Search results for: predictive mining
796 Identification of Potential Predictive Biomarkers for Early Diagnosis of Preeclampsia Growth Factors to microRNAs
Authors: Sadia Munir
Abstract:
Preeclampsia is the contributor to the worldwide maternal mortality of approximately 100,000 deaths a year. It complicates about 10% of all pregnancies and is the first cause of maternal admission to intensive care units. Predicting preeclampsia is a major challenge in obstetrics. More importantly, no major progress has been achieved in the treatment of preeclampsia. As placenta is the main cause of the disease, the only way to treat the disease is to extract placental and deliver the baby. In developed countries, the cost of an average case of preeclampsia is estimated at £9000. Interestingly, preeclampsia may have an impact on the health of mother or infant, beyond the pregnancy. We performed a systematic search of PubMed including the combination of terms such as preeclampsia, biomarkers, treatment, hypoxia, inflammation, oxidative stress, vascular endothelial growth factor A, activin A, inhibin A, placental growth factor, transforming growth factor β-1, Nodal, placenta, trophoblast cells, microRNAs. In this review, we have summarized current knowledge on the identification of potential biomarkers for the diagnosis of preeclampsia. Although these studies show promising data in early diagnosis of preeclampsia, the current value of these factors as biomarkers, for the precise prediction of preeclampsia, has its limitation. Therefore, future studies need to be done to support some of the very promising and interesting data to develop affordable and widely available tests for early detection and treatment of preeclampsia.Keywords: activin, biomarkers, growth factors, miroRNA
Procedia PDF Downloads 442795 Design and Development of a Computerized Medical Record System for Hospitals in Remote Areas
Authors: Grace Omowunmi Soyebi
Abstract:
A computerized medical record system is a collection of medical information about a person that is stored on a computer. One principal problem of most hospitals in rural areas is using the file management system for keeping records. A lot of time is wasted when a patient visits the hospital, probably in an emergency, and the nurse or attendant has to search through voluminous files before the patient's file can be retrieved; this may cause an unexpected to happen to the patient. This data mining application is to be designed using a structured system analysis and design method which will help in a well-articulated analysis of the existing file management system, feasibility study, and proper documentation of the design and implementation of a computerized medical record system. This computerized system will replace the file management system and help to quickly retrieve a patient's record with increased data security, access clinical records for decision-making, and reduce the time range at which a patient gets attended to.Keywords: programming, data, software development, innovation
Procedia PDF Downloads 88794 FTIR Characterization of EPS Ligands from Mercury Resistant Bacterial Isolate, Paenibacillus jamilae PKR1
Authors: Debajit Kalita, Macmillan Nongkhlaw, S. R. Joshi
Abstract:
Mercury (Hg) is a highly toxic heavy metal released both from naturally occurring volcanoes and anthropogenic activities like alkali and mining industries as well as biomedical wastes. Exposure to mercury is known to affect the nervous, gastrointestinal and renal systems. In the present study, a bacterial isolate identified using 16S rRNA marker as Paenibacillus jamilae PKR1 isolated from India’s largest sandstone-type uranium deposits, containing an average of 0.1% U3O8, was found to be resistance to Hg contamination under culture conditions. It showed strong hydrophobicity as revealed by SAT, MATH, PAT, SAA adherence assays. The Fourier Transform Infrared (FTIR) spectra showed the presence of hydroxyl, amino and carboxylic functional groups on the cell surface EPS which are known to contribute in the binding of metals. It is proposed that the characterized isolate tolerating up to 4.0mM of mercury provides scope for its application in bioremediation of mercury from contaminated sites.Keywords: mercury, Domiasiat, uranium, paenibacillus jamilae, hydrophobicity, FTIR
Procedia PDF Downloads 410793 Mining News Deserts: Impact of Local Newspaper's Closure on Political Participation and Engagement in Rural Australian Town of Lightning Ridge
Authors: Marco Magasic
Abstract:
This article examines how a local newspaper’s closure impacts the way everyday people in a rural Australian town are informed about and engage with political affairs. It draws on a two-month focused ethnographic study in the outback town of Lighting Ridge, New South Wales and explores people’s media-related practices following the closure of the towns’ only newspaper, The Ridge News, in 2015. While social media is considered to have partly filled the news void, there is an increasingly fragmented and less vibrant local public sphere that has led to growing complacency among individuals about political affairs. Local residents highlight a dearth of reliable, credible information and lament the loss of the newspaper and its role in community advocacy and fostering people’s engagement with political institutions, especially local government.Keywords: public sphere, political participation, local news, democratic deficit
