Search results for: performance prism model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25946

Search results for: performance prism model

24686 A Study on Improvement of Performance of Anti-Splash Device for Cargo Oil Tank Vent Pipe Using CFD Simulation and Artificial Neural Network

Authors: Min-Woo Kim, Ok-Kyun Na, Jun-Ho Byun, Jong-Hwan Park, Seung-Hwa Yang, Joon-Hong Park, Young-Chul Park

Abstract:

This study is focused on the comparative analysis and improvement to grasp the flow characteristic of the Anti-Splash Device located under the P/V Valve and new concept design models using the CFD analysis and Artificial Neural Network. The P/V valve located upper deck to solve the pressure rising and vacuum condition of inner tank of the liquid cargo ships occurred oil outflow accident by transverse and longitudinal sloshing force. Anti-Splash Device is fitted to improve and prevent this problem in the shipbuilding industry. But the oil outflow accidents are still reported by ship owners. Thus, four types of new design model are presented by study. Then, comparative analysis is conducted with new models and existing model. Mostly the key criterion of this problem is flux in the outlet of the Anti-Splash Device. Therefore, the flow and velocity are grasped by transient analysis. And then it decided optimum model and design parameters to develop model. Later, it needs to develop an Anti-Splash Device by Flow Test to get certification and verification using experiment equipment.

Keywords: anti-splash device, P/V valve, sloshing, artificial neural network

Procedia PDF Downloads 573
24685 Neural Network Motion Control of VTAV by NARMA-L2 Controller for Enhanced Situational Awareness

Authors: Igor Astrov, Natalya Berezovski

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a neural network motion control procedure to address the dynamics variation and performance requirement difference of flight trajectory for a VTAV. This control strategy with using of NARMA-L2 neurocontroller for chosen model of VTAV has been verified by simulation of take-off and forward maneuvers using software package Simulink and demonstrated good performance for fast stabilization of motors, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.

Keywords: NARMA-L2 neurocontroller, situational awareness, vectored thrust aerial vehicle, aviation

Procedia PDF Downloads 403
24684 Study of Pressure and Air Mass Flow Effect on Output Power of PEM Fuel Cell Powertrains in Vehicles and Airplanes- A Simulation-based Approach

Authors: Mahdiye Khorasani, Arjun Vijay, Ali Mashayekh, Christian Trapp

Abstract:

The performance of Proton Exchange Membrane Fuel Cell (PEMFC) is highly dependent on the pressure and mass flow of media (Hydrogen and air) throughout the cells and the stack. Higher pressure, on the one hand, results in higher output power of the stack but, on the other hand, increases the electrical power demand of the compressor. In this work, a simulation model of a PEMFC system for vehicle and airplane applications is developed. With this new model, the effect of different pressures and air mass flow rates are investigated to discover the optimum operating point in a PEMFC system, and innovative operation strategies are implemented to optimize reactants flow while minimizing electrical power demand of the compressor for optimum performance. Additionally, a fuel cell system test bench is set up, which contains not only all the auxiliary components for conditioning the gases, reactants, and flows but also a dynamic titling table for testing different orientations of the stack to simulate the flight conditions during take-off and landing and off-road-vehicle scenarios. The results of simulation will be tested and validated on the test bench for future works.

Keywords: air mass flow effect, optimization of operation, pressure effect, PEMFC system, PEMFC system simulation

Procedia PDF Downloads 159
24683 Seismic Performance of Two-Storey RC Frame Designed EC8 under In-Plane Cyclic Loading

Authors: N. H. Hamid, A. Azmi, M. I. Adiyanto

Abstract:

This main purpose of this paper is to evaluate the seismic performance of double bay two-storey reinforced concrete frame under in-plane lateral cyclic loading which designed using Eurocode 8 (EC8) by taking into account of seismic loading. The prototype model of reinforced concrete frame was constructed in one-half scale tested under in-plane lateral cyclic loading starts with ±0.2% drift, ±0.25% up to ±3.0% drift with the increment of ±0.25%. The performance of the RC frame is evaluated in terms of the hysteresis loop (load vs. displacement), stiffness, ductility, lateral strength, stress-strain relationship and equivalent viscous damping. Visual observation of the crack pattern after testing were observed where the beam- column joint suffer the most severe damage as it is the critical part in moment resisting frame. Spalling of concrete starts occurred at ±2.0% drift and become worse at ±2.5% drift. The experimental result shows that the maximum lateral strength of specimen is 99.98 kN and ductility of the specimen is µ=4.07 which lies between 3≤µ≤6 in order to withstand moderate to severe earthquakes.

