Search results for: cost of energy (COE)
328 The Coaching on Lifestyle Intervention (CooL): Preliminary Results and Implementation Process
Authors: Celeste E. van Rinsum, Sanne M. P. L. Gerards, Geert M. Rutten, Ien A. M. van de Goor, Stef P. J. Kremers
Abstract:
Combined lifestyle interventions have shown to be effective in changing and maintaining behavioral lifestyle changes and reducing overweight and obesity. A lifestyle coach is expected to promote lifestyle changes in adults related to physical activity and diet. The present Coaching on Lifestyle (CooL) study examined participants’ physical activity level, dietary behavioral, and motivational changes immediately after the intervention and at 1.5 years after baseline. In CooL intervention a lifestyle coach coaches individuals from eighteen years and older with (a high risk of) obesity in group and individual sessions. In addition a process evaluation was conducted in order to examine the implementation process and to be able to interpret the changes within the participants. This action-oriented research has a pre-post design. Participants of the CooL intervention (N = 200) completed three questionnaires: at baseline, immediately after the intervention (on average after 44 weeks), and at 1.5 years after baseline. T-tests and linear regressions were conducted to test self-reported changes in physical activity (IPAQ), dietary behaviors, their quality of motivation for physical activity (BREQ-3) and for diet (REBS), body mass index (BMI), and quality of life (EQ-5D-3L). For the process evaluation, we used individual and group interviews, observations and document analyses to gain insight in the implementation process (e.g. the recruitment) and how the intervention was valued by the participants, lifestyle coaches, and referrers. The study is currently ongoing and therefore the results presented here are preliminary. On average, the participants that finished the intervention and those that have completed the long-term measurement improved their level of vigorous-intense physical activity, sedentary behavior, sugar-sweetened beverage consumption and BMI. Mixed results were observed in motivational regulation for physical activity and nutrition. Moreover, an improvement on the quality of life dimension anxiety/depression was found, also in the long-term. All the other constructs did not show significant change over time. The results of the process evaluation have shown that recruitment of clients was difficult. Participants evaluated the intervention positively and the lifestyle coaches have continuously adapted the structure and contents of the intervention throughout the study period, based on their experiences and feedback from research. Preliminary results indicate that the CooL-intervention may have beneficial effects on overweight and obese participants in terms of energy balance-related behaviors, weight reduction, and quality of life. Recruitment of participants and embedding the position of the lifestyle coach in traditional care structures is challenging.Keywords: combined lifestyle intervention, effect evaluation, lifestyle coaching, process evaluation, overweight, the Netherlands
Procedia PDF Downloads 229327 Electron Bernstein Wave Heating in the Toroidally Magnetized System
Authors: Johan Buermans, Kristel Crombé, Niek Desmet, Laura Dittrich, Andrei Goriaev, Yurii Kovtun, Daniel López-Rodriguez, Sören Möller, Per Petersson, Maja Verstraeten
Abstract:
The International Thermonuclear Experimental Reactor (ITER) will rely on three sources of external heating to produce and sustain a plasma; Neutral Beam Injection (NBI), Ion Cyclotron Resonance Heating (ICRH), and Electron Cyclotron Resonance Heating (ECRH). ECRH is a way to heat the electrons in a plasma by resonant absorption of electromagnetic waves. The energy of the electrons is transferred indirectly to the ions by collisions. The electron cyclotron heating system can be directed to deposit heat in particular regions in the plasma (https://www.iter.org/mach/Heating). Electron Cyclotron Resonance Heating (ECRH) at the fundamental resonance in X-mode is limited by a low cut-off density. Electromagnetic waves cannot propagate in the region between this cut-off and the Upper Hybrid Resonance (UHR) and cannot reach the Electron Cyclotron Resonance (ECR) position. Higher harmonic heating is hence preferred in heating scenarios nowadays to overcome this problem. Additional power deposition mechanisms can occur above this threshold to increase the plasma density. This includes collisional losses in the evanescent region, resonant power coupling at the UHR, tunneling of the X-wave with resonant coupling at the ECR, and conversion to the Electron Bernstein Wave (EBW) with resonant coupling at the ECR. A more profound knowledge of these deposition mechanisms can help determine the optimal plasma production scenarios. Several ECRH experiments are performed on the TOroidally MAgnetized System (TOMAS) to identify the conditions for Electron Bernstein Wave (EBW) heating. Density and temperature profiles are measured with movable Triple Langmuir Probes in the horizontal and vertical directions. Measurements of the forwarded and reflected power allow evaluation of the coupling efficiency. Optical emission spectroscopy and camera images also contribute to plasma characterization. The influence of the injected power, magnetic field, gas pressure, and wave polarization on the different deposition mechanisms is studied, and the contribution of the Electron Bernstein Wave is evaluated. The TOMATOR 1D hydrogen-helium plasma simulator numerically describes the evolution of current less magnetized Radio Frequency plasmas in a tokamak based on Braginskii’s legal continuity and heat balance equations. This code was initially benchmarked with experimental data from TCV to determine the transport coefficients. The code is used to model the plasma parameters and the power deposition profiles. The modeling is compared with the data from the experiments.Keywords: electron Bernstein wave, Langmuir probe, plasma characterization, TOMAS
Procedia PDF Downloads 95326 Damage-Based Seismic Design and Evaluation of Reinforced Concrete Bridges
Authors: Ping-Hsiung Wang, Kuo-Chun Chang
Abstract:
There has been a common trend worldwide in the seismic design and evaluation of bridges towards the performance-based method where the lateral displacement or the displacement ductility of bridge column is regarded as an important indicator for performance assessment. However, the seismic response of a bridge to an earthquake is a combined result of cyclic displacements and accumulated energy dissipation, causing damage to the bridge, and hence the lateral displacement (ductility) alone is insufficient to tell its actual seismic performance. This study aims to propose a damage-based seismic design and evaluation method for reinforced concrete bridges on the basis of the newly developed capacity-based inelastic displacement spectra. The capacity-based inelastic displacement spectra that comprise an inelastic displacement ratio spectrum and a corresponding damage state spectrum was constructed by using a series of nonlinear time history analyses and a versatile, smooth hysteresis model. The smooth model could take into account the effects of various design parameters of RC bridge columns and correlates the column’s strength deterioration with the Park and Ang’s damage index. It was proved that the damage index not only can be used to accurately predict the onset of strength deterioration, but also can be a good indicator for assessing the actual visible damage condition of column regardless of its loading history (i.e., similar damage index corresponds to similar actual damage condition for the same designed columns subjected to very different cyclic loading protocols as well as earthquake loading), providing a better insight into the seismic performance of bridges. Besides, the computed spectra show that the inelastic displacement ratio for far-field ground motions approximately conforms to the equal displacement rule when structural period is larger than around 0.8 s, but that for near-fault ground motions departs from the rule in the whole considered spectral regions. Furthermore, the near-fault ground motions would lead to significantly greater inelastic displacement ratio and damage index than far-field ground motions and most of the practical design scenarios cannot survive the considered near-fault ground motion when the strength reduction factor of bridge is not less than 5.0. Finally, the spectrum formula is presented as a function of structural period, strength reduction factor, and various column design parameters for far-field and near-fault ground motions by means of the regression analysis of the computed spectra. And based on the developed spectrum formula, a design example of a bridge is presented to illustrate the proposed damage-based seismic design and evaluation method where the damage state of the bridge is used as the performance objective.Keywords: damage index, far-field, near-fault, reinforced concrete bridge, seismic design and evaluation
Procedia PDF Downloads 125325 Mechanical Properties of Diamond Reinforced Ni Nanocomposite Coatings Made by Co-Electrodeposition with Glycine as Additive
Authors: Yanheng Zhang, Lu Feng, Yilan Kang, Donghui Fu, Qian Zhang, Qiu Li, Wei Qiu
Abstract:
Diamond-reinforced Ni matrix composite has been widely applied in engineering for coating large-area structural parts owing to its high hardness, good wear resistance and corrosion resistance compared with those features of pure nickel. The mechanical properties of Ni-diamond composite coating can be promoted by the high incorporation and uniform distribution of diamond particles in the nickel matrix, while the distribution features of particles are affected by electrodeposition process parameters, especially the additives in the plating bath. Glycine has been utilized as an organic additive during the preparation of pure nickel coating, which can effectively increase the coating hardness. Nevertheless, to author’s best knowledge, no research about the effects of glycine on the Ni-diamond co-deposition has been reported. In this work, the diamond reinforced Ni nanocomposite coatings were fabricated by a co-electrodeposition technique from a modified Watt’s type bath in the presence of glycine. After preparation, the SEM morphology of the composite coatings was observed combined with energy dispersive X-ray spectrometer, and the diamond incorporation was analyzed. The surface morphology and roughness were obtained by a three-dimensional profile instrument. 3D-Debye rings formed by XRD were analyzed to characterize the nickel grain size and orientation in the coatings. The average coating thickness was measured by a digital micrometer to deduce the deposition rate. The microhardness was tested by automatic microhardness tester. The friction coefficient and wear volume were measured by reciprocating wear tester to characterize the coating wear resistance and cutting performance. The experimental results confirmed that the presence of glycine effectively improved the surface morphology and roughness of the composite coatings. By optimizing the glycine concentration, the incorporation of diamond particles was increased, while the nickel grain size decreased with increasing glycine. The hardness of the composite coatings was increased as the glycine concentration increased. The friction and wear properties were evaluated as the glycine concentration was optimized, showing a decrease in the wear volume. The wear resistance of the composite coatings increased as the glycine content was increased to an optimum value, beyond which the wear resistance decreased. Glycine complexation contributed to the nickel grain refinement and improved the diamond dispersion in the coatings, both of which made a positive contribution to the amount and uniformity of embedded diamond particles, thus enhancing the microhardness, reducing the friction coefficient, and hence increasing the wear resistance of the composite coatings. Therefore, additive glycine can be used during the co-deposition process to improve the mechanical properties of protective coatings.Keywords: co-electrodeposition, glycine, mechanical properties, Ni-diamond nanocomposite coatings