Procedia PDF Downloads 156792 Sentiment Analysis: Comparative Analysis of Multilingual Sentiment and Opinion Classification Techniques
Authors: Sannikumar Patel, Brian Nolan, Markus Hofmann, Philip Owende, Kunjan Patel
Abstract:
Sentiment analysis and opinion mining have become emerging topics of research in recent years but most of the work is focused on data in the English language. A comprehensive research and analysis are essential which considers multiple languages, machine translation techniques, and different classifiers. This paper presents, a comparative analysis of different approaches for multilingual sentiment analysis. These approaches are divided into two parts: one using classification of text without language translation and second using the translation of testing data to a target language, such as English, before classification. The presented research and results are useful for understanding whether machine translation should be used for multilingual sentiment analysis or building language specific sentiment classification systems is a better approach. The effects of language translation techniques, features, and accuracy of various classifiers for multilingual sentiment analysis is also discussed in this study.Keywords: cross-language analysis, machine learning, machine translation, sentiment analysis
Procedia PDF Downloads 715791 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors
Authors: Duc V. Nguyen
Abstract:
Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest benet based on their requirements. These are the key requirements of a robust prognostics and health management system.Keywords: fault detection, FFT, induction motor, predictive maintenance
Procedia PDF Downloads 173790 Harmonization of State Law and Local Laws in Coastal and Marine Areas Management
Authors: N. S. B. Ambarini, Tito Sofyan, Edra Satmaidi
Abstract:
Coastal and marine are two potential natural resource one of the pillars of the national economy. The Indonesian archipelago has marine and coastal which is quite spacious. Various important natural resources such as fisheries, mining and so on are in coastal areas and the sea, so that this region is a unique area with a variety of interests to exploit it. Therefore, to preserve a sustainable manner need good management and comprehensive. To the national and local level legal regulations have been published relating to the management of coastal and marine areas. However, in practice it has not been able to function optimally. Substantially has not touched the problems of the region, especially concerning the interests of local communities (local). This study is a legal non-doctrinal approach to socio-legal studies. Based on the results of research in some coastal and marine areas in Bengkulu province - Indonesia, there is a fact that the system of customary law and local wisdom began to weaken implementation. Therefore harmonization needs to be done in implementing laws and regulations that apply to the values of indigenous and local knowledge that exists in the community.Keywords: coastal and marine, harmonization, law, local
Procedia PDF Downloads 347789 Seismic Performance of Various Grades of Steel Columns through Finite Element Analysis
Authors: Asal Pournaghshband, Roham Maher
Abstract:
This study presents a numerical analysis of the cyclic behavior of H-shaped steel columns, focusing on different steel grades, including austenitic, ferritic, duplex stainless steel, and carbon steel. Finite Element (FE) models were developed and validated against experimental data, demonstrating a predictive accuracy of up to 6.5%. The study examined key parameters such as energy dissipation and failure modes. Results indicate that duplex stainless steel offers the highest strength, with superior energy dissipation but a tendency for brittle failure at maximum strains of 0.149. Austenitic stainless steel demonstrated balanced performance with excellent ductility and energy dissipation, showing a maximum strain of 0.122, making it highly suitable for seismic applications. Ferritic stainless steel, while stronger than carbon steel, exhibited reduced ductility and energy absorption. Carbon steel displayed the lowest performance in terms of energy dissipation and ductility, with significant strain concentrations leading to earlier failure. These findings provide critical insights into optimizing material selection for earthquake-resistant structures, balancing strength, ductility, and energy dissipation under seismic conditions.Keywords: energy dissipation, finite element analysis, H-shaped columns, seismic performance, stainless steel grades
Procedia PDF Downloads 29788 A Soft Computing Approach Monitoring of Heavy Metals in Soil and Vegetables in the Republic of Macedonia
Authors: Vesna Karapetkovska Hristova, M. Ayaz Ahmad, Julijana Tomovska, Biljana Bogdanova Popov, Blagojce Najdovski