Keywords: ductility, equivalent viscous damping, hysteresis loops, lateral strength, stiffness

Procedia PDF Downloads 344
24682 Systems Approach on Thermal Analysis of an Automatic Transmission

Authors: Sinsze Koo, Benjin Luo, Matthew Henry

Abstract:

In order to increase the performance of an automatic transmission, the automatic transmission fluid is required to be warm up to an optimal operating temperature. In a conventional vehicle, cold starts result in friction loss occurring in the gear box and engine. The stop and go nature of city driving dramatically affect the warm-up of engine oil and automatic transmission fluid and delay the time frame needed to reach an optimal operating temperature. This temperature phenomenon impacts both engine and transmission performance but also increases fuel consumption and CO2 emission. The aim of this study is to develop know-how of the thermal behavior in order to identify thermal impacts and functional principles in automatic transmissions. Thermal behavior was studied using models and simulations, developed using GT-Suit, on a one-dimensional thermal and flow transport. A power train of a conventional vehicle was modeled in order to emphasis the thermal phenomena occurring in the various components and how they impact the automatic transmission performance. The simulation demonstrates the thermal model of a transmission fluid cooling system and its component parts in warm-up after a cold start. The result of these analyses will support the future designs of transmission systems and components in an attempt to obtain better fuel efficiency and transmission performance. Therefore, these thermal analyses could possibly identify ways that improve existing thermal management techniques with prioritization on fuel efficiency.

Keywords: thermal management, automatic transmission, hybrid, and systematic approach

Procedia PDF Downloads 361
24681 Thermal Performance Investigation on Cross V-Shape Solar Air Collectors

Authors: Xi Luo, Xu Ji, Yunfeng Wang, Guoliang Li, Chongqiang Yan, Ming Li

Abstract:

Two different kinds of cross V-shape solar air collectors are designed and constructed. In the transverse cross V-shape collector, the V-shape bottom plate is along the air flow direction and the absorbing plate is perpendicular to the air flow direction. In the lengthway cross V-shape collector, the V-shape absorbing plate is along the air flow direction and the bottom plate is perpendicular to the air flow direction. Based on heat balance, the mathematical model is built to evaluate their performances. These thermal performances of the two cross V-shape solar air collectors and an extra traditional flat-plate solar air collector are characterized under various operating conditions by experiments. The experimental results agree well with the calculation values. The experimental results prove that the thermal efficiency of transverse cross V-shape collector precedes that of others. The air temperature at any point along the flow direction of the transverse cross V-shape collector is higher than that of the lengthway cross V-shape collector. For the transverse cross V-shape collector, the most effective length of flow channel is 0.9m. For the lengthway cross V-shape collector, a longer flow channel is necessary to achieve a good thermal performance.

Keywords: cross v-shape, performance, solar air collector, thermal efficiency

Procedia PDF Downloads 297
24680 The Effect of Environmental CSR on Corporate Social Performance: The Mediating Role of Green Innovation and Corporate Image

Authors: Edward Fosu

Abstract:

Green innovation has emerged as a significant environmental concern across the world. Green innovation refers to the utilization of technological developments that facilitate energy savings and waste material recycling. The stakeholder theory and resourced-based theory were used to examine how stakeholders' expectations affect corporate green innovation activities and how corporate innovation initiatives affect the corporate image and social performance. This study used structural equation modelling (SEM) and hierarchical regression to test the effects of environmental corporate social responsibility on social performance through mediators: green innovation and corporate image. A quantitative design was employed using data from Chinese companies in Ghana for this study. The study assessed. The results revealed that environmental practices promote corporate social performance (β = 0.070, t = 1.974, p = 0.049), positively affect green product innovation (β = 0.251, t = 7.478, p < 0.001), and has direct effect on green process innovation (β = 0.174, t = 6.192, p < 0.001). Green product innovation and green process innovation significantly promote corporate image respectively (β = 0.089, t = 2.581, p = 0.010), (β = 0.089, t = 2.367, p = 0.018). Corporate image has significant direct effects on corporate social performance (β = 0.146, t = 4.256, p < 0.001). Corporate environmental practices have an impact on the development of green products and processes which promote companies’ social performance. Additionally, evidence supports that corporate image influences companies’ social performance.