Procedia PDF Downloads 125324 Investigation of Municipal Solid Waste Incineration Filter Cake as Minor Additional Constituent in Cement Production
Authors: Veronica Caprai, Katrin Schollbach, Miruna V. A. Florea, H. J. H. Brouwers
Abstract:
Nowadays MSWI (Municipal Solid Waste Incineration) bottom ash (BA) produced by Waste-to-Energy (WtE) plants represents the majority of the solid residues derived from MSW incineration. Once processed, the BA is often landfilled resulting in possible environmental problems, additional costs for the plant and increasing occupation of public land. In order to limit this phenomenon, European countries such as the Netherlands aid the utilization of MSWI BA in the construction field, by providing standards about the leaching of contaminants into the environment (Dutch Soil Quality Decree). Commonly, BA has a particle size below 32 mm and a heterogeneous chemical composition, depending on its source. By washing coarser BA, an MSWI sludge is obtained. It is characterized by a high content of heavy metals, chlorides, and sulfates as well as a reduced particle size (below 0.25 mm). To lower its environmental impact, MSWI sludge is filtered or centrifuged for removing easily soluble contaminants, such as chlorides. However, the presence of heavy metals is not easily reduced, compromising its possible application. For lowering the leaching of those contaminants, the use of MSWI residues in combination with cement represents a precious option, due to the known retention of those ions into the hydrated cement matrix. Among the applications, the European standard for common cement EN 197-1:1992 allows the incorporation of up to 5% by mass of a minor additional constituent (MAC), such as fly ash or blast furnace slag but also an unspecified filler into cement. To the best of the author's knowledge, although it is widely available, it has the appropriate particle size and a chemical composition similar to cement, FC has not been investigated as possible MAC in cement production. Therefore, this paper will address the suitability of MSWI FC as MAC for CEM I 52.5 R, within a 5% maximum replacement by mass. After physical and chemical characterization of the raw materials, the crystal phases of the pastes are determined by XRD for 3 replacement levels (1%, 3%, and 5%) at different ages. Thereafter, the impact of FC on mechanical and environmental performances of cement is assessed according to EN 196-1 and the Dutch Soil Quality Decree, respectively. The investigation of the reaction products evidences the formation of layered double hydroxides (LDH), in the early stage of the reaction. Mechanically the presence of FC results in a reduction of 28 days compressive strength by 8% for a replacement of 5% wt., compared with the pure CEM I 52.5 R without any MAC. In contrast, the flexural strength is not affected by the presence of FC. Environmentally, the Dutch legislation for the leaching of contaminants for unshaped (granular) material is satisfied. Based on the collected results, FC represents a suitable candidate as MAC in cement production.Keywords: environmental impact evaluation, Minor additional constituent, MSWI residues, X-ray diffraction crystallography
Procedia PDF Downloads 178323 Development of Anti-Fouling Surface Features Bioinspired by the Patterned Micro-Textures of the Scophthalmus rhombus (Brill)
Authors: Ivan Maguire, Alan Barrett, Alex Forte, Sandra Kwiatkowska, Rohit Mishra, Jens Ducrèe, Fiona Regan
Abstract:
Biofouling is defined as the gradual accumulation of Biomimetics refers to the use and imitation of principles copied from nature. Biomimetics has found interest across many commercial disciplines. Among many biological objects and their functions, aquatic animals deserve a special attention due to their antimicrobial capabilities resulting from chemical composition, surface topography or other behavioural defences, which can be used as an inspiration for antifouling technology. Marine biofouling has detrimental effects on seagoing vessels, both commercial and leisure, as well as on oceanographic sensors, offshore drilling rigs, and aquaculture installations. Sensor optics, membranes, housings and platforms can become fouled leading to problems with sensor performance and data integrity. While many anti-fouling solutions are currently being investigated as a cost-cutting measure, biofouling settlement may also be prevented by creating a surface that does not satisfy the settlement conditions. Brill (Scophthalmus rhombus) is a small flatfish occurring in marine waters of Mediterranean as well as Norway and Iceland. It inhabits sandy and muddy coastal waters from 5 to 80 meters. Its skin colour changes depending on environment, but generally is brownish with light and dark freckles, with creamy underside. Brill is oval in shape and its flesh is white. The aim of this study is to translate the unique micro-topography of the brill scale, to design marine inspired biomimetic surface coating and test it against a typical fouling organism. Following extensive study of scale topography of the brill fish (Scophthalmus rhombus) and the settlement behaviour of the diatom species Psammodictyon sp. via SEM, two state-of-the-art antifouling surface solutions were designed and investigated; A brill fish scale bioinspired surface pattern platform (BFD), and generic and uniformly-arrayed, circular micropillar platform (MPD), with offsets based on diatom species settlement behaviour. The BFD approach consists of different ~5 μm by ~90 μm Brill-replica patterns, grown to a 5 μm height, in a linear array pattern. The MPD approach utilises hexagonal-packed cylindrical pillars 10.6 μm in diameter, grown to a height of 5 μm, with vertical offset of 15 μm and horizontal offset of 26.6 μm. Photolithography was employed for microstructure growth, with a polydimethylsiloxane (PDMS) chip-based used as a testbed for diatom adhesion on both platforms. Settlement and adhesion tests were performed using this PDMS microfluidic chip through subjugation to centrifugal force via an in-house developed ‘spin-stand’ which features a motor, in combination with a high-resolution camera, for real-time observing diatom release from PDMS material. Diatom adhesion strength can therefore be determined based on the centrifugal force generated at varying rotational speeds. It is hoped that both the replica and bio-inspired solutions will give comparable anti-fouling results to these synthetic surfaces, whilst also assisting in determining whether anti-fouling solutions should predominantly be investigating either fully bioreplica-based, or a bioinspired, synthetically-based design.Keywords: anti-fouling applications, bio-inspired microstructures, centrifugal microfluidics, surface modification
Procedia PDF Downloads 317322 Application of a Submerged Anaerobic Osmotic Membrane Bioreactor Hybrid System for High-Strength Wastewater Treatment and Phosphorus Recovery
Authors: Ming-Yeh Lu, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu
Abstract:
Recently, anaerobic membrane bioreactors (AnMBRs) has been widely utilized, which combines anaerobic biological treatment process and membrane filtration, that can be present an attractive option for wastewater treatment and water reuse. Conventional AnMBR is having several advantages, such as improving effluent quality, compact space usage, lower sludge yield, without aeration and production of energy. However, the removal of nitrogen and phosphorus in the AnMBR permeate was negligible which become the biggest disadvantage. In recent years, forward osmosis (FO) is an emerging technology that utilizes osmotic pressure as driving force to extract clean water without additional external pressure. The pore size of FO membrane is kindly mentioned the pore size, so nitrogen or phosphorus could effectively improve removal of nitrogen or phosphorus. Anaerobic bioreactor with FO membrane (AnOMBR) can retain the concentrate organic matters and nutrients. However, phosphorus is a non-renewable resource. Due to the high rejection property of FO membrane, the high amount of phosphorus could be recovered from the combination of AnMBR and FO. In this study, development of novel submerged anaerobic osmotic membrane bioreactor integrated with periodic microfiltration (MF) extraction for simultaneous phosphorus and clean water recovery from wastewater was evaluated. A laboratory-scale AnOMBR utilizes cellulose triacetate (CTA) membranes with effective membrane area of 130 cm² was fully submerged into a 5.5 L bioreactor at 30-35℃. Active layer-facing feed stream orientation was utilized, for minimizing fouling and scaling. Additionally, a peristaltic pump was used to circulate draw solution (DS) at a cross flow velocity of 0.7 cm/s. Magnesium sulphate (MgSO₄) solution was used as DS. Microfiltration membrane periodically extracted about 1 L solution when the TDS reaches to 5 g/L to recover phosphorus and simultaneous control the salt accumulation in the bioreactor. During experiment progressed, the average water flux was achieved around 1.6 LMH. The AnOMBR process show greater than 95% removal of soluble chemical oxygen demand (sCOD), nearly 100% of total phosphorous whereas only partial removal of ammonia, and finally average methane production of 0.22 L/g sCOD was obtained. Therefore, AnOMBR system periodically utilizes MF membrane extracted for phosphorus recovery with simultaneous pH adjustment. The overall performance demonstrates that a novel submerged AnOMBR system is having potential for simultaneous wastewater treatment and resource recovery from wastewater, and hence, the new concept of this system can be used to replace for conventional AnMBR in the future.Keywords: anaerobic treatment, forward osmosis, phosphorus recovery, membrane bioreactor
Procedia PDF Downloads 270321 From Social Equity to Spatial Equity in Urban Space: Precedent Study Approach
Authors: Dorsa Pourmojib, Marc J. Boutin
Abstract:
Urban space is used everyday by a diverse range of urban dwellers, each with different expectations. In this space, opportunities and resources are not distributed equitably among urban dwellers, despite the importance of inclusivity. In addition, some marginalized groups may not be considered. These include people with low incomes, immigrants from diverse cultures, various age groups, and those with special needs. To this end, this research aims to enhance social equity in urban space by bridging the gap between social equity and spatial equity in the urban context. This gap in the knowledge base related to urban design may be present for several reasons; lack of studies on relationship between social equity and spatial equity in urban open space, lack of practical design strategies for promoting social equity in urban open space, lack of proper site analysis in terms of context and users of the site both for designing new urban open spaces and developing the existing ones, and lack of researchers that are designers and finally it could be related to priorities of the city’s policies in addressing such issues, since it is time, money and energy consuming. The main objective of this project is addressing the aforementioned gap in the knowledge by exploring the relationship between social equity and spatial equity in urban open space. Answering the main question of this research is a promising step to this end; 'What are the considerations towards providing social equity through the design of urban elements that offer spatial equity?' To answer the main question of this research there are several secondary questions which should be addressed. Such as; how can the characteristics of social equity be translated to spatial equity? What are the diverse user’s needs and which of their needs are not considered in that site? What are the specific elements in the site which should be designed in order to promote social equity? What is the current situation of social and spatial equity in the proposed site? To answer the research questions and achieve the proposed objectives, a three-step methodology has been implemented. Firstly, a comprehensive research framework based on the available literature has been presented. Afterwards, three different urban spaces have been analyzed in terms of specific key research questions as the precedent studies; Naqsh-e Jahan Square (Iran), Superkilen Park (Denmark) and Campo Dei Fiori (Italy). In this regard, a proper gap analysis of the current situation and the proposed situation of these sites has been conducted. Finally, by combining the extracted design considerations from the precedent studies and the literature review, practical design strategies have been introduced as a result of this research. The presented guidelines enable the designers to create socially equitable urban spaces. To conclude, this research proposes a spatial approach to social inclusion and equity in urban space by presenting a practical framework and criteria for translating social equity to spatial equity in urban areas.Keywords: inclusive urban design, social equity, social inclusion, spatial equity
Procedia PDF Downloads 142320 Phytochemical and Antimicrobial Properties of Zinc Oxide Nanocomposites on Multidrug-Resistant E. coli Enzyme: In-vitro and in-silico Studies
Authors: Callistus I. Iheme, Kenneth E. Asika, Emmanuel I. Ugwor, Chukwuka U. Ogbonna, Ugonna H. Uzoka, Nneamaka A. Chiegboka, Chinwe S. Alisi, Obinna S. Nwabueze, Amanda U. Ezirim, Judeanthony N. Ogbulie
Abstract:
Antimicrobial resistance (AMR) is a major threat to the global health sector. Zinc oxide nanocomposites (ZnONCs), composed of zinc oxide nanoparticles and phytochemicals from Azadirachta indica aqueous leaf extract, were assessed for their physico-chemicals, in silico and in vitro antimicrobial properties on multidrug-resistant Escherichia coli enzymes. Gas chromatography coupled with mass spectroscope (GC-MS) analysis on the ZnONCs revealed the presence of twenty volatile phytochemical compounds, among which is scoparone. Characterization of the ZnONCs was done using ultraviolet-visible spectroscopy (UV-vis), energy dispersive spectroscopy (EDX), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and x-ray diffractometer (XRD). Dehydrogenase enzyme converts colorless 2,3,5-triphenyltetrazolium chloride to the red triphenyl formazan (TPF). The rate of formazan formation in the presence of ZnONCs is proportional to the enzyme activities. The color formation is extracted and determined at 500 nm, and the percentage of enzyme activity is calculated. To determine the bioactive components of the ZnONCs, characterize their binding to enzymes, and evaluate the enzyme-ligand complex stability, respectively Discrete Fourier Transform (DFT) analysis, docking, and molecular dynamics simulations will be employed. The results showed arrays of ZnONCs nanorods with maximal absorption wavelengths of 320 nm and 350 nm and thermally stable at the temperature range of 423.77 to 889.69 ℃. In vitro study assessed the dehydrogenase inhibitory properties of the ZnONCs, conjugate of ZnONCs and ampicillin (ZnONCs-amp), the aqueous leaf extract of A. indica, and ampicillin (standard drug). The findings revealed that at the concentration of 500 μm/mL, 57.89 % of the enzyme activities were inhibited by ZnONCs compared to 33.33% and 21.05% of the standard drug (Ampicillin), and the aqueous leaf extract of the A. indica respectively. The inhibition of the enzyme activities by the ZnONCs at 500 μm/mL was further enhanced to 89.74 % by conjugating with Ampicillin. In silico study on the ZnONCs revealed scoparone as the most viable competitor of nicotinamide adenine dinucleotide (NAD⁺) for the coenzyme binding pocket on E. coli malate and histidinol dehydrogenase. From the findings, it can be concluded that the scoparone components of the nanocomposites in synergy with the zinc oxide nanoparticles inhibited E. coli malate and histidinol dehydrogenase by competitively binding to the NAD⁺ pocket and that the conjugation of the ZnONCs with ampicillin further enhanced the antimicrobial efficiency of the nanocomposite against multidrug resistant E. coli.Keywords: antimicrobial resistance, dehydrogenase activities, E. coli, zinc oxide nanocomposites
Procedia PDF Downloads 49319 Using True Life Situations in a Systems Theory Perspective as Sources of Creativity: A Case Study of how to use Everyday Happenings to produce Creative Outcomes in Novel and Screenplay Writing
Authors: Rune Bjerke
Abstract:
Psychologists incline to see creativity as a mental and psychological process. However, creativity is as well results of cultural and social interactions. Therefore, creativity is not a product of individuals in isolation, but of social systems. Creative people get ideas from the influence of others and the immediate cultural environment – a space of knowledge, situations, and practices. Therefore, in this study we apply the systems theory in practice to activate creativity processes in the production of our novel and screenplay writing. We, as storytellers actively seek to get into situations in our everyday lives, our systems, to generate ideas. Within our personal systems, we have the potential to induce situations to realise ideas to our texts, which may be accepted by our gate-keepers and can become socially validated. This is our method of writing – get into situations, get ideas to texts, and test them with family and friends in our social systems. Example of novel text as an outcome of our method is as follows: “Is it a matter of obviousness or had I read it somewhere, that the one who increases his knowledge increases his pain? And also, the other way around, with increased pain, knowledge increases, I thought. Perhaps such a chain of effects explains why the rebel August Strindberg wrote seven plays in ten months after the divorce with Siri von Essen. Shortly after, he tried painting. Neither the seven theatre plays were shown, nor the paintings were exhibited. I was standing in front of Munch's painting Women in Three Stages with chaotic mental images of myself crumpled in a church and a laughing x-girlfriend watching my suffering. My stomach was turning at unpredictable intervals and the subsequent vomiting almost suffocated me. Love grief at the worst. Was it this pain Strindberg felt? Despite the failure of his first plays, the pain must have triggered a form of creative energy that turned pain into ideas. Suffering, thoughts, feelings, words, text, and then, the reader experience. Maybe this negative force can be transformed into something positive, I asked myself. The question eased my pain. At that moment, I forgot the damp, humid air in the Munch Museum. Is it the similar type of Strindberg-pain that could explain the recurring, depressive themes in Munch's paintings? Illness, death, love and jealousy. As a beginning art student at the master's level, I had decided to find the answer. Was it the same with Munch's pain, as with Strindberg - a woman behind? There had to be women in the case of Munch - therefore, the painting “Women in Three Stages”? Who are they, what personality types are they – the women in red, black and white dresses from left to the right?” We, the writers, are using persons, situations and elements in our systems, in a systems theory perspective, to prompt creative ideas. A conceptual model is provided to advance creativity theory.Keywords: creativity theory, systems theory, novel writing, screenplay writing, sources of creativity in social systems
Procedia PDF Downloads 120318 Offshore Wind Assessment and Analysis for South Western Mediterranean Sea
Authors: Abdallah Touaibia, Nachida Kasbadji Merzouk, Mustapha Merzouk, Ryma Belarbi
Abstract:
accuracy assessment and a better understand of the wind resource distribution are the most important tasks for decision making before installing wind energy operating systems in a given region, there where our interest come to the Algerian coastline and its Mediterranean sea area. Despite its large coastline overlooking the border of Mediterranean Sea, there is still no strategy encouraging the development of offshore wind farms in Algerian waters. The present work aims to estimate the offshore wind fields for the Algerian Mediterranean Sea based on wind data measurements ranging from 1995 to 2018 provided of 24 years of measurement by seven observation stations focusing on three coastline cities in Algeria under a different measurement time step recorded from 30 min, 60 min, and 180 min variate from one to each other, two stations in Spain, two other ones in Italy and three in the coast of Algeria from the east Annaba, at the center Algiers, and to Oran taken place at the west of it. The idea behind consists to have multiple measurement points that helping to characterize this area in terms of wind potential by the use of interpolation method of their average wind speed values between these available data to achieve the approximate values of others locations where aren’t any available measurement because of the difficulties against the implementation of masts within the deep depth water. This study is organized as follow: first, a brief description of the studied area and its climatic characteristics were done. After that, the statistical properties of the recorded data were checked by evaluating wind histograms, direction roses, and average speeds using MatLab programs. Finally, ArcGIS and MapInfo soft-wares were used to establish offshore wind maps for better understanding the wind resource distribution, as well as to identify windy sites for wind farm installation and power management. The study pointed out that Cap Carbonara is the windiest site with an average wind speed of 7.26 m/s at 10 m, inducing a power density of 902 W/m², then the site of Cap Caccia with 4.88 m/s inducing a power density of 282 W/m². The average wind speed of 4.83 m/s is occurred for the site of Oran, inducing a power density of 230 W/m². The results indicated also that the dominant wind direction where the frequencies are highest for the site of Cap Carbonara is the West with 34%, an average wind speed of 9.49 m/s, and a power density of 1722 W/m². Then comes the site of Cap Caccia, where the prevailing wind direction is the North-west, about 20% and 5.82 m/s occurring a power density of 452 W/m². The site of Oran comes in third place with the North dominant direction with 32% inducing an average wind speed of 4.59 m/s and power density of 189 W/m². It also shown that the proposed method is either crucial in understanding wind resource distribution for revealing windy sites over a large area and more effective for wind turbines micro-siting.Keywords: wind ressources, mediterranean sea, offshore, arcGIS, mapInfo, wind maps, wind farms
Procedia PDF Downloads 146317 Distribution, Source Apportionment and Assessment of Pollution Level of Trace Metals in Water and Sediment of a Riverine Wetland of the Brahmaputra Valley
Authors: Kali Prasad Sarma, Sanghita Dutta
Abstract:
Deepor Beel (DB), the lone Ramsar site and an important wetland of the Brahmaputra valley in the state of Assam. The local people from fourteen peripheral villages traditionally utilize the wetland for harvesting vegetables, flowers, aquatic seeds, medicinal plants, fish, molluscs, fodder for domestic cattle etc. Therefore, it is of great importance to understand the concentration and distribution of trace metals in water-sediment system of the beel in order to protect its ecological environment. DB lies between26°05′26′′N to 26°09′26′′N latitudes and 90°36′39′′E to 91°41′25′′E longitudes. Water samples from the surface layer of water up to 40cm deep and sediment samples from the top 5cm layer of surface sediments were collected. The trace metals in waters and sediments were analysed using ICP-OES. The organic Carbon was analysed using the TOC analyser. The different mineral present in the sediments were confirmed by X-ray diffraction method (XRD). SEM images were recorded for the samples using SEM, attached with energy dispersive X-ray unit, with an accelerating voltage of 20 kv. All the statistical analyses were performed using SPSS20.0 for windows. In the present research, distribution, source apportionment, temporal and spatial variability, extent of pollution and the ecological risk of eight toxic trace metals in sediments and water of DB were investigated. The average concentrations of chromium(Cr) (both the seasons), copper(Cu) and lead(Pb) (pre-monsoon) and zinc(Zn) and cadmium(Cd) (post-monsoon) in sediments were higher than the consensus based threshold concentration(TEC). The persistent exposure of toxic trace metals in sediments pose a potential threat, especially to sediment dwelling organisms. The degree of pollution in DB sediments for Pb, Cobalt (Co) Zn, Cd, Cr, Cu and arsenic (As) was assessed using Enrichment Factor (EF), Geo-accumulation index (Igeo) and Pollution Load Index (PLI). The results indicated that contamination of surface sediments in DB is dominated by Pb and Cd and to a lesser extent by Co, Fe, Cu, Cr, As and Zn. A significant positive correlation among the pairs of element Co/Fe, Zn/As in water, and Cr/Zn, Fe/As in sediments indicates similar source of origin of these metals. The effects of interaction among trace metals between water and sediments shows significant variations (F =94.02, P < 0.001), suggesting maximum mobility of trace metals in DB sediments and water. The source apportionment of the heavy metals was carried out using Principal Component Analysis (PCA). SEM-EDS detects the presence of Cd, Cu, Cr, Zn, Pb, As and Fe in the sediment sample. The average concentration of Cd, Zn, Pb and As in the bed sediments of DB are found to be higher than the crustal abundance. The EF values indicate that Cd and Pb are significantly enriched. From source apportionment studies of the eight metals using PCA revealed that Cd was anthropogenic in origin; Pb, As, Cr, and Zn had mixed sources; whereas Co, Cu and Fe were natural in origin.Keywords: Deepor Beel, enrichment factor, principal component analysis, trace metals
Procedia PDF Downloads 288316 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence
Authors: Muhammad Bilal Shaikh
Abstract:
Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.Keywords: multimodal AI, computer vision, NLP, mineral processing, mining
Procedia PDF Downloads 68315 Life Cycle Datasets for the Ornamental Stone Sector
Authors: Isabella Bianco, Gian Andrea Blengini
Abstract:
The environmental impact related to ornamental stones (such as marbles and granites) is largely debated. Starting from the industrial revolution, continuous improvements of machineries led to a higher exploitation of this natural resource and to a more international interaction between markets. As a consequence, the environmental impact of the extraction and processing of stones has increased. Nevertheless, if compared with other building materials, ornamental stones are generally more durable, natural, and recyclable. From the scientific point of view, studies on stone life cycle sustainability have been carried out, but these are often partial or not very significant because of the high percentage of approximations and assumptions in calculations. This is due to the lack, in life cycle databases (e.g. Ecoinvent, Thinkstep, and ELCD), of datasets about the specific technologies employed in the stone production chain. For example, databases do not contain information about diamond wires, chains or explosives, materials commonly used in quarries and transformation plants. The project presented in this paper aims to populate the life cycle databases with specific data of specific stone processes. To this goal, the methodology follows the standardized approach of Life Cycle Assessment (LCA), according to the requirements of UNI 14040-14044 and to the International Reference Life Cycle Data System (ILCD) Handbook guidelines of the European Commission. The study analyses the processes of the entire production chain (from-cradle-to-gate system boundaries), including the extraction of benches, the cutting of blocks into slabs/tiles and the surface finishing. Primary data have been collected in Italian quarries and transformation plants which use technologies representative of the current state-of-the-art. Since the technologies vary according to the hardness of the stone, the case studies comprehend both soft stones (marbles) and hard stones (gneiss). In particular, data about energy, materials and emissions were collected in marble basins of Carrara and in Beola and Serizzo basins located in the province of Verbano Cusio Ossola. Data were then elaborated through an appropriate software to build a life cycle model. The model was realized setting free parameters that allow an easy adaptation to specific productions. Through this model, the study aims to boost the direct participation of stone companies and encourage the use of LCA tool to assess and improve the stone sector environmental sustainability. At the same time, the realization of accurate Life Cycle Inventory data aims at making available, to researchers and stone experts, ILCD compliant datasets of the most significant processes and technologies related to the ornamental stone sector.Keywords: life cycle assessment, LCA datasets, ornamental stone, stone environmental impact
Procedia PDF Downloads 233314 Capsaicin Derivatives Enhanced Activity of α1β2γ2S-Aminobutyric Acid Type a Receptor Expressed in Xenopus laevis Oocytes
Authors: Jia H. Wong, Jingli Zhang, Habsah Mohamad, Iswatun H. Abdullah Ripain, Muhammad Bilal, Amelia J. Lloyd, Abdul A. Mohamed Yusoff, Jafri M. Abdullah
Abstract:
Epilepsy is one of the most common neurological diseases affecting more than 50 million of people worldwide. Epilepsy is a state of recurrent, spontaneous seizures with multiple syndromes and symptoms of different causes of brain dysfunction, prognosis, and treatments; characterized by transient, occasional and stereotyped interruptions of behavior whereby the excitatory-inhibitory activities within the central nervous system (CNS) are thrown out of balance due to various kinds of interferences. The goal of antiepileptic treatment is to enable patients to be free from seizures or to achieve control of seizures through surgical treatment and/or pharmacotherapy. Pharmacotherapy through AED plays an important role especially in countries with epilepsy treatment gap due to costs and availability of health facilities, skills and resources, yet there are about one-third of the people with epilepsy have drug-resistant seizures. Hence, this poses considerable challenges to the healthcare system and the effort in providing cost-effective treatment as well as the search for alternatives to treatment and management of epilepsy. Enhancement of γ-aminobutyric acid (GABA)-mediated inhibitory neurotransmission is one of the key mechanisms of actions of antiepileptic drugs. GABA type > a receptors (GABAAR) are ligand-gated ion channels that mediate rapid inhibitory neurotransmission upon the binding of GABA with a heteropentameric structure forming a central pore that is permeable to the influx of chloride ions in its activated state. The major isoform of GABAA receptors consists of two α1, two β2, and one γ2 subunit. It is the most abundantly expressed combinations in the brain and the most commonly researched through Xenopus laevis oocytes. With the advancing studies on ethnomedicine and traditional treatments using medicinal plants, increasing evidence reveal that spice and herb plants with medicinal properties play an important role in the treatment of ailments within communities across different cultures. Capsaicin is the primary natural capsaicinoid in hot peppers of plant genus Capsicum, consist of an aromatic ring, an amide linkage and a hydrophobic side chain. The study showed that capsaicins conferred neuroprotection in status epilepticus mouse models through anti-ictogenic, hypothermic, antioxidative, anti-inflammatory, and anti-apoptotic actions in a dose-dependent manner. In this study, five capsaicin derivatives were tested for their ability to increase the GABA-induced chloride current on α1β2γ2S of GABAAR expressed on Xenopus laevis oocytes using the method of two-microelectrode voltage clamp. Two of the capsaicin derivatives, IS5 (N-(4-hydroxy-3-methoxybenzyl)-3-methylbutyramide) and IS10 (N-(4-hydroxy-3-methoxybenzyl)-decanamide) at a concentration of 30µM were able to significantly increase the GABA-induced chloride current with p=0.002 and p=0.026 respectively. This study were able to show the enhancement effect of two capsaicin derivatives with moderate length of hydrocarbon chain on this receptor subtype, revealing the promising inhibitory activity of capsaicin derivatives through enhancement of GABA-induced chloride current and further investigations should be carried out to verify its antiepileptic effects in animal models.Keywords: α1β2γ2 GABAA receptors, α1β2γ2S, antiepileptic, capsaicin derivatives, two-microelectrode voltage clamp, Xenopus laevis oocytes
Procedia PDF Downloads 362313 Acrylamide Concentration in Cakes with Different Caloric Sweeteners
Authors: L. García, N. Cobas, M. López
Abstract:
Acrylamide, a probable carcinogen, is formed in high-temperature processed food (>120ºC) when the free amino acid asparagine reacts with reducing sugars, mainly glucose and fructose. Cane juices' repeated heating would potentially form acrylamide during brown sugar production. This study aims to determine if using panela in yogurt cake preparation increases acrylamide formation. A secondary aim is to analyze the acrylamide concentration in four cake confections with different caloric sweetener ingredients: beet sugar (BS), cane sugar (CS), panela (P), and a panela and chocolate mix (PC). The doughs were obtained by combining ingredients in a planetary mixer. A model system made up of flour (25%), caloric sweeteners (25 %), eggs (23%), yogurt (15.7%), sunflower oil (9.4%), and brewer's yeast (2 %) was applied to BS, CS and P cakes. The ingredients of PC cakes varied: flour (21.5 %), panela chocolate (21.5 %), eggs (25.9 %), yogurt (18 %), sunflower oil (10.8 %), and brewer’s yeast (2.3 %). The preparations were baked for 45' at 180 ºC. Moisture was estimated by AOAC. Protein was determined by the Kjeldahl method. Ash percentage was calculated by weight loss after pyrolysis (≈ 600 °C). Fat content was measured using liquid-solid extraction in hydrolyzed raw ingredients and final confections. Carbohydrates were determined by difference and total sugars by the Luff-Schoorl method, based on the iodometric determination of copper ions. Finally, acrylamide content was determined by LC-MS by the isocratic system (phase A: 97.5 % water with 0.1% formic acid; phase B: 2.5 % methanol), using a standard internal procedure. Statistical analysis was performed using SPSS v.23. One-way variance analysis determined differences between acrylamide content and compositional analysis, with caloric sweeteners as fixed effect. Significance levels were determined by applying Duncan's t-test (p<0.05). P cakes showed a lower energy value than the other baked products; sugar content was similar to BS and CS, with 6.1 % mean crude protein. Acrylamide content in caloric sweeteners was similar to previously reported values. However, P and PC showed significantly higher concentrations, probably explained by the applied procedure. Acrylamide formation depends on both reducing sugars and asparagine concentration and availability. Beet sugar samples did not present acrylamide concentrations within the detection and quantification limit. However, the highest acrylamide content was measured in the BS. This may be due to the higher concentration of reducing sugars and asparagine in other raw ingredients. The cakes made with panela, cane sugar, or panela with chocolate did not differ in acrylamide content. The lack of asparagine measures constitutes a limitation. Cakes made with panela showed lower acrylamide formation than products elaborated with beet or cane sugar.Keywords: beet sugar, cane sugar, panela, yogurt cake
