarify the pollutant emissions, i.e., various gas concentrations including NOx, gravimetric soot filter sampling for elements analysis and pyrolysis, thermophoretic soot sampling with transmission electron microscopy (TEM). Soot yield by gravimetric sampling was decreased dramatically as ethanol was added, but NOx emission was almost comparable regardless of ethanol mole fraction. The morphology of the soot particle was investigated to address the degree of soot maturing. The incipient soot such as a liquid like PAHs was observed clearly on the soot of higher ethanol containing gasoline, and the soot might be matured under the undiluted gasoline fuel.

Keywords: gasoline/ethanol fuel, NOx, pool fire, soot, well-stirred reactor (WSR)

Procedia PDF Downloads 210
769 Melatonin Improved Vase Quality by Delaying Oxidation Reaction and Supplying More Energies in Cut Peony (Paeonia Lactiflora cv. Sarah)

Authors: Tai Chen, Caihuan Tian, Xiuxia Ren, Jingqi Xue, Xiuxin Zhang

Abstract:

The herbaceous peony has become increasingly popular worldwide in recent years, especially as a cut flower with great economic value. However, peony has a very short vase life, only 3-5 d usually, which seriously affects its commodity value. In this study, we used the cut peony (Paeonia lactiflora cv. Sarah) as a material and found that melatonin treatment significantly improved its postharvest performance. In the control group, its vase life was 4.8 d, accompanied by petal dropping at last; melatonin treatment (40 μM) increased this time to 6.9 d without petal dropping at the end. Further study showed that melatonin treatment significantly increased the activity of antioxidant enzymes as well as reduced sugar content in petals, whereas the starch content in petals decreased. These results indicated that melatonin treatment may delay the oxidation reaction caused by aging, which also provides extra energy for maintaining flowering. Through full-length transcriptome sequencing, a total of 2819 differentially expressed genes (DEGs) between control and melatonin treatment groups were identified. KEGG enrichment analysis showed that these DEGs were mainly involved in three pathways, including melatonin synthesis, starch and sucrose conversion, and plant disease resistance. After the RT-qPCR verification, we identified three DEGs, named PlBAM3, PlWRKY22 and PlTIP1, and they should play major roles in melatonin-improved postharvest performance. One possible reason is that PlBAM3 caused maltose production (by starch degradation), maintained the proline biosynthesis, and then alleviated oxidative stress. Another reason is that both PlBAM3 and PlWRKY22 are key drought resistance regulators, which have the ability to alleviate osmotic stress and improve water absorption, which may also help to improve the postharvest quality of cut peony. In addition, PlTIP1 is involved in the sugar signal pathway, indicating sugar may also as a signal substance during this process. Our work may give new ideas for developing new ways to prolong the vase life of cut peony and improve its commodity value eventually.

Keywords: cut peony, melatonin, vase life, oxidation reaction, energy supply, differentially expressed genes

Procedia PDF Downloads 45
768 Optimization of Biomass Production and Lipid Formation from Chlorococcum sp. Cultivation on Dairy and Paper-Pulp Wastewater

Authors: Emmanuel C. Ngerem

Abstract:

The ever-increasing depletion of the dominant global form of energy (fossil fuels) calls for the development of sustainable and green alternative energy sources such as bioethanol, biohydrogen, and biodiesel. The production of the major biofuels relies on biomass feedstocks that are mainly derived from edible food crops and some inedible plants. One suitable feedstock with great potential as raw material for biofuel production is microalgal biomass. Despite the tremendous attributes of microalgae as a source of biofuel, their cultivation requires huge volumes of freshwater, thus posing a serious threat to commercial-scale production and utilization of algal biomass. In this study, a multi-media wastewater mixture for microalgae growth was formulated and optimized. Moreover, the obtained microalgae biomass was pre-treated to reduce sugar recovery and was compared with previous studies on microalgae biomass pre-treatment. The formulated and optimized mixed wastewater media for biomass and lipid accumulation was established using the simplex lattice mixture design. Based on the superposition approach of the potential results, numerical optimization was conducted, followed by the analysis of biomass concentration and lipid accumulation. The coefficients of regression (R²) of 0.91 and 0.98 were obtained for biomass concentration and lipid accumulation models, respectively. The developed optimization model predicted optimal biomass concentration and lipid accumulation of 1.17 g/L and 0.39 g/g, respectively. It suggested 64.69% dairy wastewater (DWW) and 35.31% paper and pulp wastewater (PWW) mixture for biomass concentration, 34.21% DWW, and 65.79% PWW for lipid accumulation. Experimental validation generated 0.94 g/L and 0.39 g/g of biomass concentration and lipid accumulation, respectively. The obtained microalgae biomass was pre-treated, enzymatically hydrolysed, and subsequently assessed for reducing sugars. The optimization of microwave pre-treatment of Chlorococcum sp. was achieved using response surface methodology (RSM). Microwave power (100 – 700 W), pre-treatment time (1 – 7 min), and acid-liquid ratio (1 – 5%) were selected as independent variables for RSM optimization. The optimum conditions were achieved at microwave power, pre-treatment time, and acid-liquid ratio of 700 W, 7 min, and 32.33:1, respectively. These conditions provided the highest amount of reducing sugars at 10.73 g/L. Process optimization predicted reducing sugar yields of 11.14 g/L on microwave-assisted pre-treatment of 2.52% HCl for 4.06 min at 700 watts. Experimental validation yielded reducing sugars of 15.67 g/L. These findings demonstrate that dairy wastewater and paper and pulp wastewater that could pose a serious environmental nuisance. They could be blended to form a suitable microalgae growth media, consolidating the potency of microalgae as a viable feedstock for fermentable sugars. Also, the outcome of this study supports the microalgal wastewater biorefinery concept, where wastewater remediation is coupled with bioenergy production.