Keywords: environmental CSR, corporate image, green innovation, coprorate social performance

Procedia PDF Downloads 104
24679 Bayesian Structural Identification with Systematic Uncertainty Using Multiple Responses

Authors: André Jesus, Yanjie Zhu, Irwanda Laory

Abstract:

Structural health monitoring is one of the most promising technologies concerning aversion of structural risk and economic savings. Analysts often have to deal with a considerable variety of uncertainties that arise during a monitoring process. Namely the widespread application of numerical models (model-based) is accompanied by a widespread concern about quantifying the uncertainties prevailing in their use. Some of these uncertainties are related with the deterministic nature of the model (code uncertainty) others with the variability of its inputs (parameter uncertainty) and the discrepancy between a model/experiment (systematic uncertainty). The actual process always exhibits a random behaviour (observation error) even when conditions are set identically (residual variation). Bayesian inference assumes that parameters of a model are random variables with an associated PDF, which can be inferred from experimental data. However in many Bayesian methods the determination of systematic uncertainty can be problematic. In this work systematic uncertainty is associated with a discrepancy function. The numerical model and discrepancy function are approximated by Gaussian processes (surrogate model). Finally, to avoid the computational burden of a fully Bayesian approach the parameters that characterise the Gaussian processes were estimated in a four stage process (modular Bayesian approach). The proposed methodology has been successfully applied on fields such as geoscience, biomedics, particle physics but never on the SHM context. This approach considerably reduces the computational burden; although the extent of the considered uncertainties is lower (second order effects are neglected). To successfully identify the considered uncertainties this formulation was extended to consider multiple responses. The efficiency of the algorithm has been tested on a small scale aluminium bridge structure, subjected to a thermal expansion due to infrared heaters. Comparison of its performance with responses measured at different points of the structure and associated degrees of identifiability is also carried out. A numerical FEM model of the structure was developed and the stiffness from its supports is considered as a parameter to calibrate. Results show that the modular Bayesian approach performed best when responses of the same type had the lowest spatial correlation. Based on previous literature, using different types of responses (strain, acceleration, and displacement) should also improve the identifiability problem. Uncertainties due to parametric variability, observation error, residual variability, code variability and systematic uncertainty were all recovered. For this example the algorithm performance was stable and considerably quicker than Bayesian methods that account for the full extent of uncertainties. Future research with real-life examples is required to fully access the advantages and limitations of the proposed methodology.

Keywords: bayesian, calibration, numerical model, system identification, systematic uncertainty, Gaussian process

Procedia PDF Downloads 315
24678 OFDM Radar for High Accuracy Target Tracking

Authors: Mahbube Eghtesad

Abstract:

For a number of years, the problem of simultaneous detection and tracking of a target has been one of the most relevant and challenging issues in a wide variety of military and civilian systems. We develop methods for detecting and tracking a target using an orthogonal frequency division multiplexing (OFDM) based radar. As a preliminary step we introduce the target trajectory and Gaussian noise model in discrete time form. Then resorting to match filter and Kalman filter we derive a detector and target tracker. After that we propose an OFDM radar in order to achieve further improvement in tracking performance. The motivation for employing multiple frequencies is that the different scattering centers of a target resonate differently at each frequency. Numerical examples illustrate our analytical results, demonstrating the achieved performance improvement due to the OFDM signaling method.

Keywords: matched filter, target trashing, OFDM radar, Kalman filter

Procedia PDF Downloads 379
24677 Material Selection for Footwear Insole Using Analytical Hierarchal Process

Authors: Mohammed A. Almomani, Dina W. Al-Qudah

Abstract:

Product performance depends on the type and quality of its building material. Successful product must be made using high quality material, and using the right methods. Many foot problems took place as a result of using poor insole material. Therefore, selecting a proper insole material is crucial to eliminate these problems. In this study, the analytical hierarchy process (AHP) is used to provide a systematic procedure for choosing the best material adequate for this application among three material alternatives (polyurethane, poron, and plastzote). Several comparison criteria are used to build the AHP model including: density, stiffness, durability, energy absorption, and ease of fabrication. Poron was selected as the best choice. Inconsistency testing indicates that the model is reasonable, and the materials alternative ranking is effective.

Keywords: AHP, footwear insole, insole material, materials selection

Procedia PDF Downloads 330
24676 Research on Coordination Strategies for Coordinating Supply Chain Based on Auction Mechanisms

Authors: Changtong Wang, Lingyun Wei

Abstract:

The combination of auctions and supply chains is of great significance in improving the supply chain management system and enhancing the efficiency of economic and social operations. To address the gap in research on supply chain strategies under the auction mechanism, a model is developed for the 1-N auction model in a complete information environment, and it is concluded that the two-part contract auction model for retailers in this model can achieve supply chain coordination. The model is validated by substituting the model into the scenario of a fresh-cut flower industry flower auction in exchange for arithmetic examples to further prove the validity of the conclusions.