Abstract:
The average total concentrations of heavy metals; (cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn]) were analyzed in soil and vegetables samples collected from the different region of Macedonia during the years 2010-2012. Basic soil properties such as pH, organic matter and clay content were also included in the study. The average concentrations of Cd, Cu, Ni, Pb, Zn in the A horizon (0-30 cm) of agricultural soils were as follows, respectively: 0.25, 5.3, 6.9, 15.2, 26.3 mg kg-1 of soil. We have found that neural networking model can be considered as a tool for prediction and spatial analysis of the processes controlling the metal transfer within the soil-and vegetables. The predictive ability of such models is well over 80% as compared to 20% for typical regression models. A radial basic function network reflects good predicting accuracy and correlation coefficients between soil properties and metal content in vegetables much better than the back-propagation method. Neural Networking / soft computing can support the decision-making processes at different levels, including agro ecology, to improve crop management based on monitoring data and risk assessment of metal transfer from soils to vegetables.Keywords: soft computing approach, total concentrations, heavy metals, agricultural soils
Procedia PDF Downloads 368787 Performance Analysis of Proprietary and Non-Proprietary Tools for Regression Testing Using Genetic Algorithm
Authors: K. Hema Shankari, R. Thirumalaiselvi, N. V. Balasubramanian
Abstract:
The present paper addresses to the research in the area of regression testing with emphasis on automated tools as well as prioritization of test cases. The uniqueness of regression testing and its cyclic nature is pointed out. The difference in approach between industry, with business model as basis, and academia, with focus on data mining, is highlighted. Test Metrics are discussed as a prelude to our formula for prioritization; a case study is further discussed to illustrate this methodology. An industrial case study is also described in the paper, where the number of test cases is so large that they have to be grouped as Test Suites. In such situations, a genetic algorithm proposed by us can be used to reconfigure these Test Suites in each cycle of regression testing. The comparison is made between a proprietary tool and an open source tool using the above-mentioned metrics. Our approach is clarified through several tables.Keywords: APFD metric, genetic algorithm, regression testing, RFT tool, test case prioritization, selenium tool
Procedia PDF Downloads 440786 Message Framework for Disaster Management: An Application Model for Mines
Authors: A. Baloglu, A. Çınar
Abstract:
Different tools and technologies were implemented for Crisis Response and Management (CRM) which is generally using available network infrastructure for information exchange. Depending on type of disaster or crisis, network infrastructure could be affected and it could not be able to provide reliable connectivity. Thus any tool or technology that depends on the connectivity could not be able to fulfill its functionalities. As a solution, a new message exchange framework has been developed. Framework provides offline/online information exchange platform for CRM Information Systems (CRMIS) and it uses XML compression and packet prioritization algorithms and is based on open source web technologies. By introducing offline capabilities to the web technologies, framework will be able to perform message exchange on unreliable networks. The experiments done on the simulation environment provide promising results on low bandwidth networks (56kbps and 28.8 kbps) with up to 50% packet loss and the solution is to successfully transfer all the information on these low quality networks where the traditional 2 and 3 tier applications failed.Keywords: crisis response and management, XML messaging, web services, XML compression, mining
Procedia PDF Downloads 341785 A Study of the Performance Parameter for Recommendation Algorithm Evaluation
Authors: C. Rana, S. K. Jain
Abstract:
The enormous amount of Web data has challenged its usage in efficient manner in the past few years. As such, a range of techniques are applied to tackle this problem; prominent among them is personalization and recommender system. In fact, these are the tools that assist user in finding relevant information of web. Most of the e-commerce websites are applying such tools in one way or the other. In the past decade, a large number of recommendation algorithms have been proposed to tackle such problems. However, there have not been much research in the evaluation criteria for these algorithms. As such, the traditional accuracy and classification metrics are still used for the evaluation purpose that provides a static view. This paper studies how the evolution of user preference over a period of time can be mapped in a recommender system using a new evaluation methodology that explicitly using time dimension. We have also presented different types of experimental set up that are generally used for recommender system evaluation. Furthermore, an overview of major accuracy metrics and metrics that go beyond the scope of accuracy as researched in the past few years is also discussed in detail.Keywords: collaborative filtering, data mining, evolutionary, clustering, algorithm, recommender systems