Keywords: wastewater cultivation, mixture design, lipid, biomass, nutrient removal, microwave, Chlorococcum, raceway pond, fermentable sugar, modelling, optimization

Procedia PDF Downloads 31
767 Influence of Iron Content in Carbon Nanotubes on the Intensity of Hyperthermia in the Cancer Treatment

Authors: S. Wiak, L. Szymanski, Z. Kolacinski, G. Raniszewski, L. Pietrzak, Z. Staniszewska

Abstract:

The term ‘cancer’ is given to a collection of related diseases that may affect any part of the human body. It is a pathological behaviour of cells with the potential to undergo abnormal breakdown in the processes that control cell proliferation, differentiation, and death of particular cells. Although cancer is commonly considered as modern disease, there are beliefs that drastically growing number of new cases can be linked to the extensively prolonged life expectancy and enhanced techniques for cancer diagnosis. Magnetic hyperthermia therapy is a novel approach to cancer treatment, which may greatly contribute to higher efficiency of the therapy. Employing carbon nanotubes as nanocarriers for magnetic particles, it is possible to decrease toxicity and invasiveness of the treatment by surface functionalisation. Despite appearing in recent years, magnetic particle hyperthermia has already become of the highest interest in the scientific and medical environment. The reason why hyperthermia therapy brings so much hope for future treatment of cancer lays in the effect that it produces in malignant cells. Subjecting them to thermal shock results in activation of numerous degradation processes inside and outside the cell. The heating process initiates mechanisms of DNA destruction, protein denaturation and induction of cell apoptosis, which may lead to tumour shrinkage, and in some cases, it may even cause complete disappearance of cancer. The factors which have the major impact on the final efficiency of the treatment include temperatures generated inside the tissues, time of exposure to the heating process, and the character of an individual cancer cell type. The vast majority of cancer cells is characterised by lower pH, persistent hypoxia and lack of nutrients, which can be associated to abnormal microvasculature. Since in healthy tissues we cannot observe presence of these conditions, they should not be seriously affected by elevation of the temperature. The aim of this work is to investigate the influence of iron content in iron filled Carbon Nanotubes on the desired nanoparticles for cancer therapy. In the article, the development and demonstration of the method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nanocontainers. The methodology of the production carbon- ferromagnetic nanocontainers (FNCs) includes the synthesis of carbon nanotubes, chemical, and physical characterization, increasing the content of a ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. The ferromagnetic nanocontainers were synthesised in CVD and microwave plasma system. The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013.

Keywords: hyperthermia, carbon nanotubes, cancer colon cells, radio frequency field

Procedia PDF Downloads 121
766 Leaf Epidermal Micromorphology as Identification Features in Accessions of Sesamum indicum L. Collected from Northern Nigeria

Authors: S. D. Abdul, F. B. J. Sawa, D. Z. Andrawus, G. Dan'ilu

Abstract:

Fresh leaves of twelve accessions of S. indicum were studied to examine their stomatal features, trichomes, epidermal cell shapes and anticlinal cell-wall patterns which may be used for the delimitation of the varieties. The twelve accessions of S. indicum studied have amphistomatic leaves, i.e. having stomata on both surfaces. Four types of stomatal complex types were observed namely, diacytic, anisocytic, tetracytic and anomocytic. Anisocytic type was the most common occurring on both surfaces of all the varieties and occurred 100% in varieties lale-duk, ex-sudan and ex-gombe 6. One-way ANOVA revealed that there was no significant difference between the stomatal densities of ex-gombe 6, ex-sudan, adawa-wula, adawa-ting, ex-gombe 4 and ex-gombe 2 . Accession adawa-ting (improved) has the smallest stomatal size (26.39µm) with highest stomatal density (79.08mm2) while variety adawa-wula possessed the largest stomatal size (74.31µm) with lowest stomatal density (29.60mm2), the exception was found in variety adawa-ting whose stomatal size is larger (64.03µm) but with higher stomatal density (71.54mm2). Wavy, curve or undulate anticlinal wall patterns with irregular and or isodiametric epidermal cell shapes were observed. These accessions were found to exhibit high degree of heterogeneity in their trichome features. Ten types of trichomes were observed: unicellular, glandular peltate, capitate glandular, long unbranched uniseriate, short unbranched uniseriate, scale, multicellular, multiseriate capitate glandular, branched uniseriate and stallate trichomes. The most frequent trichome type is short-unbranched uniseriate, followed by long-unbranched uniseriate (72.73% and 72.5%) respectively. The least frequent was multiseriate capitate glandular (11.5%). The high variation in trichome types and density coupled with the stomatal complex types suggest that these varieties of S. indicum probably have the capacity to conserve water. Furthermore, the leaf micromorphological features varied from one accession to another, hence, are found to be good diagnostic and additional tool in identification as well as nomenclature of the accessions of S. indicum.

Keywords: Sesamum indicum, stomata, trichomes, epidermal cells, taxonomy

Procedia PDF Downloads 273
765 Performing Arts and Performance Art: Interspaces and Flexible Transitions

Authors: Helmi Vent

Abstract:

This four-year artistic research project has set the goal of exploring the adaptable transitions within the realms between the two genres. This paper will single out one research question from the entire project for its focus, namely on how and under what circumstances such transitions between a reinterpretation and a new creation can take place during the performative process. The film documentation that accompany the project were produced at the Mozarteum University in Salzburg, Austria, as well as on diverse everyday stages at various locations. The model institution that hosted the project is the LIA – Lab Inter Arts, under the direction of Helmi Vent. LIA combines artistic research with performative applications. The project participants are students from various artistic fields of study. The film documentation forms a central platform for the entire project. They function as audiovisual records of performative performative origins and development processes, while serving as the basis for analysis and evaluation, including the self-evaluation of the recorded material and they also serve as illustrative and discussion material in relation to the topic of this paper. Regarding the “interspaces” and variable 'transitions': The performing arts in the western cultures generally orient themselves toward existing original compositions – most often in the interconnected fields of music, dance and theater – with the goal of reinterpreting and rehearsing a pre-existing score, choreographed work, libretto or script and presenting that respective piece to an audience. The essential tool in this reinterpretation process is generally the artistic ‘language’ performers learn over the course of their main studies. Thus, speaking is combined with singing, playing an instrument is combined with dancing, or with pictorial or sculpturally formed works, in addition to many other variations. If the Performing Arts would rid themselves of their designations from time to time and initially follow the emerging, diffusely gliding transitions into the unknown, the artistic language the performer has learned then becomes a creative resource. The illustrative film excerpts depicting the realms between Performing Arts and Performance Art present insights into the ways the project participants embrace unknown and explorative processes, thus allowing the genesis of new performative designs or concepts to be invented between the participants’ acquired cultural and artistic skills and their own creations – according to their own ideas and issues, sometimes with their direct involvement, fragmentary, provisional, left as a rough draft or fully composed. All in all, it is an evolutionary process and its key parameters cannot be distilled down to their essence. Rather, they stem from a subtle inner perception, from deep-seated emotions, imaginations, and non-discursive decisions, which ultimately result in an artistic statement rising to the visible and audible surface. Within these realms between performing arts and performance art and their extremely flexible transitions, exceptional opportunities can be found to grasp and realise art itself as a research process.