Keywords: auction mechanism, supply chain coordination strategy, fresh cut flowers industry, supply chain management

Procedia PDF Downloads 112
24675 Starting Characteristic Analysis of LSPM for Pumping System Considering Demagnetization

Authors: Subrato Saha, Yun-Hyun Cho

Abstract:

This paper presents the design process of a high performance 3-phase 3.7 kW 2-pole line start permanent magnet synchronous motor for pumping system. A method was proposed to study the starting torque characteristics considering line start with high inertia load. A d-q model including cage was built to study the synchronization capability. Time-stepping finite element method analysis was utilized to accurately predict the dynamic and transient performance, efficiency, starting current, speed curve and, etc. Considering the load torque of pumps during starting stage, the rotor bar was designed with minimum demagnetization of permanent magnet caused by huge starting current.

Keywords: LSPM, starting analysis, demagnetization, FEA, pumping system

Procedia PDF Downloads 459
24674 Adaptive Thermal Comfort Model for Air-Conditioned Lecture Halls in Malaysia

Authors: B. T. Chew, S. N. Kazi, A. Amiri

Abstract:

This paper presents an adaptive thermal comfort model study in the tropical country of Malaysia. A number of researchers have been interested in applying the adaptive thermal comfort model to different climates throughout the world, but so far no study has been performed in Malaysia. For the use as a thermal comfort model, which better applies to hot and humid climates, the adaptive thermal comfort model was developed as part of this research by using the collected results from a large field study in six lecture halls with 178 students. The relationship between the operative temperature and behavioral adaptations was determined. In the developed adaptive model, the acceptable indoor neutral temperatures lay within the range of 23.9-26.0 oC, with outdoor temperatures ranging between 27.0–34.6oC. The most comfortable temperature for students in the lecture hall was 25.7 oC.

Keywords: hot and humid, lecture halls, neutral temperature, adaptive thermal comfort model

Procedia PDF Downloads 349
24673 Organizational Climate of Silence and Job Performance: Examining the Mediatory and Moderating Role of Work Engagement and Supervisor Support among Frontline Nurses

Authors: Sabina Ampon-Wireko

Abstract:

Purpose: The study explores the influence of the organizational climate of silence on job performance through the mediating effects of work engagement (WE). Further, the degree to which supervisor support (SS) and work engagement moderate job performance are examined. Method: Using a questionnaire, the study collected 565 valid responses from frontline nurses in Ghana. The hierarchical regression technique was employed in estimating the relationship between the variables. Findings: The results showed a significant negative influence of top managers' and supervisors' attitudes to silence on both contextual and task performance. Communication opportunities, however, revealed positive and significant effects on contextual and task performance. Work engagement had no role in mediating top managers' and supervisors’ attitudes toward silence, communication opportunities, and task performance. Supervisor support acted as a moderating factor in the relationship between job engagement and task performance. In contrast, despite the direct positive relationship between supervisor support and contextual performance, it failed to moderate the relationship between work engagement and contextual performance. Practical implications: The study's findings demonstrate the need for health managers and supervisors to become more conscious of silence. The findings offer diverse recommendations for encouraging the sharing of relevant ideas, facts, and opinions within the health sector.

Keywords: organizational climate of silence, job performance, work engagement, supervisor support, frontline nurses

Procedia PDF Downloads 62
24672 Performance Evaluation of Using Genetic Programming Based Surrogate Models for Approximating Simulation Complex Geochemical Transport Processes

Authors: Hamed K. Esfahani, Bithin Datta

Abstract:

Transport of reactive chemical contaminant species in groundwater aquifers is a complex and highly non-linear physical and geochemical process especially for real life scenarios. Simulating this transport process involves solving complex nonlinear equations and generally requires huge computational time for a given aquifer study area. Development of optimal remediation strategies in aquifers may require repeated solution of such complex numerical simulation models. To overcome this computational limitation and improve the computational feasibility of large number of repeated simulations, Genetic Programming based trained surrogate models are developed to approximately simulate such complex transport processes. Transport process of acid mine drainage, a hazardous pollutant is first simulated using a numerical simulated model: HYDROGEOCHEM 5.0 for a contaminated aquifer in a historic mine site. Simulation model solution results for an illustrative contaminated aquifer site is then approximated by training and testing a Genetic Programming (GP) based surrogate model. Performance evaluation of the ensemble GP models as surrogate models for the reactive species transport in groundwater demonstrates the feasibility of its use and the associated computational advantages. The results show the efficiency and feasibility of using ensemble GP surrogate models as approximate simulators of complex hydrogeologic and geochemical processes in a contaminated groundwater aquifer incorporating uncertainties in historic mine site.