Procedia PDF Downloads 416784 A Longitudinal Study of Psychological Capital, Parent-Child Relationships, and Subjective Well-Beings in Economically Disadvantaged Adolescents
Authors: Chang Li-Yu
Abstract:
Purposes: The present research focuses on exploring the latent growth model of psychological capital in disadvantaged adolescents and assessing its relationship with subjective well-being. Methods: Longitudinal study design was utilized and the data was from Taiwan Database of Children and Youth in Poverty (TDCYP), using the student questionnaires from 2009, 2011, and 2013. Data analysis was conducted using both univariate and multivariate latent growth curve models. Results: This study finds that: (1) The initial state and growth rate of individual factors such as parent-child relationships, psychological capital, and subjective wellbeing in economically disadvantaged adolescents have a predictive impact; (2) There are positive interactive effects in the development among factors like parentchild relationships, psychological capital, and subjective well-being in economically disadvantaged adolescents; and (3) The initial state and growth rate of parent-child relationships and psychological capital in economically disadvantaged adolescents positively affect the initial state and growth rate of their subjective well-being. Recommendations: Based on these findings, this study concretely discusses the significance of psychological capital and family cohesion for the mental health of economically disadvantaged youth and offers suggestions for counseling, psychological therapy, and future research.Keywords: economically disadvantaged adolescents, psychological capital, parent-child relationships, subjective well-beings
Procedia PDF Downloads 61783 Evaluation and Assessment of Bioinformatics Methods and Their Applications
Authors: Fatemeh Nokhodchi Bonab
Abstract:
Bioinformatics, in its broad sense, involves application of computer processes to solve biological problems. A wide range of computational tools are needed to effectively and efficiently process large amounts of data being generated as a result of recent technological innovations in biology and medicine. A number of computational tools have been developed or adapted to deal with the experimental riches of complex and multivariate data and transition from data collection to information or knowledge. These bioinformatics tools are being evaluated and applied in various medical areas including early detection, risk assessment, classification, and prognosis of cancer. The goal of these efforts is to develop and identify bioinformatics methods with optimal sensitivity, specificity, and predictive capabilities. The recent flood of data from genome sequences and functional genomics has given rise to new field, bioinformatics, which combines elements of biology and computer science. Bioinformatics is conceptualizing biology in terms of macromolecules (in the sense of physical-chemistry) and then applying "informatics" techniques (derived from disciplines such as applied maths, computer science, and statistics) to understand and organize the information associated with these molecules, on a large-scale. Here we propose a definition for this new field and review some of the research that is being pursued, particularly in relation to transcriptional regulatory systems.Keywords: methods, applications, transcriptional regulatory systems, techniques
Procedia PDF Downloads 128782 Coarse Grid Computational Fluid Dynamics Fire Simulations
Authors: Wolfram Jahn, Jose Manuel Munita
Abstract:
While computational fluid dynamics (CFD) simulations of fire scenarios are commonly used in the design of buildings, less attention has been given to the use of CFD simulations as an operational tool for the fire services. The reason of this lack of attention lies mainly in the fact that CFD simulations typically take large periods of time to complete, and their results would thus not be available in time to be of use during an emergency. Firefighters often face uncertain conditions when entering a building to attack a fire. They would greatly benefit from a technology based on predictive fire simulations, able to assist their decision-making process. The principal constraint to faster CFD simulations is the fine grid necessary to solve accurately the physical processes that govern a fire. This paper explores the possibility of overcoming this constraint and using coarse grid CFD simulations for fire scenarios, and proposes a methodology to use the simulation results in a meaningful way that can be used by the fire fighters during an emergency. Data from real scale compartment fire tests were used to compare CFD fire models with different grid arrangements, and empirical correlations were obtained to interpolate data points into the grids. The results show that the strongly predominant effect of the heat release rate of the fire on the fluid dynamics allows for the use of coarse grids with relatively low overall impact of simulation results. Simulations with an acceptable level of accuracy could be run in real time, thus making them useful as a forecasting tool for emergency response purposes.Keywords: CFD, fire simulations, emergency response, forecast