Keywords: art as research method, Lab Inter Arts ( LIA ), performing arts, performance art

Procedia PDF Downloads 265
764 Study of Polychlorinated Dibenzo-P-Dioxins and Dibenzofurans Dispersion in the Environment of a Municipal Solid Waste Incinerator

Authors: Gómez R. Marta, Martín M. Jesús María

Abstract:

The general aim of this paper identifies the areas of highest concentration of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) around the incinerator through the use of dispersion models. Atmospheric dispersion models are useful tools for estimating and prevent the impact of emissions from a particular source in air quality. These models allow considering different factors that influence in air pollution: source characteristics, the topography of the receiving environment and weather conditions to predict the pollutants concentration. The PCDD/Fs, after its emission into the atmosphere, are deposited on water or land, near or far from emission source depending on the size of the associated particles and climatology. In this way, they are transferred and mobilized through environmental compartments. The modelling of PCDD/Fs was carried out with following tools: Atmospheric Dispersion Model Software (ADMS) and Surfer. ADMS is a dispersion model Gaussian plume, used to model the impact of air quality industrial facilities. And Surfer is a program of surfaces which is used to represent the dispersion of pollutants on a map. For the modelling of emissions, ADMS software requires the following input parameters: characterization of emission sources (source type, height, diameter, the temperature of the release, flow rate, etc.) meteorological and topographical data (coordinate system), mainly. The study area was set at 5 Km around the incinerator and the first population center nearest to focus PCDD/Fs emission is about 2.5 Km, approximately. Data were collected during one year (2013) both PCDD/Fs emissions of the incinerator as meteorology in the study area. The study has been carried out during period's average that legislation establishes, that is to say, the output parameters are taking into account the current legislation. Once all data required by software ADMS, described previously, are entered, and in order to make the representation of the spatial distribution of PCDD/Fs concentration and the areas affecting them, the modelling was proceeded. In general, the dispersion plume is in the direction of the predominant winds (Southwest and Northeast). Total levels of PCDD/Fs usually found in air samples, are from <2 pg/m3 for remote rural areas, from 2-15 pg/m3 in urban areas and from 15-200 pg/m3 for areas near to important sources, as can be an incinerator. The results of dispersion maps show that maximum concentrations are the order of 10-8 ng/m3, well below the values considered for areas close to an incinerator, as in this case.

Keywords: atmospheric dispersion, dioxin, furan, incinerator

Procedia PDF Downloads 212
763 Investigation of Several New Ionic Liquids’ Behaviour during ²¹⁰PB/²¹⁰BI Cherenkov Counting in Waters

Authors: Nataša Todorović, Jovana Nikolov, Ivana Stojković, Milan Vraneš, Jovana Panić, Slobodan Gadžurić

Abstract:

The detection of ²¹⁰Pb levels in aquatic environments evokes interest in various scientific studies. Its precise determination is important not only for the radiological assessment of drinking waters but also ²¹⁰Pb, and ²¹⁰Po distribution in the marine environment are significant for the assessment of the removal rates of particles from the ocean and particle fluxes during transport along the coast, as well as particulate organic carbon export in the upper ocean. Measurement techniques for ²¹⁰Pb determination, gamma spectrometry, alpha spectrometry, or liquid scintillation counting (LSC) are either time-consuming or demand expensive equipment or complicated chemical pre-treatments. However, one other possibility is to measure ²¹⁰Pb on an LS counter if it is in equilibrium with its progeny ²¹⁰Bi - through the Cherenkov counting method. It is unaffected by the chemical quenching and assumes easy sample preparation but has the drawback of lower counting efficiencies than standard LSC methods, typically from 10% up to 20%. The aim of the presented research in this paper is to investigate the possible increment of detection efficiency of Cherenkov counting during ²¹⁰Pb/²¹⁰Bi detection on an LS counter Quantulus 1220. Considering naturally low levels of ²¹⁰Pb in aqueous samples, the addition of ionic liquids to the counting vials with the analysed samples has the benefit of detection limit’s decrement during ²¹⁰Pb quantification. Our results demonstrated that ionic liquid, 1-butyl-3-methylimidazolium salicylate, is more efficient in Cherenkov counting efficiency increment than the previously explored 2-hydroxypropan-1-amminium salicylate. Consequently, the impact of a few other ionic liquids that were synthesized with the same cation group (1-butyl-3-methylimidazolium benzoate, 1-butyl-3-methylimidazolium 3-hydroxybenzoate, and 1-butyl-3-methylimidazolium 4-hydroxybenzoate) was explored in order to test their potential influence on Cherenkov counting efficiency. It was confirmed that, among the explored ones, only ionic liquids in the form of salicylates exhibit a wavelength shifting effect. Namely, the addition of small amounts (around 0.8 g) of 1-butyl-3-methylimidazolium salicylate increases the detection efficiency from 16% to >70%, consequently reducing the detection threshold by more than four times. Moreover, the addition of ionic liquids could find application in the quantification of other radionuclides besides ²¹⁰Pb/²¹⁰Bi via Cherenkov counting method.