Procedia PDF Downloads 66312 UVA or UVC Activation of H₂O₂ and S₂O₈²⁻ for Estrogen Degradation towards an Application in Rural Wastewater Treatment Plant
Authors: Anaelle Gabet, Helene Metivier, Christine De Brauer, Gilles Mailhot, Marcello Brigante
Abstract:
The presence of micropollutants in surface waters has been widely reported around the world, particularly downstream from wastewater treatment plants (WWTPs). Rural WWTPs constitute more than 90 % of the total WWTPs in France. Like conventional ones, they are not able to fully remove micropollutants. Estrogens are excreted by human beings every day and several studies have highlighted their endocrine disruption properties on river wildlife. They are mainly estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2). Rural WWTPs require cheap and robust tertiary processes. UVC activation of H₂O₂ for HO· generation, a very reactive molecule, has demonstrated its effectiveness. However, UVC rays are dangerous to manipulate and energy-consuming. This is why the ability of UVA rays was investigated in this study. Moreover, the use of S₂O₈²⁻ for SO₄·- generation as an alternative to HO· has emerged in the last few years. Such processes have been widely studied on a lab scale. However, pilot-scale works constitute fewer studies. This study was carried out on a 20-L pilot composed of a 1.12-L UV reactor equipped with a polychromatic UVA lamp or a monochromatic (254 nm) UVC lamp fed in recirculation. Degradation rates of a mixture of spiked E1, E2 and EE2 (5 µM each) were followed by HPLC-UV. Results are expressed in UV dose (mJ.cm-2) received by the compounds of interest to compare UVC and UVA. In every system, estrogen degradation rates followed pseudo-first-order rates. First, experiments were carried out in tap water. All estrogens underwent photolysis under UVC rays, although E1 photolysis is higher. However, only very weak photolysis was observed under UVA rays. Preliminary studies on both oxidants have shown that S₂O₈²⁻ photolysis constants are higher than H₂O₂ under both UVA and UVC rays. Therefore, estrogen degradation rates are about ten times higher in the presence of 1 mM of S₂O₈²⁻ than with one mM of H₂O₂ under both radiations. In the same conditions, the mixture of interest required about 40 times higher UV dose when using UVA rays compared to UVC. However, the UVA/S₂O₈²⁻ system only requires four times more UV dose than the conventional UVC/H₂O₂ system. Further studies were carried out in WWTP effluent with the UVC lamp. When comparing these results to the tap water ones, estrogen degradation rates were more inhibited in the S₂O₈²⁻ system than with H₂O₂. It seems that SO₄·- undergo higher quenching by a real effluent than HO·. Preliminary experiments have shown that natural organic matter is mainly responsible for the radical quenching and that HO and SO₄ both had similar second-order reaction rate constants with dissolved organic matter. However, E1, E2 and EE2 second-order reaction rate constants are about ten times lower with SO₄ than with HO. In conclusion, the UVA/S₂O₈²⁻ system showed encouraging results for the use of UVA rays but further studies in WWTP effluent have to be carried out to confirm this interest. The efficiency of other pollutants in the real matrix also needs to be investigated.Keywords: AOPs, decontamination, estrogens, radicals, wastewater
Procedia PDF Downloads 191311 Revolutionizing Oil Palm Replanting: Geospatial Terrace Design for High-precision Ground Implementation Compared to Conventional Methods
Authors: Nursuhaili Najwa Masrol, Nur Hafizah Mohammed, Nur Nadhirah Rusyda Rosnan, Vijaya Subramaniam, Sim Choon Cheak
Abstract:
Replanting in oil palm cultivation is vital to enable the introduction of planting materials and provides an opportunity to improve the road, drainage, terrace design, and planting density. Oil palm replanting is fundamentally necessary every 25 years. The adoption of the digital replanting blueprint is imperative as it can assist the Malaysia Oil Palm industry in addressing challenges such as labour shortages and limited expertise related to replanting tasks. Effective replanting planning should commence at least 6 months prior to the actual replanting process. Therefore, this study will help to plan and design the replanting blueprint with high-precision translation on the ground. With the advancement of geospatial technology, it is now feasible to engage in thoroughly researched planning, which can help maximize the potential yield. A blueprint designed before replanting is to enhance management’s ability to optimize the planting program, address manpower issues, or even increase productivity. In terrace planting blueprints, geographic tools have been utilized to design the roads, drainages, terraces, and planting points based on the ARM standards. These designs are mapped with location information and undergo statistical analysis. The geospatial approach is essential in precision agriculture and ensuring an accurate translation of design to the ground by implementing high-accuracy technologies. In this study, geospatial and remote sensing technologies played a vital role. LiDAR data was employed to determine the Digital Elevation Model (DEM), enabling the precise selection of terraces, while ortho imagery was used for validation purposes. Throughout the designing process, Geographical Information System (GIS) tools were extensively utilized. To assess the design’s reliability on the ground compared with the current conventional method, high-precision GPS instruments like EOS Arrow Gold and HIPER VR GNSS were used, with both offering accuracy levels between 0.3 cm and 0.5cm. Nearest Distance Analysis was generated to compare the design with actual planting on the ground. The analysis revealed that it could not be applied to the roads due to discrepancies between actual roads and the blueprint design, which resulted in minimal variance. In contrast, the terraces closely adhered to the GPS markings, with the most variance distance being less than 0.5 meters compared to actual terraces constructed. Considering the required slope degrees for terrace planting, which must be greater than 6 degrees, the study found that approximately 65% of the terracing was constructed at a 12-degree slope, while over 50% of the terracing was constructed at slopes exceeding the minimum degrees. Utilizing blueprint replanting promising strategies for optimizing land utilization in agriculture. This approach harnesses technology and meticulous planning to yield advantages, including increased efficiency, enhanced sustainability, and cost reduction. From this study, practical implementation of this technique can lead to tangible and significant improvements in agricultural sectors. In boosting further efficiencies, future initiatives will require more sophisticated techniques and the incorporation of precision GPS devices for upcoming blueprint replanting projects besides strategic progression aims to guarantee the precision of both blueprint design stages and its subsequent implementation on the field. Looking ahead, automating digital blueprints are necessary to reduce time, workforce, and costs in commercial production.Keywords: replanting, geospatial, precision agriculture, blueprint
Procedia PDF Downloads 82310 Comparison of Microstructure, Mechanical Properties and Residual Stresses in Laser and Electron Beam Welded Ti–5Al–2.5Sn Titanium Alloy
Authors: M. N. Baig, F. N. Khan, M. Junaid
Abstract:
Titanium alloys are widely employed in aerospace, medical, chemical, and marine applications. These alloys offer many advantages such as low specific weight, high strength to weight ratio, excellent corrosion resistance, high melting point and good fatigue behavior. These attractive properties make titanium alloys very unique and therefore they require special attention in all areas of processing, especially welding. In this work, 1.6 mm thick sheets of Ti-5Al-2,5Sn, an alpha titanium (α-Ti) alloy, were welded using electron beam (EBW) and laser beam (LBW) welding processes to achieve a full penetration Bead-on Plate (BoP) configuration. The weldments were studied using polarized optical microscope, SEM, EDS and XRD. Microhardness distribution across the weld zone and smooth and notch tensile strengths of the weldments were also recorded. Residual stresses using Hole-drill Strain Measurement (HDSM) method and deformation patterns of the weldments were measured for the purpose of comparison of the two welding processes. Fusion zone widths of both EBW and LBW weldments were found to be approximately equivalent owing to fairly similar high power densities of both the processes. Relatively less oxide content and consequently high joint quality were achieved in EBW weldment as compared to LBW due to vacuum environment and absence of any shielding gas. However, an increase in heat-affected zone width and partial ά-martensitic transformation infusion zone of EBW weldment were observed because of lesser cooling rates associated with EBW as compared with LBW. The microstructure infusion zone of EBW weldment comprised both acicular α and ά martensite within the prior β grains whereas complete ά martensitic transformation was observed within the fusion zone of LBW weldment. Hardness of the fusion zone in EBW weldment was found to be lower than the fusion zone of LBW weldment due to the observed microstructural differences. Notch tensile specimen of LBW exhibited higher load capacity, ductility, and absorbed energy as compared with EBW specimen due to the presence of high strength ά martensitic phase. It was observed that the sheet deformation and deformation angle in EBW weldment were more than LBW weldment due to relatively more heat retention in EBW which led to more thermal strains and hence higher deformations and deformation angle. The lowest residual stresses were found in LBW weldments which were tensile in nature. This was owing to high power density and higher cooling rates associated with LBW process. EBW weldment exhibited highest compressive residual stresses due to which the service life of EBW weldment is expected to improve.Keywords: Laser and electron beam welding, Microstructure and mechanical properties, Residual stress and distortions, Titanium alloys
Procedia PDF Downloads 226309 Evolution of Microstructure through Phase Separation via Spinodal Decomposition in Spinel Ferrite Thin Films
Authors: Nipa Debnath, Harinarayan Das, Takahiko Kawaguchi, Naonori Sakamoto, Kazuo Shinozaki, Hisao Suzuki, Naoki Wakiya
Abstract:
Nowadays spinel ferrite magnetic thin films have drawn considerable attention due to their interesting magnetic and electrical properties with enhanced chemical and thermal stability. Spinel ferrite magnetic films can be implemented in magnetic data storage, sensors, and spin filters or microwave devices. It is well established that the structural, magnetic and transport properties of the magnetic thin films are dependent on microstructure. Spinodal decomposition (SD) is a phase separation process, whereby a material system is spontaneously separated into two phases with distinct compositions. The periodic microstructure is the characteristic feature of SD. Thus, SD can be exploited to control the microstructure at the nanoscale level. In bulk spinel ferrites having general formula, MₓFe₃₋ₓ O₄ (M= Co, Mn, Ni, Zn), phase separation via SD has been reported only for cobalt ferrite (CFO); however, long time post-annealing is required to occur the spinodal decomposition. We have found that SD occurs in CoF thin film without using any post-deposition annealing process if we apply magnetic field during thin film growth. Dynamic Aurora pulsed laser deposition (PLD) is a specially designed PLD system through which in-situ magnetic field (up to 2000 G) can be applied during thin film growth. The in-situ magnetic field suppresses the recombination of ions in the plume. In addition, the peak’s intensity of the ions in the spectra of the plume also increases when magnetic field is applied to the plume. As a result, ions with high kinetic energy strike into the substrate. Thus, ion-impingement occurred under magnetic field during thin film growth. The driving force of SD is the ion-impingement towards the substrates that is induced by in-situ magnetic field. In this study, we report about the occurrence of phase separation through SD and evolution of microstructure after phase separation in spinel ferrite thin films. The surface morphology of the phase separated films show checkerboard like domain structure. The cross-sectional microstructure of the phase separated films reveal columnar type phase separation. Herein, the decomposition wave propagates in lateral direction which has been confirmed from the lateral composition modulations in spinodally decomposed films. Large magnetic anisotropy has been found in spinodally decomposed nickel ferrite (NFO) thin films. This approach approves that magnetic field is also an important thermodynamic parameter to induce phase separation by the enhancement of up-hill diffusion in thin films. This thin film deposition technique could be a more efficient alternative for the fabrication of self-organized phase separated thin films and employed in controlling of the microstructure at nanoscale level.Keywords: Dynamic Aurora PLD, magnetic anisotropy, spinodal decomposition, spinel ferrite thin film
Procedia PDF Downloads 366308 Effect of Two Types of Shoe Insole on the Dynamics of Lower Extremities Joints in Individuals with Leg Length Discrepancy during Stance Phase of Walking
Authors: Mansour Eslami, Fereshte Habibi
Abstract:
Limb length discrepancy (LLD), or anisomeric, is defined as a condition in which paired limbs are noticeably unequal. Individuals with LLD during walking use compensatory mechanisms to dynamically lengthen the short limb and shorten the long limb to minimize the displacement of the body center of mass and consequently reduce body energy expenditure. Due to the compensatory movements created, LLD greater than 1 cm increases the odds of creating lumbar problems and hip and knee osteoarthritis. Insoles are non-surgical therapies that are recommended to improve the walking pattern, pain and create greater symmetry between the two lower limbs. However, it is not yet clear what effect insoles have on the variables related to injuries during walking. The aim of the present study was to evaluate the effect of internal and external heel lift insoles on pelvic kinematic in sagittal and frontal planes and lower extremity joint moments in individuals with mild leg length discrepancy during the stance phase of walking. Biomechanical data of twenty-eight men with structural leg length discrepancy of 10-25 mm were collected while they walked under three conditions: shoes without insole (SH), with internal heel lift insoles (IHLI) in shoes, and with external heal lift insole (EHLI). The tests were performed for both short and long legs. The pelvic kinematic and joint moment were measured with a motion capture system and force plate. Five walking trials were performed for each condition. The average value of five successful trials was used for further statistical analysis. Repeated measures ANCOVA with Bonferroni post hoc test were used for between-group comparisons (p ≤ 0.05). In both internal and external heel lift insoles (IHLI, EHLI), there was a significant decrease in the peak values of lateral and anterior pelvic tilts of the long leg, hip, and knee moments of a long leg and ankle moment of short leg (p ≤ 0.05). Furthermore, significant increases in peak values of lateral and anterior pelvic tilt of short leg in IHLI and EHLI were observed as compared to Shoe (SH) condition (p ≤ 0.01). In addition, a significant difference was observed between the IHLI and EHLI conditions in peak anterior pelvic tilt of long leg and plantar flexor moment of short leg (p=0.04; p= 0.04 respectively). Our findings indicate that both IHLI and EHLI can play an important role in controlling excessive pelvic movements in the sagittal and frontal planes in individuals with mild LLD during walking. Furthermore, the EHLI may have a better effect in preventing musculoskeletal injuries compared to the IHLI.Keywords: kinematic, leg length discrepancy, shoe insole, walking
Procedia PDF Downloads 119307 The Environmental Impact of Sustainability Dispersion of Chlorine Releases in Coastal Zone of Alexandra: Spatial-Ecological Modeling
Authors: Mohammed El Raey, Moustafa Osman Mohammed
Abstract:
The spatial-ecological modeling is relating sustainable dispersions with social development. Sustainability with spatial-ecological model gives attention to urban environments in the design review management to comply with Earth’s System. Naturally exchange patterns of ecosystems have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. The probabilistic risk assessment (PRA) technique is utilized to assess the safety of industrial complex. The other analytical approach is the Failure-Safe Mode and Effect Analysis (FMEA) for critical components. The plant safety parameters are identified for engineering topology as employed in assessment safety of industrial ecology. In particular, the most severe accidental release of hazardous gaseous is postulated, analyzed and assessment in industrial region. The IAEA- safety assessment procedure is used to account the duration and rate of discharge of liquid chlorine. The ecological model of plume dispersion width and concentration of chlorine gas in the downwind direction is determined using Gaussian Plume Model in urban and ruler areas and presented with SURFER®. The prediction of accident consequences is traced in risk contour concentration lines. The local greenhouse effect is predicted with relevant conclusions. The spatial-ecological model is also predicted the distribution schemes from the perspective of pollutants that considered multiple factors of multi-criteria analysis. The data extends input–output analysis to evaluate the spillover effect, and conducted Monte Carlo simulations and sensitivity analysis. Their unique structure is balanced within “equilibrium patterns”, such as the biosphere and collective a composite index of many distributed feedback flows. These dynamic structures are related to have their physical and chemical properties and enable a gradual and prolonged incremental pattern. While this spatial model structure argues from ecology, resource savings, static load design, financial and other pragmatic reasons, the outcomes are not decisive in artistic/ architectural perspective. The hypothesis is an attempt to unify analytic and analogical spatial structure for development urban environments using optimization software and applied as an example of integrated industrial structure where the process is based on engineering topology as optimization approach of systems ecology.Keywords: spatial-ecological modeling, spatial structure orientation impact, composite structure, industrial ecology
Procedia PDF Downloads 80306 Ecosystem Approach in Aquaculture: From Experimental Recirculating Multi-Trophic Aquaculture to Operational System in Marsh Ponds
Abstract:
Integrated multi-trophic aquaculture (IMTA) is used to reduce waste from aquaculture and increase productivity by co-cultured species. In this study, we designed a recirculating multi-trophic aquaculture system which requires low energy consumption, low water renewal and easy-care. European seabass (Dicentrarchus labrax) were raised with co-cultured sea urchin (Paracentrotus lividus), deteritivorous polychaete fed on settled particulate matter, mussels (Mytilus galloprovincialis) used to extract suspended matters, macroalgae (Ulva sp.) used to uptake dissolved nutrients and gastropod (Phorcus turbinatus) used to clean the series of 4 tanks from fouling. Experiment was performed in triplicate during one month in autumn under an experimental greenhouse at the Institute Océanographique Paul Ricard (IOPR). Thanks to the absence of a physical filter, any pomp was needed to pressure water and the water flow was carried out by a single air-lift followed by gravity flow.Total suspended solids (TSS), biochemical oxygen demand (BOD5), turbidity, phytoplankton estimation and dissolved nutrients (ammonium NH₄, nitrite NO₂⁻, nitrate NO₃⁻ and phosphorus PO₄³⁻) were measured weekly while dissolved oxygen and pH were continuously recorded. Dissolved nutrients stay under the detectable threshold during the experiment. BOD5 decreased between fish and macroalgae tanks. TSS highly increased after 2 weeks and then decreased at the end of the experiment. Those results show that bioremediation can be well used for aquaculture system to keep optimum growing conditions. Fish were the only feeding species by an external product (commercial fish pellet) in the system. The others species (extractive species) were fed from waste streams from the tank above or from Ulva produced by the system for the sea urchin. In this way, between the fish aquaculture only and the addition of the extractive species, the biomass productivity increase by 5.7. In other words, the food conversion ratio dropped from 1.08 with fish only to 0.189 including all species. This experimental recirculating multi-trophic aquaculture system was efficient enough to reduce waste and increase productivity. In a second time, this technology has been reproduced at a commercial scale. The IOPR in collaboration with Les 4 Marais company run for 6 month a recirculating IMTA in 8000 m² of water allocate between 4 marsh ponds. A similar air-lift and gravity recirculating system was design and only one feeding species of shrimp (Palaemon sp.) was growth for 3 extractive species. Thanks to this joint work at the laboratory and commercial scales we will be able to challenge IMTA system and discuss about this sustainable aquaculture technology.Keywords: bioremediation, integrated multi-trophic aquaculture (IMTA), laboratory and commercial scales, recirculating aquaculture, sustainable
Procedia PDF Downloads 152305 Nonlinear Optics of Dirac Fermion Systems
Authors: Vipin Kumar, Girish S. Setlur
Abstract:
Graphene has been recognized as a promising 2D material with many new properties. However, pristine graphene is gapless which hinders its direct application towards graphene-based semiconducting devices. Graphene is a zero-gapp and linearly dispersing semiconductor. Massless charge carriers (quasi-particles) in graphene obey the relativistic Dirac equation. These Dirac fermions show very unusual physical properties such as electronic, optical and transport. Graphene is analogous to two-level atomic systems and conventional semiconductors. We may expect that graphene-based systems will also exhibit phenomena that are well-known in two-level atomic systems and in conventional semiconductors. Rabi oscillation is a nonlinear optical phenomenon well-known in the context of two-level atomic systems and also in conventional semiconductors. It is the periodic exchange of energy between the system of interest and the electromagnetic field. The present work describes the phenomenon of Rabi oscillations in graphene based systems. Rabi oscillations have already been described theoretically and experimentally in the extensive literature available on this topic. To describe Rabi oscillations they use an approximation known as rotating wave approximation (RWA) well-known in studies of two-level systems. RWA is valid only near conventional resonance (small detuning)- when the frequency of the external field is nearly equal to the particle-hole excitation frequency. The Rabi frequency goes through a minimum close to conventional resonance as a function of detuning. Far from conventional resonance, the RWA becomes rather less useful and we need some other technique to describe the phenomenon of Rabi oscillation. In conventional systems, there is no second minimum - the only minimum is at conventional resonance. But in graphene we find anomalous Rabi oscillations far from conventional resonance where the Rabi frequency goes through a minimum that is much smaller than the conventional Rabi frequency. This is known as anomalous Rabi frequency and is unique to graphene systems. We have shown that this is attributable to the pseudo-spin degree of freedom in graphene systems. A new technique, which is an alternative to RWA called asymptotic RWA (ARWA), has been invoked by our group to discuss the phenomenon of Rabi oscillation. Experimentally accessible current density shows different types of threshold behaviour in frequency domain close to the anomalous Rabi frequency depending on the system chosen. For single layer graphene, the exponent at threshold is equal to 1/2 while in case of bilayer graphene, it is computed to be equal to 1. Bilayer graphene shows harmonic (anomalous) resonances absent in single layer graphene. The effect of asymmetry and trigonal warping (a weak direct inter-layer hopping in bilayer graphene) on these oscillations is also studied in graphene systems. Asymmetry has a remarkable effect only on anomalous Rabi oscillations whereas the Rabi frequency near conventional resonance is not significantly affected by the asymmetry parameter. In presence of asymmetry, these graphene systems show Rabi-like oscillations (offset oscillations) even for vanishingly small applied field strengths (less than the gap parameter). The frequency of offset oscillations may be identified with the asymmetry parameter.Keywords: graphene, Bilayer graphene, Rabi oscillations, Dirac fermion systems
Procedia PDF Downloads 297304 Comparison Conventional with Microwave-Assisted Drying Method on the Physicochemical Characteristics of Rice Bran Noodle
Authors: Chien-Chun Huang, Yi-U Chiou, Chiun-C.R. Wang
Abstract:
For longer shelf life of noodles, air-dried method is the traditional way for the noodle preparation. Microwave drying has the specific advantage of rapid and uniform heating due to the penetration of microwaves into the body of the product. Microwave-assisted facility offers a quick and energy saving method during food dehydration as compares to the conventional air-dried method. Recently, numerous studies in the rheological characteristics of pasta or spaghetti were carried out with microwave–assisted air driers and many agricultural products were dried successfully. There are few researches about the evaluation of physicochemical characteristics and cooking quality of microwave-assisted air dried salted noodles. The purposes of this study were to compare the difference between conventional and microwave-assisted drying method on the physicochemical properties and eating quality of rice bran noodles. Three different microwave power including 0.5 KW, 0.75 KW and 1.0 KW installing with 50℃ hot air were applied for dehydration of rice bran noodles in this study. Three proportion of rice bran ranging in 0-20% were incorporated into salted noodles processing. The appearance, optimum cooking time, cooking yield and losses, textural profiles analysis, sensory evaluation of rice bran noodles were measured in this study. The results indicated that high power (1.0 KW) microwave facility caused partially burnt and porous on the surface of rice bran noodles. However, no characteristic of noodle was appeared on the surface of noodles preparing by low power (0.5 KW) microwave facility. The optimum cooking time of noodles was decreased as higher power microwave or higher proportion of rice bran was incorporated into noodles preparation. The higher proportion of rice bran (20%) or higher power of microwave-assisted dried noodles obtained the higher color intensity and the higher cooking losses as compared with conventional air dried noodles. The firmness of cooked rice bran noodles slightly decreased in the cooked noodles which were dried by high power microwave-assisted method. The shearing force, tensile strength, elasticity and texture profiles of cooked rice noodles decreased with the progress of the proportion of rice bran. The results of sensory evaluation indicated conventional dried noodles obtained the higher springiness, cohesiveness and acceptability of cooked noodles than high power (1.0 KW) microwave-assisted dried noodles. However, low power (0.5 KW) microwave-assisted dried noodles showed the comparable sensory attributes and acceptability with conventional dried noodles. Moreover, the sensory attributes including firmness, springiness, cohesiveness decreased, but stickiness increased, with the increases of rice bran proportion. These results inferred that incorporation of lower proportion of rice bran and lower power microwave-assisted dried noodles processing could produce faster cooking time and acceptable quality of cooked noodles as compared to conventional dried noodles.Keywords: microwave-assisted drying method, physicochemical characteristics, rice bran noodles, sensory evaluation
Procedia PDF Downloads 481303 Hidden Wild Edible Agaric Wealth in North West India: Diversity and Domestication Studies
Authors: Munruchi Kaur
Abstract:
Agarics are the fruiting bodies of the fungi falling under Phylum Basidiomycota of class Agaricomycetes. North Western parts of India which comprises of mighty Himalayas decorated with snow cap mountains, forested areas, grassland and the Gangetic plains with the altitude varying between 196m to 3600m have a huge potential of naturally growing wild agarics. These mushrooms lavishly grow in wet humid weather conditions that prevail in these parts of India during the monsoon which hits in the early June and continue up to mid-October. In this area, a diverse form of mixed vegetation is available which is represented by coniferous and angiospermic trees, shrubs, herbs, epiphytes, parasites, climbers etc. The vegetation, topography and climate of this area is quite favorable for the growth of agarics. Cedrus deodara, Pinus longifolia, P. roxburghii, P. wallichiana, Abies pindrow, A. spectabilis, Picea smithiana, Taxus sp., Rhododendron sp. and Quercus sp. occur in pure formations or as scattered patches or as mixed forests, whereas the Gangetic plains are dominated by the angiospermic trees and shrubs, they commonly occur along roadsides or in conserved areas or are the avenues plantations, common amongst these are Shorea robusta, Dalbergia sissoo, Melia azadirachta, Acacia sp., Ficus benghalensis, Eucalyptus sp. and Butea monosperma. These agarics can be categorized on the basis of the habitat in which they grow they are usually foliocolous, lignicolous, humicolous, coprophilous or termitophilous. A number of fungal forays were undertaken to different parts of North West India from time to time during the monsoon season with an aim to decipher the agarics diversity of this part of India. Along with collecting the various agarics from diverse habitat, the ethnomycological data was also collected along with by interacting with the local inhabitants of those areas. Based upon the ethnomycological data collected over the years, cataloging of the edible and inedible agarics has been done and cultures of such potential edible agarics were raised with an aim to domesticate these selected taxa. With an aim to reduce the local pressure on these natural resources, a low-cost technology was developed to make it available to the public for cultivation. As a result, 104 taxa were found edible such as Amanita hemibapha var. ochracea, A. chepangiana, A. banningiana, A. vaginata, Agrocybe parasitica, Author: Professor & Dean Faculty of Life Sciences Punjabi University, Patiala. Punjab, India [email protected] Agaricus bisporus, A. andrewii, A. campestris var. campestris, A. silvicola, A. subrutilescens, A. bernardii, A. abruptibulbus, A. fuscovelatus, A. brunnescens, A. augustus, A. silvaticus, A. arvensis, Volvariella bakeri, V. terastia, V. bombycina, V. diplasia, Psathyrella candolleana, Volvopluteus gloiocephalus, Russula cyanoxantha, R. atropurpurea, R. aurea, Clitocybe gibba,Lentinus transitus, L. kashmirinus, L. crinitus, L. ligrinus, Lactarius rubrilacteus, Pleurotus sapidus, Pluteus subcervinus, Macrocybe gigantea, etc. Cultures of various taxa viz. Pleurotus sajor-caju, Macrocybe gigantea, Pluteus petasatus and Lentinus tigrinus were raised and a proper protocol for the domestication of Pleurotus sajor-caju, Macrocybe gigantea, and Lentinus tigrinus has been developed using the locally available agro-wastes.Keywords: Agaric, culture, domestication, edible
Procedia PDF Downloads 78302 Mitochondrial DNA Defect and Mitochondrial Dysfunction in Diabetic Nephropathy: The Role of Hyperglycemia-Induced Reactive Oxygen Species
Authors: Ghada Al-Kafaji, Mohamed Sabry
Abstract:
Mitochondria are the site of cellular respiration and produce energy in the form of adenosine triphosphate (ATP) via oxidative phosphorylation. They are the major source of intracellular reactive oxygen species (ROS) and are also direct target to ROS attack. Oxidative stress and ROS-mediated disruptions of mitochondrial function are major components involved in the pathogenicity of diabetic complications. In this work, the changes in mitochondrial DNA (mtDNA) copy number, biogenesis, gene expression of mtDNA-encoded subunits of electron transport chain (ETC) complexes, and mitochondrial function in response to hyperglycemia-induced ROS and the effect of direct inhibition of ROS on mitochondria were investigated in an in vitro model of diabetic nephropathy using human renal mesangial cells. The cells were exposed to normoglycemic and hyperglycemic conditions in the presence and absence of Mn(III)tetrakis(4-benzoic acid) porphyrin chloride (MnTBAP) or catalase for 1, 4 and 7 days. ROS production was assessed by the confocal microscope and flow cytometry. mtDNA copy number and PGC-1a, NRF-1, and TFAM, as well as ND2, CYTB, COI, and ATPase 6 transcripts, were all analyzed by real-time PCR. PGC-1a, NRF-1, and TFAM, as well as ND2, CYTB, COI, and ATPase 6 proteins, were analyzed by Western blotting. Mitochondrial function was determined by assessing mitochondrial membrane potential and adenosine triphosphate (ATP) levels. Hyperglycemia-induced a significant increase in the production of mitochondrial superoxide and hydrogen peroxide at day 1 (P < 0.05), and this increase remained significantly elevated at days 4 and 7 (P < 0.05). The copy number of mtDNA and expression of PGC-1a, NRF-1, and TFAM as well as ND2, CYTB, CO1 and ATPase 6 increased after one day of hyperglycemia (P < 0.05), with a significant reduction in all those parameters at 4 and 7 days (P < 0.05). The mitochondrial membrane potential decreased progressively at 1 to 7 days of hyperglycemia with the parallel progressive reduction in ATP levels over time (P < 0.05). MnTBAP and catalase treatment of cells cultured under hyperglycemic conditions attenuated ROS production reversed renal mitochondrial oxidative stress and improved mtDNA, mitochondrial biogenesis, and function. These results show that hyperglycemia-induced ROS caused an early increase in mtDNA copy number, mitochondrial biogenesis and mtDNA-encoded gene expression of the ETC subunits in human mesangial cells as a compensatory response to the decline in mitochondrial function, which precede the mtDNA defect and mitochondrial dysfunction with a progressive oxidative response. Protection from ROS-mediated damage to renal mitochondria induced by hyperglycemia may be a novel therapeutic approach for the prevention/treatment of DN.Keywords: diabetic nephropathy, hyperglycemia, reactive oxygen species, oxidative stress, mtDNA, mitochondrial dysfunction, manganese superoxide dismutase, catalase