Keywords: geochemical transport simulation, acid mine drainage, surrogate models, ensemble genetic programming, contaminated aquifers, mine sites

Procedia PDF Downloads 262
24671 Evaluation of Sustainable Blue Economy Development Performance: Method and Case

Authors: Mingbao Chen

Abstract:

After Rio+20, the blue economy rises all over the world, and it has become the focus field of national development. At present, the blue economy has become a new growth point in the field of global economy and the direction of the development of ‘green’ in the ocean. However, in fact, the key factors affecting the development of the blue economy have not been explored in depth, and the development policies and performance of the blue economy have not been scientifically evaluated. This cannot provide useful guidance for the development of the blue economy. Therefore, it is urgent to establish a quantitative evaluation framework to measure the performance of the blue economic development. Based on the full understanding of the connotation and elements of the blue economy, and studying the literature, this article has built an universality and operability evaluation index system, including ecological environment, social justice, sustainable growth, policy measures, and so on. And this article also established a sound evaluation framework of blue economic development performance. At the same time, this article takes China as a sample to test the framework of the adaptability, and to assess the performance of China's blue economic.

Keywords: Blue economy, development performance, evaluation framework, assess method

Procedia PDF Downloads 234
24670 A Long Range Wide Area Network-Based Smart Pest Monitoring System

Authors: Yun-Chung Yu, Yan-Wen Wang, Min-Sheng Liao, Joe-Air Jiang, Yuen-Chung Lee

Abstract:

This paper proposes to use a Long Range Wide Area Network (LoRaWAN) for a smart pest monitoring system which aims at the oriental fruit fly (Bactrocera dorsalis) to improve the communication efficiency of the system. The oriental fruit fly is one of the main pests in Southeast Asia and the Pacific Rim. Different smart pest monitoring systems based on the Internet of Things (IoT) architecture have been developed to solve problems of employing manual measurement. These systems often use Octopus II, a communication module following the 2.4GHz IEEE 802.15.4 ZigBee specification, as sensor nodes. The Octopus II is commonly used in low-power and short-distance communication. However, the energy consumption increase as the logical topology becomes more complicate to have enough coverage in the large area. By comparison, LoRaWAN follows the Low Power Wide Area Network (LPWAN) specification, which targets the key requirements of the IoT technology, such as secure bi-directional communication, mobility, and localization services. The LoRaWAN network has advantages of long range communication, high stability, and low energy consumption. The 433MHz LoRaWAN model has two superiorities over the 2.4GHz ZigBee model: greater diffraction and less interference. In this paper, The Octopus II module is replaced by a LoRa model to increase the coverage of the monitoring system, improve the communication performance, and prolong the network lifetime. The performance of the LoRa-based system is compared with a ZigBee-based system using three indexes: the packet receiving rate, delay time, and energy consumption, and the experiments are done in different settings (e.g. distances and environmental conditions). In the distance experiment, a pest monitoring system using the two communication specifications is deployed in an area with various obstacles, such as buildings and living creatures, and the performance of employing the two communication specifications is examined. The experiment results show that the packet receiving the rate of the LoRa-based system is 96% , which is much higher than that of the ZigBee system when the distance between any two modules is about 500m. These results indicate the capability of a LoRaWAN-based monitoring system in long range transmission and ensure the stability of the system.

Keywords: LoRaWan, oriental fruit fly, IoT, Octopus II

Procedia PDF Downloads 336
24669 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 71
24668 Yang-Lee Edge Singularity of the Infinite-Range Ising Model

Authors: Seung-Yeon Kim

Abstract:

The Ising model, consisting magnetic spins, is the simplest system showing phase transitions and critical phenomena at finite temperatures. The Ising model has played a central role in our understanding of phase transitions and critical phenomena. Also, the Ising model explains the gas-liquid phase transitions accurately. However, the Ising model in a nonzero magnetic field has been one of the most intriguing and outstanding unsolved problems. We study analytically the partition function zeros in the complex magnetic-field plane and the Yang-Lee edge singularity of the infinite-range Ising model in an external magnetic field. In addition, we compare the Yang-Lee edge singularity of the infinite-range Ising model with that of the square-lattice Ising model in an external magnetic field.