Keywords: liquid scintillation counting, ionic liquids, Cherenkov counting, ²¹⁰PB/²¹⁰BI in water

Procedia PDF Downloads 97
762 Valorization of Plastic and Cork Wastes in Design of Composite Materials

Authors: Svetlana Petlitckaia, Toussaint Barboni, Paul-Antoine Santoni

Abstract:

Plastic is a revolutionary material. However, the pollution caused by plastics damages the environment, human health and the economy of different countries. It is important to find new ways to recycle and reuse plastic material. The use of waste materials as filler and as a matrix for composite materials is receiving increasing attention as an approach to increasing the economic value of streams. In this study, a new composite material based on high-density polyethylene (HDPE) and polypropylene (PP) wastes from bottle caps and cork powder from unused cork (virgin cork), which has a high capacity for thermal insulation, was developed. The composites were prepared with virgin and modified cork. The composite materials were obtained through twin-screw extrusion and injection molding. The composites were produced with proportions of 0 %, 5 %, 10 %, 15 %, and 20 % of cork powder in a polymer matrix with and without coupling agent and flame retardant. These composites were investigated in terms of mechanical, structural and thermal properties. The effect of cork fraction, particle size and the use of flame retardant on the properties of composites were investigated. The properties of samples elaborated with the polymer and the cork were compared to them with the coupling agent and commercial flame retardant. It was observed that the morphology of HDPE/cork and PP/cork composites revealed good distribution and dispersion of cork particles without agglomeration. The results showed that the addition of cork powder in the polymer matrix reduced the density of the composites. However, the incorporation of natural additives doesn’t have a significant effect on water adsorption. Regarding the mechanical properties, the value of tensile strength decreases with the addition of cork powder, ranging from 30 MPa to 19 MPa for PP composites and from 19 MPa to 17 MPa for HDPE composites. The value of thermal conductivity of composites HDPE/cork and PP/ cork is about 0.230 W/mK and 0.170 W/mK, respectively. Evaluation of the flammability of the composites was performed using a cone calorimeter. The results of thermal analysis and fire tests show that it is important to add flame retardants to improve fire resistance. The samples elaborated with the coupling agent and flame retardant have better mechanical properties and fire resistance. The feasibility of the composites based on cork and PP and HDPE wastes opens new ways of valorizing plastic waste and virgin cork. The formulation of composite materials must be optimized.

Keywords: composite materials, cork and polymer wastes, flammability, modificated cork

Procedia PDF Downloads 81
761 Comparison of Iodine Density Quantification through Three Material Decomposition between Philips iQon Dual Layer Spectral CT Scanner and Siemens Somatom Force Dual Source Dual Energy CT Scanner: An in vitro Study

Authors: Jitendra Pratap, Jonathan Sivyer

Abstract:

Introduction: Dual energy/Spectral CT scanning permits simultaneous acquisition of two x-ray spectra datasets and can complement radiological diagnosis by allowing tissue characterisation (e.g., uric acid vs. non-uric acid renal stones), enhancing structures (e.g. boost iodine signal to improve contrast resolution), and quantifying substances (e.g. iodine density). However, the latter showed inconsistent results between the 2 main modes of dual energy scanning (i.e. dual source vs. dual layer). Therefore, the present study aimed to determine which technology is more accurate in quantifying iodine density. Methods: Twenty vials with known concentrations of iodine solutions were made using Optiray 350 contrast media diluted in sterile water. The concentration of iodine utilised ranged from 0.1 mg/ml to 1.0mg/ml in 0.1mg/ml increments, 1.5 mg/ml to 4.5 mg/ml in 0.5mg/ml increments followed by further concentrations at 5.0 mg/ml, 7mg/ml, 10 mg/ml and 15mg/ml. The vials were scanned using Dual Energy scan mode on a Siemens Somatom Force at 80kV/Sn150kV and 100kV/Sn150kV kilovoltage pairing. The same vials were scanned using Spectral scan mode on a Philips iQon at 120kVp and 140kVp. The images were reconstructed at 5mm thickness and 5mm increment using Br40 kernel on the Siemens Force and B Filter on Philips iQon. Post-processing of the Dual Energy data was performed on vendor-specific Siemens Syngo VIA (VB40) and Philips Intellispace Portal (Ver. 12) for the Spectral data. For each vial and scan mode, the iodine concentration was measured by placing an ROI in the coronal plane. Intraclass correlation analysis was performed on both datasets. Results: The iodine concentrations were reproduced with a high degree of accuracy for Dual Layer CT scanner. Although the Dual Source images showed a greater degree of deviation in measured iodine density for all vials, the dataset acquired at 80kV/Sn150kV had a higher accuracy. Conclusion: Spectral CT scanning by the dual layer technique has higher accuracy for quantitative measurements of iodine density compared to the dual source technique.

Keywords: CT, iodine density, spectral, dual-energy

Procedia PDF Downloads 117
760 Ionometallurgy for Recycling Silver in Silicon Solar Panel

Authors: Emmanuel Billy

Abstract:

This work is in the CABRISS project (H2020 projects) which aims at developing innovative cost-effective methods for the extraction of materials from the different sources of PV waste: Si based panels, thin film panels or Si water diluted slurries. Aluminum, silicon, indium, and silver will especially be extracted from these wastes in order to constitute materials feedstock which can be used later in a closed-loop process. The extraction of metals from silicon solar cells is often an energy-intensive process. It requires either smelting or leaching at elevated temperature, or the use of large quantities of strong acids or bases that require energy to produce. The energy input equates to a significant cost and an associated CO2 footprint, both of which it would be desirable to reduce. Thus there is a need to develop more energy-efficient and environmentally-compatible processes. Thus, ‘ionometallurgy’ could offer a new set of environmentally-benign process for metallurgy. This work demonstrates that ionic liquids provide one such method since they can be used to dissolve and recover silver. The overall process associates leaching, recovery and the possibility to re-use the solution in closed-loop process. This study aims to evaluate and compare different ionic liquids to leach and recover silver. An electrochemical analysis is first implemented to define the best system for the Ag dissolution. Effects of temperature, concentration and oxidizing agent are evaluated by this approach. Further, a comparative study between conventional approach (nitric acid, thiourea) and the ionic liquids (Cu and Al) focused on the leaching efficiency is conducted. A specific attention has been paid to the selection of the Ionic Liquids. Electrolytes composed of chelating anions are used to facilitate the lixiviation (Cl, Br, I,), avoid problems dealing with solubility issues of metallic species and of classical additional ligands. This approach reduces the cost of the process and facilitates the re-use of the leaching medium. To define the most suitable ionic liquids, electrochemical experiments have been carried out to evaluate the oxidation potential of silver include in the crystalline solar cells. Then, chemical dissolution of metals for crystalline solar cells have been performed for the most promising ionic liquids. After the chemical dissolution, electrodeposition has been performed to recover silver under a metallic form.

Keywords: electrodeposition, ionometallurgy, leaching, recycling, silver

Procedia PDF Downloads 244
759 Influence of Recycled Concrete Aggregate Content on the Rebar/Concrete Bond Properties through Pull-Out Tests and Acoustic Emission Measurements

Authors: L. Chiriatti, H. Hafid, H. R. Mercado-Mendoza, K. L. Apedo, C. Fond, F. Feugeas

Abstract:

Substituting natural aggregate with recycled aggregate coming from concrete demolition represents a promising alternative to face the issues of both the depletion of natural resources and the congestion of waste storage facilities. However, the crushing process of concrete demolition waste, currently in use to produce recycled concrete aggregate, does not allow the complete separation of natural aggregate from a variable amount of adhered mortar. Given the physicochemical characteristics of the latter, the introduction of recycled concrete aggregate into a concrete mix modifies, to a certain extent, both fresh and hardened concrete properties. As a consequence, the behavior of recycled reinforced concrete members could likely be influenced by the specificities of recycled concrete aggregates. Beyond the mechanical properties of concrete, and as a result of the composite character of reinforced concrete, the bond characteristics at the rebar/concrete interface have to be taken into account in an attempt to describe accurately the mechanical response of recycled reinforced concrete members. Hence, a comparative experimental campaign, including 16 pull-out tests, was carried out. Four concrete mixes with different recycled concrete aggregate content were tested. The main mechanical properties (compressive strength, tensile strength, Young’s modulus) of each concrete mix were measured through standard procedures. A single 14-mm-diameter ribbed rebar, representative of the diameters commonly used in the domain of civil engineering, was embedded into a 200-mm-side concrete cube. The resulting concrete cover is intended to ensure a pull-out type failure (i.e. exceedance of the rebar/concrete interface shear strength). A pull-out test carried out on the 100% recycled concrete specimen was enriched with exploratory acoustic emission measurements. Acoustic event location was performed by means of eight piezoelectric transducers distributed over the whole surface of the specimen. The resulting map was compared to existing data related to natural aggregate concrete. Damage distribution around the reinforcement and main features of the characteristic bond stress/free-end slip curve appeared to be similar to previous results obtained through comparable studies carried out on natural aggregate concrete. This seems to show that the usual bond mechanism sequence (‘chemical adhesion’, mechanical interlocking and friction) remains unchanged despite the addition of recycled concrete aggregate. However, the results also suggest that bond efficiency seems somewhat improved through the use of recycled concrete aggregate. This observation appears to be counter-intuitive with regard to the diminution of the main concrete mechanical properties with the recycled concrete aggregate content. As a consequence, the impact of recycled concrete aggregate content on bond characteristics seemingly represents an important factor which should be taken into account and likely to be further explored in order to determine flexural parameters such as deflection or crack distribution.

Keywords: acoustic emission monitoring, high-bond steel rebar, pull-out test, recycled aggregate concrete

Procedia PDF Downloads 168
758 Preventable Stress and Trauma, and Menstrual Health Management: Experiences of Adolescent Girls from India

Authors: Daisy Dutta, Chhanda Chakraborti

Abstract:

Background and significance of the study: Menstrual Hygiene Management (MHM) is poor in many Lower and Middle-Income Countries (LMIC) such as India. Poor and inadequate menstrual hygiene has an adverse effect on the health and social life of adolescent girls and women. There are many well-known barriers to adequate Menstrual Hygiene Management (MHM); e.g., lack of awareness, lack of WASH (Water, Sanitation and Hygiene) facilities, lack of affordable menstrual absorbents, etc. But, there is a unique barrier which is very much avoidable; i.e., lack of proper guidance and counseling about menstruation. Menstruation is associated with various social and cultural restrictions and taboos and being a taboo topic; often there is no discussion in the society on this topic. Thus, many adolescent girls encounter the menarche with a lot of unnecessary and avoidable trauma, stress and awkwardness. This trauma, stress, and anxiety are even more prevalent among adolescent girls residing in rural areas. This study argues that this unnecessary stress and anxiety of the adolescent girls can be alleviated by reinforcing social support and adequate information and guidance about MHM and eliminating the futile socio-cultural restrictions during menstruation. Methodology: A qualitative study was conducted in a North-eastern State of India where 45 adolescent girls were interviewed both from rural and urban areas. The adolescent girls were asked about their experiences of stress and anxiety on their first menstruation, their preparedness for menarche, their source of information and guidance, their hygiene-practices, and the various restrictions they follow. Findings: Maximum number of girls did not receive any information about menstruation before menarche. Most of them reported that they were terrified about their first menstruation as they were unprepared. Among those who were aware before menarche, reported that they did not receive proper guidance to manage their menstruation in a hygienic manner. Hygiene-related practices are also influenced by their knowledge about MHM. In maximum cases, girls are bound to follow certain cultural and religious restrictions even if they don’t want to follow which created additional stress in managing their menstruation with dignity. Conclusion: Lack of proper guidance and counseling about menstruation and MHM along with an array of socio-cultural restrictions can enhance a negative attitude in adolescent girls towards menstruation due to which they have to go through an extra and unnecessary burden of stress and trauma. This stress and trauma is preventable by improving the provisions of proper guidance and counseling about menstruation in a supportive environment.