Procedia PDF Downloads 247301 Predicting Open Chromatin Regions in Cell-Free DNA Whole Genome Sequencing Data by Correlation Clustering
Authors: Fahimeh Palizban, Farshad Noravesh, Amir Hossein Saeidian, Mahya Mehrmohamadi
Abstract:
In the recent decade, the emergence of liquid biopsy has significantly improved cancer monitoring and detection. Dying cells, including those originating from tumors, shed their DNA into the blood and contribute to a pool of circulating fragments called cell-free DNA. Accordingly, identifying the tissue origin of these DNA fragments from the plasma can result in more accurate and fast disease diagnosis and precise treatment protocols. Open chromatin regions are important epigenetic features of DNA that reflect cell types of origin. Profiling these features by DNase-seq, ATAC-seq, and histone ChIP-seq provides insights into tissue-specific and disease-specific regulatory mechanisms. There have been several studies in the area of cancer liquid biopsy that integrate distinct genomic and epigenomic features for early cancer detection along with tissue of origin detection. However, multimodal analysis requires several types of experiments to cover the genomic and epigenomic aspects of a single sample, which will lead to a huge amount of cost and time. To overcome these limitations, the idea of predicting OCRs from WGS is of particular importance. In this regard, we proposed a computational approach to target the prediction of open chromatin regions as an important epigenetic feature from cell-free DNA whole genome sequence data. To fulfill this objective, local sequencing depth will be fed to our proposed algorithm and the prediction of the most probable open chromatin regions from whole genome sequencing data can be carried out. Our method integrates the signal processing method with sequencing depth data and includes count normalization, Discrete Fourie Transform conversion, graph construction, graph cut optimization by linear programming, and clustering. To validate the proposed method, we compared the output of the clustering (open chromatin region+, open chromatin region-) with previously validated open chromatin regions related to human blood samples of the ATAC-DB database. The percentage of overlap between predicted open chromatin regions and the experimentally validated regions obtained by ATAC-seq in ATAC-DB is greater than 67%, which indicates meaningful prediction. As it is evident, OCRs are mostly located in the transcription start sites (TSS) of the genes. In this regard, we compared the concordance between the predicted OCRs and the human genes TSS regions obtained from refTSS and it showed proper accordance around 52.04% and ~78% with all and the housekeeping genes, respectively. Accurately detecting open chromatin regions from plasma cell-free DNA-seq data is a very challenging computational problem due to the existence of several confounding factors, such as technical and biological variations. Although this approach is in its infancy, there has already been an attempt to apply it, which leads to a tool named OCRDetector with some restrictions like the need for highly depth cfDNA WGS data, prior information about OCRs distribution, and considering multiple features. However, we implemented a graph signal clustering based on a single depth feature in an unsupervised learning manner that resulted in faster performance and decent accuracy. Overall, we tried to investigate the epigenomic pattern of a cell-free DNA sample from a new computational perspective that can be used along with other tools to investigate genetic and epigenetic aspects of a single whole genome sequencing data for efficient liquid biopsy-related analysis.Keywords: open chromatin regions, cancer, cell-free DNA, epigenomics, graph signal processing, correlation clustering
Procedia PDF Downloads 150300 Artificial Intelligence Impact on the Australian Government Public Sector
Authors: Jessica Ho
Abstract:
AI has helped government, businesses and industries transform the way they do things. AI is used in automating tasks to improve decision-making and efficiency. AI is embedded in sensors and used in automation to help save time and eliminate human errors in repetitive tasks. Today, we saw the growth in AI using the collection of vast amounts of data to forecast with greater accuracy, inform decision-making, adapt to changing market conditions and offer more personalised service based on consumer habits and preferences. Government around the world share the opportunity to leverage these disruptive technologies to improve productivity while reducing costs. In addition, these intelligent solutions can also help streamline government processes to deliver more seamless and intuitive user experiences for employees and citizens. This is a critical challenge for NSW Government as we are unable to determine the risk that is brought by the unprecedented pace of adoption of AI solutions in government. Government agencies must ensure that their use of AI complies with relevant laws and regulatory requirements, including those related to data privacy and security. Furthermore, there will always be ethical concerns surrounding the use of AI, such as the potential for bias, intellectual property rights and its impact on job security. Within NSW’s public sector, agencies are already testing AI for crowd control, infrastructure management, fraud compliance, public safety, transport, and police surveillance. Citizens are also attracted to the ease of use and accessibility of AI solutions without requiring specialised technical skills. This increased accessibility also comes with balancing a higher risk and exposure to the health and safety of citizens. On the other side, public agencies struggle with keeping up with this pace while minimising risks, but the low entry cost and open-source nature of generative AI led to a rapid increase in the development of AI powered apps organically – “There is an AI for That” in Government. Other challenges include the fact that there appeared to be no legislative provisions that expressly authorise the NSW Government to use an AI to make decision. On the global stage, there were too many actors in the regulatory space, and a sovereign response is needed to minimise multiplicity and regulatory burden. Therefore, traditional corporate risk and governance framework and regulation and legislation frameworks will need to be evaluated for AI unique challenges due to their rapidly evolving nature, ethical considerations, and heightened regulatory scrutiny impacting the safety of consumers and increased risks for Government. Creating an effective, efficient NSW Government’s governance regime, adapted to the range of different approaches to the applications of AI, is not a mere matter of overcoming technical challenges. Technologies have a wide range of social effects on our surroundings and behaviours. There is compelling evidence to show that Australia's sustained social and economic advancement depends on AI's ability to spur economic growth, boost productivity, and address a wide range of societal and political issues. AI may also inflict significant damage. If such harm is not addressed, the public's confidence in this kind of innovation will be weakened. This paper suggests several AI regulatory approaches for consideration that is forward-looking and agile while simultaneously fostering innovation and human rights. The anticipated outcome is to ensure that NSW Government matches the rising levels of innovation in AI technologies with the appropriate and balanced innovation in AI governance.Keywords: artificial inteligence, machine learning, rules, governance, government
Procedia PDF Downloads 70299 Effect of Maturation on the Characteristics and Physicochemical Properties of Banana and Its Starch
Authors: Chien-Chun Huang, P. W. Yuan
Abstract:
Banana is one of the important fruits which constitute a valuable source of energy, vitamins and minerals and an important food component throughout the world. The fruit ripening and maturity standards vary from country to country depending on the expected shelf life of market. During ripening there are changes in appearance, texture and chemical composition of banana. The changes of component of banana during ethylene-induced ripening are categorized as nutritive values and commercial utilization. The objectives of this study were to investigate the changes of chemical composition and physicochemical properties of banana during ethylene-induced ripening. Green bananas were harvested and ripened by ethylene gas at low temperature (15℃) for seven stages. At each stage, banana was sliced and freeze-dried for banana flour preparation. The changes of total starch, resistant starch, chemical compositions, physicochemical properties, activity of amylase, polyphenolic oxidase (PPO) and phenylalanine ammonia lyase (PAL) of banana were analyzed each stage during ripening. The banana starch was isolated and analyzed for gelatinization properties, pasting properties and microscopic appearance each stage of ripening. The results indicated that the highest total starch and resistant starch content of green banana were 76.2% and 34.6%, respectively at the harvest stage. Both total starch and resistant starch content were significantly declined to 25.3% and 8.8%, respectively at the seventh stage. Soluble sugars content of banana increased from 1.21% at harvest stage to 37.72% at seventh stage during ethylene-induced ripening. Swelling power of banana flour decreased with the progress of ripening stage, but solubility increased. These results strongly related with the decreases of starch content of banana flour during ethylene-induced ripening. Both water insoluble and alcohol insoluble solids of banana flour decreased with the progress of ripening stage. Both activity of PPO and PAL increased, but the total free phenolics content decreased, with the increases of ripening stages. As ripening stage extended, the gelatinization enthalpy of banana starch significantly decreased from 15.31 J/g at the harvest stage to 10.55 J/g at the seventh stage. The peak viscosity and setback increased with the progress of ripening stages in the pasting properties of banana starch. The highest final viscosity, 5701 RVU, of banana starch slurry was found at the seventh stage. The scanning electron micrograph of banana starch showed the shapes of banana starch appeared to be round and elongated forms, ranging in 10-50 μm at the harvest stage. As the banana closed to ripe status, some parallel striations were observed on the surface of banana starch granular which could be caused by enzyme reaction during ripening. These results inferred that the highest resistant starch was found in the green banana could be considered as a potential application of healthy foods. The changes of chemical composition and physicochemical properties of banana could be caused by the hydrolysis of enzymes during the ethylene-induced ripening treatment.Keywords: maturation of banana, appearance, texture, soluble sugars, resistant starch, enzyme activities, physicochemical properties of banana starch
Procedia PDF Downloads 316