Keywords: Ising ferromagnet, magnetic field, partition function zeros, Yang-Lee edge singularity

Procedia PDF Downloads 719
24667 A Method for Identifying Unusual Transactions in E-commerce Through Extended Data Flow Conformance Checking

Authors: Handie Pramana Putra, Ani Dijah Rahajoe

Abstract:

The proliferation of smart devices and advancements in mobile communication technologies have permeated various facets of life with the widespread influence of e-commerce. Detecting abnormal transactions holds paramount significance in this realm due to the potential for substantial financial losses. Moreover, the fusion of data flow and control flow assumes a critical role in the exploration of process modeling and data analysis, contributing significantly to the accuracy and security of business processes. This paper introduces an alternative approach to identify abnormal transactions through a model that integrates both data and control flows. Referred to as the Extended Data Petri net (DPNE), our model encapsulates the entire process, encompassing user login to the e-commerce platform and concluding with the payment stage, including the mobile transaction process. We scrutinize the model's structure, formulate an algorithm for detecting anomalies in pertinent data, and elucidate the rationale and efficacy of the comprehensive system model. A case study validates the responsive performance of each system component, demonstrating the system's adeptness in evaluating every activity within mobile transactions. Ultimately, the results of anomaly detection are derived through a thorough and comprehensive analysis.

Keywords: database, data analysis, DPNE, extended data flow, e-commerce

Procedia PDF Downloads 37
24666 The Effects of Dual-Enrollment Programs on Students’ Post-Secondary Academic Performance

Authors: Cody Kirby, Kaustav Misra, Arundhati Bagchi Misra, Sharon P. Cox

Abstract:

This paper focuses on the relationship that dual-enrollment programs have on academic performance and retention. Both performance and retention are significant issues in higher education. The first, performance, is a goal of higher education, having an impact on students’ lives. The second, retention, is key to the viability of any college or university. This paper uses survey research methodology to examine factors that lead to positive student academic performance, which leads to retention, specifically in dual-enrollment programs. The data show several characteristics that lead to a positive impact on GPA. These include the following; age, Caucasian race, full-time status, students in STEM programs, and finally dual enrollment participation.

Keywords: dual enrollment, early college, retention, undergraduate education

Procedia PDF Downloads 135
24665 The Impact of Iso 9001 Certification on Brazilian Firms’ Performance: Insights from Multiple Case Studies

Authors: Matheus Borges Carneiro, Fabiane Leticia Lizarelli, José Carlos De Toledo

Abstract:

The evolution of quality management by companies was strongly enabled by, among others, ISO 9001 certification, which is considered a crucial requirement for several customers. Likewise, performance measurement provides useful insights for companies to identify the reflection of their decision-making process on their improvement. One of the most used performance measurement models is the balanced scorecard (BSC), which uses four perspectives to address a firm’s performance: financial, internal process, customer satisfaction, and learning and growth. Studies related to ISO 9001 and business performance have mostly adopted a quantitative approach to identify the standard’s causal effect on a firm’s performance. However, to verify how this influence may occur, an in-depth analysis within a qualitative approach is required. Therefore, this paper aims to verify the impact of ISO 9001:2015 on Brazilian firms’ performance based on the balanced scorecard perspective. Hence, nine certified companies located in the Southeast region of Brazil were studied through a multiple case study approach. Within this study, it was possible to identify the positive impact of ISO 9001 on firms’ overall performance, and four Critical Success Factors (CSFs) were identified as relevant on the linkage among ISO 9001 and firms’ performance: employee involvement, top management, process management, and customer focus. Due to the COVID-19 pandemic, the number of interviews was limited to the quality manager specialist, and the sample was limited since several companies were closed during the period of the study. This study presents an in-depth analysis of how the relationship between ISO 9001 certification and firms’ performance in a developing country is.

Keywords: balanced scorecard, Brazilian firms’ performance, critical success factors, ISO 9001 certification, performance measurement

Procedia PDF Downloads 179
24664 An Investigation on the Relationship between Taxi Company Safety Climate and Safety Performance of Taxi Drivers in Iloilo City

Authors: Jasper C. Dioco

Abstract:

The study was done to investigate the relationship of taxi company safety climate and drivers’ safety motivation and knowledge on taxi drivers’ safety performance. Data were collected from three Taxi Companies with taxi drivers as participants (N = 84). The Hiligaynon translated version of Transportation Companies’ Climate Scale (TCCS), Safety Motivation and Knowledge Scale, Occupational Safety Motivation Questionnaire and Global Safety Climate Scale were used to study the relationships among four parameters: (a) Taxi company safety climate; (b) Safety motivation; (c) Safety knowledge; and (d) Safety performance. Correlational analyses found that there is no relation between safety climate and safety performance. A Hierarchical regression demonstrated that safety motivation predicts the most variance in safety performance. The results will greatly impact how taxi company can increase safe performance through the confirmation of the proximity of variables to organizational outcome. A strong positive safety climate, in which employees perceive safety to be a priority and that managers are committed to their safety, is likely to increase motivation to be safety. Hence, to improve outcomes, providing knowledge based training and health promotion programs within the organization must be implemented. Policy change might include overtime rules and fatigue driving awareness programs.