Keywords: adolescent girls, menstrual hygiene management, socio-cultural restrictions, stress, trauma

Procedia PDF Downloads 174
757 Impact of Material Chemistry and Morphology on Attrition Behavior of Excipients during Blending

Authors: Sri Sharath Kulkarni, Pauline Janssen, Alberto Berardi, Bastiaan Dickhoff, Sander van Gessel

Abstract:

Blending is a common process in the production of pharmaceutical dosage forms where the high shear is used to obtain a homogenous dosage. The shear required can lead to uncontrolled attrition of excipients and affect API’s. This has an impact on the performance of the formulation as this can alter the structure of the mixture. Therefore, it is important to understand the driving mechanisms for attrition. The aim of this study was to increase the fundamental understanding of the attrition behavior of excipients. Attrition behavior of the excipients was evaluated using a high shear blender (Procept Form-8, Zele, Belgium). Twelve pure excipients are tested, with morphologies varying from crystalline (sieved), granulated to spray dried (round to fibrous). Furthermore, materials include lactose, microcrystalline cellulose (MCC), di-calcium phosphate (DCP), and mannitol. The rotational speed of the blender was set at 1370 rpm to have the highest shear with a Froude (Fr) number 9. Varying blending times of 2-10 min were used. Subsequently, after blending, the excipients were analyzed for changes in particle size distribution (PSD). This was determined (n = 3) by dry laser diffraction (Helos/KR, Sympatec, Germany). Attrition was found to be a surface phenomenon which occurs in the first minutes of the high shear blending process. An increase of blending time above 2 mins showed no change in particle size distribution. Material chemistry was identified as a key driver for differences in the attrition behavior between different excipients. This is mainly related to the proneness to fragmentation, which is known to be higher for materials such as DCP and mannitol compared to lactose and MCC. Secondly, morphology also was identified as a driver of the degree of attrition. Granular products consisting of irregular surfaces showed the highest reduction in particle size. This is due to the weak solid bonds created between the primary particles during the granulation process. Granular DCP and mannitol show a reduction of 80-90% in x10(µm) compared to a 20-30% drop for granular lactose (monohydrate and anhydrous). Apart from the granular lactose, all the remaining morphologies of lactose (spray dried-round, sieved-tomahawk, milled) show little change in particle size. Similar observations have been made for spray-dried fibrous MCC. All these morphologies have little irregular or sharp surfaces and thereby are less prone to fragmentation. Therefore, products containing brittle materials such as mannitol and DCP are more prone to fragmentation when exposed to shear. Granular products with irregular surfaces lead to an increase in attrition. While spherical, crystalline, or fibrous morphologies show reduced impact during high shear blending. These changes in size will affect the functionality attributes of the formulation, such as flow, API homogeneity, tableting, formation of dust, etc. Hence it is important for formulators to fully understand the excipients to make the right choices.

Keywords: attrition, blending, continuous manufacturing, excipients, lactose, microcrystalline cellulose, shear

Procedia PDF Downloads 108
756 Evaluation of Coupled CFD-FEA Simulation for Fire Determination

Authors: Daniel Martin Fellows, Sean P. Walton, Jennifer Thompson, Oubay Hassan, Ella Quigley, Kevin Tinkham

Abstract:

Fire performance is a crucial aspect to consider when designing cladding products, and testing this performance is extremely expensive. Appropriate use of numerical simulation of fire performance has the potential to reduce the total number of fire tests required when designing a product by eliminating poor-performing design ideas early in the design phase. Due to the complexity of fire and the large spectrum of failures it can cause, multi-disciplinary models are needed to capture the complex fire behavior and its structural effects on its surroundings. Working alongside Tata Steel U.K., the authors have focused on completing a coupled CFD-FEA simulation model suited to test Polyisocyanurate (PIR) based sandwich panel products to gain confidence before costly experimental standards testing. The sandwich panels are part of a thermally insulating façade system primarily for large non-domestic buildings. The work presented in this paper compares two coupling methodologies of a replicated physical experimental standards test LPS 1181-1, carried out by Tata Steel U.K. The two coupling methodologies that are considered within this research are; one-way and two-way. A one-way coupled analysis consists of importing thermal data from the CFD solver into the FEA solver. A two-way coupling analysis consists of continuously importing the updated changes in thermal data, due to the fire's behavior, to the FEA solver throughout the simulation. Likewise, the mechanical changes will also be updated back to the CFD solver to include geometric changes within the solution. For CFD calculations, a solver called Fire Dynamic Simulator (FDS) has been chosen due to its adapted numerical scheme to focus solely on fire problems. Validation of FDS applicability has been achieved in past benchmark cases. In addition, an FEA solver called ABAQUS has been chosen to model the structural response to the fire due to its crushable foam plasticity model, which can accurately model the compressibility of PIR foam. An open-source code called FDS-2-ABAQUS is used to couple the two solvers together, using several python modules to complete the process, including failure checks. The coupling methodologies and experimental data acquired from Tata Steel U.K are compared using several variables. The comparison data includes; gas temperatures, surface temperatures, and mechanical deformation of the panels. Conclusions are drawn, noting improvements to be made on the current coupling open-source code FDS-2-ABAQUS to make it more applicable to Tata Steel U.K sandwich panel products. Future directions for reducing the computational cost of the simulation are also considered.