Procedia PDF Downloads 320781 Learning about the Strengths and Weaknesses of Urban Climate Action Plans
Authors: Prince Dacosta Aboagye, Ayyoob Sharifi
Abstract:
Cities respond to climate concerns mainly through their climate action plans (CAPs). A comprehensive content analysis of the dynamics in existing urban CAPs is not well represented in the literature. This literature void presents a difficulty in appreciating the strengths and weaknesses of urban CAPs. Here, we perform a qualitative content analysis (QCA) on CAPs from 278 cities worldwide and use text-mining tools to map and visualize the relevant data. Our analysis showed a decline in the number of CAPs developed and published following the global COVID-19 lockdown period. Evidently, megacities are leading the deep decarbonisation agenda. We also observed a transition from developing mainly mitigation-focused CAPs pre-COP21 to both mitigation and adaptation CAPs. A lack of inclusiveness in local climate planning was common among European and North American cities. The evidence is a catalyst for understanding the trends in existing urban CAPs to shape future urban climate planning.Keywords: urban, climate action plans, strengths, weaknesses
Procedia PDF Downloads 98780 Recommendations Using Online Water Quality Sensors for Chlorinated Drinking Water Monitoring at Drinking Water Distribution Systems Exposed to Glyphosate
Authors: Angela Maria Fasnacht
Abstract:
Detection of anomalies due to contaminants’ presence, also known as early detection systems in water treatment plants, has become a critical point that deserves an in-depth study for their improvement and adaptation to current requirements. The design of these systems requires a detailed analysis and processing of the data in real-time, so it is necessary to apply various statistical methods appropriate to the data generated, such as Spearman’s Correlation, Factor Analysis, Cross-Correlation, and k-fold Cross-validation. Statistical analysis and methods allow the evaluation of large data sets to model the behavior of variables; in this sense, statistical treatment or analysis could be considered a vital step to be able to develop advanced models focused on machine learning that allows optimized data management in real-time, applied to early detection systems in water treatment processes. These techniques facilitate the development of new technologies used in advanced sensors. In this work, these methods were applied to identify the possible correlations between the measured parameters and the presence of the glyphosate contaminant in the single-pass system. The interaction between the initial concentration of glyphosate and the location of the sensors on the reading of the reported parameters was studied.Keywords: glyphosate, emergent contaminants, machine learning, probes, sensors, predictive
Procedia PDF Downloads 124779 A Ratio-Weighted Decision Tree Algorithm for Imbalance Dataset Classification
Authors: Doyin Afolabi, Phillip Adewole, Oladipupo Sennaike
Abstract:
Most well-known classifiers, including the decision tree algorithm, can make predictions on balanced datasets efficiently. However, the decision tree algorithm tends to be biased towards imbalanced datasets because of the skewness of the distribution of such datasets. To overcome this problem, this study proposes a weighted decision tree algorithm that aims to remove the bias toward the majority class and prevents the reduction of majority observations in imbalance datasets classification. The proposed weighted decision tree algorithm was tested on three imbalanced datasets- cancer dataset, german credit dataset, and banknote dataset. The specificity, sensitivity, and accuracy metrics were used to evaluate the performance of the proposed decision tree algorithm on the datasets. The evaluation results show that for some of the weights of our proposed decision tree, the specificity, sensitivity, and accuracy metrics gave better results compared to that of the ID3 decision tree and decision tree induced with minority entropy for all three datasets.Keywords: data mining, decision tree, classification, imbalance dataset
Procedia PDF Downloads 139778 Quantification of Glucosinolates in Turnip Greens and Turnip Tops by Near-Infrared Spectroscopy
Authors: S. Obregon-Cano, R. Moreno-Rojas, E. Cartea-Gonzalez, A. De Haro-Bailon
Abstract:
The potential of near-infrared spectroscopy (NIRS) for screening the total glucosinolate (t-GSL) content, and also, the aliphatic glucosinolates gluconapin (GNA), progoitrin (PRO) and glucobrassicanapin (GBN) in turnip greens and turnip tops was assessed. This crop is grown for edible leaves and stems for human consumption. The reference values for glucosinolates, as they were obtained by high performance liquid chromatography on the vegetable samples, were regressed against different spectral transformations by modified partial least-squares (MPLS) regression (calibration set of samples n= 350). The resulting models were satisfactory, with calibration coefficient values from 0.72 (GBN) to 0.98 (tGSL). The predictive ability of the equations obtained was tested using a set of samples (n=70) independent of the calibration set. The determination coefficients and prediction errors (SEP) obtained in the external validation were: GNA=0.94 (SEP=3.49); PRO=0.41 (SEP=1.08); GBN=0.55 (SEP=0.60); tGSL=0.96 (SEP=3.28). These results show that the equations developed for total glucosinolates, as well as for gluconapin can be used for screening these compounds in the leaves and stems of this species. In addition, the progoitrin and glucobrassicanapin equations obtained can be used to identify those samples with high, medium and low contents. The calibration equations obtained were accurate enough for a fast, non-destructive and reliable analysis of the content in GNA and tGSL directly from NIR spectra. The equations for PRO and GBN can be employed to identify samples with high, medium and low contents.Keywords: brassica rapa, glucosinolates, gluconapin, NIRS, turnip greens
Procedia PDF Downloads 145777 Research on the Risks of Railroad Receiving and Dispatching Trains Operators: Natural Language Processing Risk Text Mining
Authors: Yangze Lan, Ruihua Xv, Feng Zhou, Yijia Shan, Longhao Zhang, Qinghui Xv
Abstract:
Receiving and dispatching trains is an important part of railroad organization, and the risky evaluation of operating personnel is still reflected by scores, lacking further excavation of wrong answers and operating accidents. With natural language processing (NLP) technology, this study extracts the keywords and key phrases of 40 relevant risk events about receiving and dispatching trains and reclassifies the risk events into 8 categories, such as train approach and signal risks, dispatching command risks, and so on. Based on the historical risk data of personnel, the K-Means clustering method is used to classify the risk level of personnel. The result indicates that the high-risk operating personnel need to strengthen the training of train receiving and dispatching operations towards essential trains and abnormal situations.Keywords: receiving and dispatching trains, natural language processing, risk evaluation, K-means clustering
Procedia PDF Downloads 93776 A Study of Growth Factors on Sustainable Manufacturing in Small and Medium-Sized Enterprises: Case Study of Japan Manufacturing
Authors: Tadayuki Kyoutani, Shigeyuki Haruyama, Ken Kaminishi, Zefry Darmawan
Abstract:
Japan’s semiconductor industries have developed greatly in recent years. Many were started from a Small and Medium-sized Enterprises (SMEs) that found at a good circumstance and now become the prosperous industries in the world. Sustainable growth factors that support the creation of spirit value inside the Japanese company were strongly embedded through performance. Those factors were not clearly defined among each company. A series of literature research conducted to explore quantitative text mining about the definition of sustainable growth factors. Sustainable criteria were developed from previous research to verify the definition of the factors. A typical frame work was proposed as a systematical approach to develop sustainable growth factor in a specific company. Result of approach was review in certain period shows that factors influenced in sustainable growth was importance for the company to achieve the goal.Keywords: SME, manufacture, sustainable, growth factor
Procedia PDF Downloads 252775 Saving Energy at a Wastewater Treatment Plant through Electrical and Production Data Analysis
Authors: Adriano Araujo Carvalho, Arturo Alatrista Corrales
Abstract:
This paper intends to show how electrical energy consumption and production data analysis were used to find opportunities to save energy at Taboada wastewater treatment plant in Callao, Peru. In order to access the data, it was used independent data networks for both electrical and process instruments, which were taken to analyze under an ISO 50001 energy audit, which considered, thus, Energy Performance Indexes for each process and a step-by-step guide presented in this text. Due to the use of aforementioned methodology and data mining techniques applied on information gathered through electronic multimeters (conveniently placed on substation switchboards connected to a cloud network), it was possible to identify thoroughly the performance of each process and thus, evidence saving opportunities which were previously hidden before. The data analysis brought both costs and energy reduction, allowing the plant to save significant resources and to be certified under ISO 50001.Keywords: energy and production data analysis, energy management, ISO 50001, wastewater treatment plant energy analysis
Procedia PDF Downloads 197774 Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study
Authors: Salima Smiti, Ines Gasmi, Makram Soui
Abstract:
Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk.Keywords: credit risk assessment, classification algorithms, data mining, rule extraction
Procedia PDF Downloads 183773 Heart Ailment Prediction Using Machine Learning Methods
Authors: Abhigyan Hedau, Priya Shelke, Riddhi Mirajkar, Shreyash Chaple, Mrunali Gadekar, Himanshu Akula
Abstract:
The heart is the coordinating centre of the major endocrine glandular structure of the body, which produces hormones that profoundly affect the operations of the body, and diagnosing cardiovascular disease is a difficult but critical task. By extracting knowledge and information about the disease from patient data, data mining is a more practical technique to help doctors detect disorders. We use a variety of machine learning methods here, including logistic regression and support vector classifiers (SVC), K-nearest neighbours Classifiers (KNN), Decision Tree Classifiers, Random Forest classifiers and Gradient Boosting classifiers. These algorithms are applied to patient data containing 13 different factors to build a system that predicts heart disease in less time with more accuracy.Keywords: logistic regression, support vector classifier, k-nearest neighbour, decision tree, random forest and gradient boosting
Procedia PDF Downloads 52772 Experiments on Weakly-Supervised Learning on Imperfect Data
Authors: Yan Cheng, Yijun Shao, James Rudolph, Charlene R. Weir, Beth Sahlmann, Qing Zeng-Treitler
Abstract:
Supervised predictive models require labeled data for training purposes. Complete and accurate labeled data, i.e., a ‘gold standard’, is not always available, and imperfectly labeled data may need to serve as an alternative. An important question is if the accuracy of the labeled data creates a performance ceiling for the trained model. In this study, we trained several models to recognize the presence of delirium in clinical documents using data with annotations that are not completely accurate (i.e., weakly-supervised learning). In the external evaluation, the support vector machine model with a linear kernel performed best, achieving an area under the curve of 89.3% and accuracy of 88%, surpassing the 80% accuracy of the training sample. We then generated a set of simulated data and carried out a series of experiments which demonstrated that models trained on imperfect data can (but do not always) outperform the accuracy of the training data, e.g., the area under the curve for some models is higher than 80% when trained on the data with an error rate of 40%. Our experiments also showed that the error resistance of linear modeling is associated with larger sample size, error type, and linearity of the data (all p-values < 0.001). In conclusion, this study sheds light on the usefulness of imperfect data in clinical research via weakly-supervised learning.Keywords: weakly-supervised learning, support vector machine, prediction, delirium, simulation
Procedia PDF Downloads 200771 Risk Propagation in Electricity Markets: Measuring the Asymmetric Transmission of Downside and Upside Risks in Energy Prices
Authors: Montserrat Guillen, Stephania Mosquera-Lopez, Jorge Uribe
Abstract:
An empirical study of market risk transmission between electricity prices in the Nord Pool interconnected market is done. Crucially, it is differentiated between risk propagation in the two tails of the price variation distribution. Thus, the downside risk from upside risk spillovers is distinguished. The results found document an asymmetric nature of risk and risk propagation in the two tails of the electricity price log variations. Risk spillovers following price increments in the market are transmitted to a larger extent than those after price reductions. Also, asymmetries related to both, the size of the transaction area and related to whether a given area behaves as a net-exporter or net-importer of electricity, are documented. For instance, on the one hand, the bigger the area of the transaction, the smaller the size of the volatility shocks that it receives. On the other hand, exporters of electricity, alongside countries with a significant dependence on renewable sources, tend to be net-transmitters of volatility to the rest of the system. Additionally, insights on the predictive power of positive and negative semivariances for future market volatility are provided. It is shown that depending on the forecasting horizon, downside and upside shocks to the market are featured by a distinctive persistence, and that upside volatility impacts more on net-importers of electricity, while the opposite holds for net-exporters.Keywords: electricity prices, realized volatility, semivariances, volatility spillovers
Procedia PDF Downloads 176770 Customer Data Analysis Model Using Business Intelligence Tools in Telecommunication Companies
Authors: Monica Lia
Abstract:
This article presents a customer data analysis model using business intelligence tools for data modelling, transforming, data visualization and dynamic reports building. Economic organizational customer’s analysis is made based on the information from the transactional systems of the organization. The paper presents how to develop the data model starting for the data that companies have inside their own operational systems. The owned data can be transformed into useful information about customers using business intelligence tool. For a mature market, knowing the information inside the data and making forecast for strategic decision become more important. Business Intelligence tools are used in business organization as support for decision-making.Keywords: customer analysis, business intelligence, data warehouse, data mining, decisions, self-service reports, interactive visual analysis, and dynamic dashboards, use cases diagram, process modelling, logical data model, data mart, ETL, star schema, OLAP, data universes
Procedia PDF Downloads 434769 Drugs, Silk Road, Bitcoins
Authors: Lali Khurtsia, Vano Tsertsvadze
Abstract:
Georgian drug policy is directed to reduce the supply of drugs. Retrospective analysis has shown that law enforcement activities have been followed by the expulsion of particular injecting drugs. The demand remains unchanged and drugs are substituted by the hand-made, even more dangerous homemade drugs entered the market. To find out expected new trends on the Georgian drug market, qualitative study was conducted with Georgian drug users to determine drug supply routes. It turned out that drug suppliers and consumers for safety reasons and to protect their anonymity, use Skype to make deals. IT in illegal drug trade is even more sophisticated in the worldwide. Trading with Bitcoins in the Darknet ensures high confidentiality of money transactions and the safe circulation of drugs. In 2014 largest Bitcoin mining enterprise in the world was built in Georgia. We argue that the use of Bitcoins and Darknet by Georgian drug consumers and suppliers will be an incentive to response adequately to the government's policy of restricting supply in order to satisfy market demand for drugs.Keywords: bitcoin, darknet, drugs, policy
Procedia PDF Downloads 441768 Machine Learning for Targeting of Conditional Cash Transfers: Improving the Effectiveness of Proxy Means Tests to Identify Future School Dropouts and the Poor
Authors: Cristian Crespo
Abstract:
Conditional cash transfers (CCTs) have been targeted towards the poor. Thus, their targeting assessments check whether these schemes have been allocated to low-income households or individuals. However, CCTs have more than one goal and target group. An additional goal of CCTs is to increase school enrolment. Hence, students at risk of dropping out of school also are a target group. This paper analyses whether one of the most common targeting mechanisms of CCTs, a proxy means test (PMT), is suitable to identify the poor and future school dropouts. The PMT is compared with alternative approaches that use the outputs of a predictive model of school dropout. This model was built using machine learning algorithms and rich administrative datasets from Chile. The paper shows that using machine learning outputs in conjunction with the PMT increases targeting effectiveness by identifying more students who are either poor or future dropouts. This joint targeting approach increases effectiveness in different scenarios except when the social valuation of the two target groups largely differs. In these cases, the most likely optimal approach is to solely adopt the targeting mechanism designed to find the highly valued group.Keywords: conditional cash transfers, machine learning, poverty, proxy means tests, school dropout prediction, targeting
Procedia PDF Downloads 205767 Post Pandemic Mobility Analysis through Indexing and Sharding in MongoDB: Performance Optimization and Insights
Authors: Karan Vishavjit, Aakash Lakra, Shafaq Khan
Abstract:
The COVID-19 pandemic has pushed healthcare professionals to use big data analytics as a vital tool for tracking and evaluating the effects of contagious viruses. To effectively analyze huge datasets, efficient NoSQL databases are needed. The analysis of post-COVID-19 health and well-being outcomes and the evaluation of the effectiveness of government efforts during the pandemic is made possible by this research’s integration of several datasets, which cuts down on query processing time and creates predictive visual artifacts. We recommend applying sharding and indexing technologies to improve query effectiveness and scalability as the dataset expands. Effective data retrieval and analysis are made possible by spreading the datasets into a sharded database and doing indexing on individual shards. Analysis of connections between governmental activities, poverty levels, and post-pandemic well being is the key goal. We want to evaluate the effectiveness of governmental initiatives to improve health and lower poverty levels. We will do this by utilising advanced data analysis and visualisations. The findings provide relevant data that supports the advancement of UN sustainable objectives, future pandemic preparation, and evidence-based decision-making. This study shows how Big Data and NoSQL databases may be used to address problems with global health.Keywords: big data, COVID-19, health, indexing, NoSQL, sharding, scalability, well being
Procedia PDF Downloads 71