Keywords: safety climate, safety knowledge, safety motivation, safety performance, taxi drivers

Procedia PDF Downloads 168
24663 Probing Language Models for Multiple Linguistic Information

Authors: Bowen Ding, Yihao Kuang

Abstract:

In recent years, large-scale pre-trained language models have achieved state-of-the-art performance on a variety of natural language processing tasks. The word vectors produced by these language models can be viewed as dense encoded presentations of natural language that in text form. However, it is unknown how much linguistic information is encoded and how. In this paper, we construct several corresponding probing tasks for multiple linguistic information to clarify the encoding capabilities of different language models and performed a visual display. We firstly obtain word presentations in vector form from different language models, including BERT, ELMo, RoBERTa and GPT. Classifiers with a small scale of parameters and unsupervised tasks are then applied on these word vectors to discriminate their capability to encode corresponding linguistic information. The constructed probe tasks contain both semantic and syntactic aspects. The semantic aspect includes the ability of the model to understand semantic entities such as numbers, time, and characters, and the grammatical aspect includes the ability of the language model to understand grammatical structures such as dependency relationships and reference relationships. We also compare encoding capabilities of different layers in the same language model to infer how linguistic information is encoded in the model.

Keywords: language models, probing task, text presentation, linguistic information

Procedia PDF Downloads 86
24662 Verification of Simulated Accumulated Precipitation

Authors: Nato Kutaladze, George Mikuchadze, Giorgi Sokhadze

Abstract:

Precipitation forecasts are one of the most demanding applications in numerical weather prediction (NWP). Georgia, as the whole Caucasian region, is characterized by very complex topography. The country territory is prone to flash floods and mudflows, quantitative precipitation estimation (QPE) and quantitative precipitation forecast (QPF) at any leading time are very important for Georgia. In this study, advanced research weather forecasting model’s skill in QPF is investigated over Georgia’s territory. We have analyzed several convection parameterization and microphysical scheme combinations for different rainy episodes and heavy rainy phenomena. We estimate errors and biases in accumulated 6 h precipitation using different spatial resolution during model performance verification for 12-hour and 24-hour lead time against corresponding rain gouge observations and satellite data. Various statistical parameters have been calculated for the 8-month comparison period, and some skills of model simulation have been evaluated. Our focus is on the formation and organization of convective precipitation systems in a low-mountain region. Several problems in connection with QPF have been identified for mountain regions, which include the overestimation and underestimation of precipitation on the windward and lee side of the mountains, respectively, and a phase error in the diurnal cycle of precipitation leading to the onset of convective precipitation in model forecasts several hours too early.

Keywords: extremal dependence index, false alarm, numerical weather prediction, quantitative precipitation forecasting

Procedia PDF Downloads 133
24661 Immersive Block Scheduling in Higher Education: A Case Study in Curriculum Reform and Increased Student Success

Authors: Thomas Roche, Erica Wilson, Elizabeth Goode

Abstract:

Universities across the globe are considering how to effect meaningful change in their higher education (HE) delivery in the face of increasingly diverse student cohorts and shifting student learning preferences. This paper reports on a descriptive case study of whole-of-institution curriculum reform at one regional Australian university, where more traditional 13-week semesters were replaced with a 6-week immersive block model drawing on active learning pedagogy. Based on a synthesis of literature in best practice HE pedagogy and principles, the case study draws on student performance data and senior management staff interviews (N = 5) to outline the key changes necessary for successful HE transformation to deliver increased student pass rates and retention. The findings from this case study indicate that an institutional transformation to an immersive block model requires both a considered change in institutional policy and process as well as the appropriate resourcing of roles, governance committees, technical solutions, and, importantly, communities of practice. Implications for practice at higher education institutions considering reforming their curriculum model are also discussed.