Keywords: fire engineering, numerical coupling, sandwich panels, thermo fluids

Procedia PDF Downloads 83
755 The Changing Landscape of Fire Safety in Covered Car Parks with the Arrival of Electric Vehicles

Authors: Matt Stallwood, Michael Spearpoint

Abstract:

In 2020, the UK government announced that sales of new petrol and diesel cars would end in 2030, and battery-powered cars made up 1 in 8 new cars sold in 2021 – more than the total from the previous five years. The guidance across the UK for the fire safety design of covered car parks is changing in response to the projected rapid growth in electric vehicle (EV) use. This paper discusses the current knowledge on the fire safety concerns posed by EVs, in particular those powered by lithium-ion batteries, when considering the likelihood of vehicle ignition, fire severity and spread of fire to other vehicles. The paper builds on previous work that has investigated the frequency of fires starting in cars powered by internal combustion engines (ICE), the hazard posed by such fires in covered car parks and the potential for neighboring vehicles to become involved in an incident. Historical data has been used to determine the ignition frequency of ICE car fires, whereas such data is scarce when it comes to EV fires. Should a fire occur, then the fire development has conventionally been assessed to match a ‘medium’ growth rate and to have a 95th percentile peak heat release of 9 MW. The paper examines recent literature in which researchers have measured the burning characteristics of EVs to assess whether these values need to be changed. These findings are used to assess the risk posed by EVs when compared to ICE vehicles. The paper examines what new design guidance is being issued by various organizations across the UK, such as fire and rescue services, insurers, local government bodies and regulators and discusses the impact these are having on the arrangement of parking bays, particularly in residential and mixed-use buildings. For example, the paper illustrates how updated guidance published by the Fire Protection Association (FPA) on the installation of sprinkler systems has increased the hazard classification of parking buildings that can have a considerable impact on the feasibility of a building to meet all its design intents when specifying water supply tanks. Another guidance on the provision of smoke ventilation systems and structural fire resistance is also presented. The paper points to where further research is needed on the fire safety risks posed by EVs in covered car parks. This will ensure that any guidance is commensurate with the need to provide an adequate level of life and property safety in the built environment.

Keywords: covered car parks, electric vehicles, fire safety, risk

Procedia PDF Downloads 70
754 Assessment of the Impact of Regular Pilates Exercises on Static Balance in Healthy Adult Women: Preliminary Report

Authors: Anna Słupik, Krzysztof Jaworski, Anna Mosiołek, Dariusz Białoszewski

Abstract:

Background: Maintaining the correct body balance is essential in the prevention of falls in the elderly, which is especially important for women because of postmenopausal osteoporosis and the serious consequences of falls. One of the exercise methods which is very popular among adults, and which may affect body balance in a positive way is the pilates method. The aim of the study was to evaluate the effect of regular pilates exercises on the ability to maintain body balance in static conditions in adult healthy women. Material and methods: The study group consisted of 20 healthy women attending pilates twice a week for at least 1 year. The control group consisted of 20 healthy women physically inactive. Women in the age range from 35 to 50 years old without pain in musculoskeletal system or other pain were only qualified to the groups. Body balance was assessed using MatScan VersaTek platform with Sway Analysis Module based on Matscan Clinical 6.7 software. The balance was evaluated under the following conditions: standing on both feet with eyes open, standing on both feet with eyes closed, one-leg standing (separately on the right and left foot) with eyes open. Each test lasted 30 seconds. The following parameters were calculated: estimated size of the ellipse of 95% confidence, the distance covered by the Center of Gravity (COG), the size of the maximum shift in the sagittal and frontal planes and load distribution between the left and right foot, as well as between rear- and forefoot. Results: It was found that there is significant difference between the groups in favor of the study group in the size of the confidence ellipse and maximum shifts of COG in the sagittal plane during standing on both feet, both with the eyes open and closed (p < 0.05). While standing on one leg both on the right and left leg, with eyes opened there was a significant difference in favor of the study group, in terms of the size of confidence ellipse, the size of the maximum shifts in the sagittal and in the frontal plane (p < 0.05). There were no differences between the distribution of load between the right and left foot (standing with both feet), nor between fore- and rear foot (in standing with both feet or one-leg). Conclusions: 1. Static balance in women exercising regularly by pilates method is better than in inactive women, which may in the future prevent falls and their consequences. 2. The observed differences in maintaining balance in frontal plane in one-leg standing may indicate a positive impact of pilates exercises on the ability to maintain global balance in terms of the reduced support surface. 3. Pilates method can be used as a form preventive therapy for all people who are expected to have problems with body balance in the future, for example in chronic neurological disorders or vestibular problems. 4. The results have shown that further prospective randomized research on a larger and more representative group is needed.

Keywords: balance exercises, body balance, pilates, pressure distribution, women

Procedia PDF Downloads 309
753 Immune Responses and Pathological Manifestations in Chicken to Oral Infection with Salmonella typhimurium

Authors: Mudasir Ahmad Syed, Raashid Ahmd Wani, Mashooq Ahmad Dar, Uneeb Urwat, Riaz Ahmad Shah, Nazir Ahmad Ganai

Abstract:

Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) is a primary avian pathogen responsible for severe intestinal pathology in younger chickens and economic losses. However, the Salmonella Typhimurium is also able to cause infection in humans, described by typhoid fever and acute gastro-intestinal disease. A study was conducted at days to investigate pathological, histopathological, haemato-biochemical, immunological and expression kinetics of NRAMP (natural resistance associated macrophage protein) gene family (NRAMP1 and NRAMP2) in broiler chickens following experimental infection of Salmonella Typhimurium at 0,1,3,5,7,9,11,13 and 15 days respectively. Infection was developed in birds through oral route at 2×108 CFU/ml. Clinical symptoms appeared 4 days post infection (dpi) and after one-week birds showed progressive weakness, anorexia, diarrhea and lowering of head. On postmortem examination, liver showed congestion, hemorrhage and necrotic foci on surface, while as spleen, lungs and intestines revealed congestion and hemorrhages. Histopathological alterations were principally observed in liver in second week post infection. Changes in liver comprised of congestion, areas of necrosis, reticular endothelial hyperplasia in association with mononuclear cell and heterophilic infiltration. Hematological studies confirm a significant decrease (P<0.05) in RBC count, Hb concentration and PCV. White blood cell count showed significant increase throughout the experimental study. An increase in heterophils was found up to 7dpi and a decreased pattern was observed afterwards. Initial lymphopenia followed by lymphocytosis was found in infected chicks. Biochemical studies showed a significant increase in glucose, AST and ALT concentration and a significant decrease (P<0.05) in total protein and albumin level in the infected group. Immunological studies showed higher titers of IgG in infected group as compared to control group. The real time gene expression of NRAMPI and NRAMP2 genes increased significantly (P<0.05) in infected group as compared to controls. The peak expression of NRAMP1 gene was seen in liver, spleen and caecum of infected birds at 3dpi, 5dpi and 7dpi respectively, while as peak expression of NRAMP2 gene in liver, spleen and caecum of infected chicken was seen at 9dpi, 5dpi and 9dpi respectively. This study has role in diagnostics and prognostics in the poultry industry for the detection of salmonella infections at early stages of poultry development.

Keywords: biochemistry, histopathology, NRAMP, poultry, real time expression, Salmonella Typhimurium

Procedia PDF Downloads 329
752 Ascidian Styela rustica Proteins’ Structural Domains Predicted to Participate in the Tunic Formation

Authors: M. I. Tyletc, O. I. Podgornya, T. G. Shaposhnikova, S. V. Shabelnikov, A. G. Mittenberg, M. A. Daugavet

Abstract:

Ascidiacea is the most numerous class of the Tunicata subtype. These chordates' distinctive feature of the anatomical structure is a tunic consisting of cellulose fibrils, protein molecules, and single cells. The mechanisms of the tunic formation are not known in detail; tunic formation could be used as the model system for studying the interaction of cells with the extracellular matrix. Our model species is the ascidian Styela rustica, which is prevalent in benthic communities of the White Sea. As previously shown, the tunic formation involves morula blood cells, which contain the major 48 kDa protein p48. P48 participation in the tunic formation was proved using antibodies against the protein. The nature of the protein and its function remains unknown. The current research aims to determine the amino acid sequence of p48, as well as to clarify its role in the tunic formation. The peptides that make up the p48 amino acid sequence were determined by mass spectrometry. A search for peptides in protein sequence databases identified sequences homologous to p48 in Styela clava, Styela plicata, and Styela canopus. Based on sequence alignment, their level of similarity was determined as 81-87%. The correspondent sequence of ascidian Styela canopus was used for further analysis. The Styela rustica p48 sequence begins with a signal peptide, which could indicate that the protein is secretory. This is consistent with experimentally obtained data: the contents of morula cells secreted in the tunic matrix. The isoelectric point of p48 is 9.77, which is consistent with the experimental results of acid electrophoresis of morula cell proteins. However, the molecular weight of the amino acid sequence of ascidian Styela canopus is 103 kDa, so p48 of Styela rustica is a shorter homolog. The search for conservative functional domains revealed the presence of two Ca-binding EGF-like domains, thrombospondin (TSP1) and tyrosinase domains. The p48 peptides determined by mass spectrometry fall into the region of the sequence corresponding to the last two domains and have amino acid substitutions as compared to Styela canopus homolog. The tyrosinase domain (pfam00264) is known to be part of the phenoloxidase enzyme, which participates in melanization processes and the immune response. The thrombospondin domain (smart00209) interacts with a wide range of proteins, and is involved in several biological processes, including coagulation, cell adhesion, modulation of intercellular and cell-matrix interactions, angiogenesis, wound healing and tissue remodeling. It can be assumed that the tyrosinase domain in p48 plays the role of the phenoloxidase enzyme, and TSP1 provides a link between the extracellular matrix and cell surface receptors, and may also be responsible for the repair of the tunic. The results obtained are consistent with experimental data on p48. The domain organization of protein suggests that p48 is an enzyme involved in the tunic tunning and is an important regulator of the organization of the extracellular matrix.

Keywords: ascidian, p48, thrombospondin, tyrosinase, tunic, tunning

Procedia PDF Downloads 106
751 Modeling the Impact of Aquaculture in Wetland Ecosystems Using an Integrated Ecosystem Approach: Case Study of Setiu Wetlands, Malaysia

Authors: Roseliza Mat Alipiah, David Raffaelli, J. C. R. Smart

Abstract:

This research is a new approach as it integrates information from both environmental and social sciences to inform effective management of the wetlands. A three-stage research framework was developed for modelling the drivers and pressures imposed on the wetlands and their impacts to the ecosystem and the local communities. Firstly, a Bayesian Belief Network (BBN) was used to predict the probability of anthropogenic activities affecting the delivery of different key wetland ecosystem services under different management scenarios. Secondly, Choice Experiments (CEs) were used to quantify the relative preferences which key wetland stakeholder group (aquaculturists) held for delivery of different levels of these key ecosystem services. Thirdly, a Multi-Criteria Decision Analysis (MCDA) was applied to produce an ordinal ranking of the alternative management scenarios accounting for their impacts upon ecosystem service delivery as perceived through the preferences of the aquaculturists. This integrated ecosystem management approach was applied to a wetland ecosystem in Setiu, Terengganu, Malaysia which currently supports a significant level of aquaculture activities. This research has produced clear guidelines to inform policy makers considering alternative wetland management scenarios: Intensive Aquaculture, Conservation or Ecotourism, in addition to the Status Quo. The findings of this research are as follows: The BBN revealed that current aquaculture activity is likely to have significant impacts on water column nutrient enrichment, but trivial impacts on caged fish biomass, especially under the Intensive Aquaculture scenario. Secondly, the best fitting CE models identified several stakeholder sub-groups for aquaculturists, each with distinct sets of preferences for the delivery of key ecosystem services. Thirdly, the MCDA identified Conservation as the most desirable scenario overall based on ordinal ranking in the eyes of most of the stakeholder sub-groups. Ecotourism and Status Quo scenarios were the next most preferred and Intensive Aquaculture was the least desirable scenario. The methodologies developed through this research provide an opportunity for improving planning and decision making processes that aim to deliver sustainable management of wetland ecosystems in Malaysia.

Keywords: Bayesian belief network (BBN), choice experiments (CE), multi-criteria decision analysis (MCDA), aquaculture

Procedia PDF Downloads 288