Keywords: student retention, immersive scheduling, block model, curriculum reform, active learning, higher education pedagogy, higher education policy

Procedia PDF Downloads 49
24660 Stable Diffusion, Context-to-Motion Model to Augmenting Dexterity of Prosthetic Limbs

Authors: André Augusto Ceballos Melo

Abstract:

Design to facilitate the recognition of congruent prosthetic movements, context-to-motion translations guided by image, verbal prompt, users nonverbal communication such as facial expressions, gestures, paralinguistics, scene context, and object recognition contributes to this process though it can also be applied to other tasks, such as walking, Prosthetic limbs as assistive technology through gestures, sound codes, signs, facial, body expressions, and scene context The context-to-motion model is a machine learning approach that is designed to improve the control and dexterity of prosthetic limbs. It works by using sensory input from the prosthetic limb to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. This can help to improve the performance of the prosthetic limb and make it easier for the user to perform a wide range of tasks. There are several key benefits to using the context-to-motion model for prosthetic limb control. First, it can help to improve the naturalness and smoothness of prosthetic limb movements, which can make them more comfortable and easier to use for the user. Second, it can help to improve the accuracy and precision of prosthetic limb movements, which can be particularly useful for tasks that require fine motor control. Finally, the context-to-motion model can be trained using a variety of different sensory inputs, which makes it adaptable to a wide range of prosthetic limb designs and environments. Stable diffusion is a machine learning method that can be used to improve the control and stability of movements in robotic and prosthetic systems. It works by using sensory feedback to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. One key aspect of stable diffusion is that it is designed to be robust to noise and uncertainty in the sensory feedback. This means that it can continue to produce stable, smooth movements even when the sensory data is noisy or unreliable. To implement stable diffusion in a robotic or prosthetic system, it is typically necessary to first collect a dataset of examples of the desired movements. This dataset can then be used to train a machine learning model to predict the appropriate control inputs for a given set of sensory observations. Once the model has been trained, it can be used to control the robotic or prosthetic system in real-time. The model receives sensory input from the system and uses it to generate control signals that drive the motors or actuators responsible for moving the system. Overall, the use of the context-to-motion model has the potential to significantly improve the dexterity and performance of prosthetic limbs, making them more useful and effective for a wide range of users Hand Gesture Body Language Influence Communication to social interaction, offering a possibility for users to maximize their quality of life, social interaction, and gesture communication.

Keywords: stable diffusion, neural interface, smart prosthetic, augmenting

Procedia PDF Downloads 87
24659 Impact of Job Burnout on Job Satisfaction and Job Performance of Front Line Employees in Bank: Moderating Role of Hope and Self-Efficacy

Authors: Huma Khan, Faiza Akhtar

Abstract:

The present study investigates the effects of burnout toward job performance and job satisfaction with the moderating role of hope and self-efficacy. Findings from 310 frontline employees of Pakistani commercial banks (Lahore, Karachi & Islamabad) disclosed burnout has negative significant effects on job performance and job satisfaction. Simple random sampling technique was used to collect data and inferential statistics were applied to analyzed the data. However, results disclosed no moderation effect of hope on burnout, job performance or with job satisfaction. Moreover, Data significantly supported the moderation effect of self-efficacy. Study further shed light on the development of psychological capital. Importance of the implication of the current finding is discussed.

Keywords: burnout, hope, job performance, job satisfaction, psychological capital, self-efficacy

Procedia PDF Downloads 124
24658 Identification of Effective Factors on Marketing Performance Management in Iran’s Airports and Air Navigation Companies

Authors: Morteza Hamidpour, Kambeez Shahroudi

Abstract:

The aim of this research was to identify the factors affecting the measurement and management of marketing performance in Iran's airports and air navigation companies (Economics in Air and Airport Transport). This study was exploratory and used a qualitative content analysis technique. The study population consisted of university professors in the field of air transportation and senior airport managers, with 15 individuals selected as samples using snowball technique. Based on the results, 15 main indicators were identified for measuring the marketing performance of Iran's airports and air navigation companies. These indicators include airport staff, general and operational expenses, annual passenger reception capacity, number of counter receptions and passenger dispatches, airport runway length, airline companies' loyalty to using airport space and facilities, regional market share of transit and departure flights, claims and net profit (aviation and non-aviation). By keeping the input indicators constant, the output indicators can be improved, enhancing performance efficiency and consequently increasing the economic situation in air transportation.

Keywords: air transport economics, marketing performance management, marketing performance input factors, marketing performance intermediary factors, marketing performance output factors, content analysis

Procedia PDF Downloads 50
24657 Analysis of the Acoustic Performance of Vertical Internal Seals with Pet Wool as NBR 15.575-4NO Green Towers Building-DF

Authors: Lucas Aerre, Wallesson Faria, Roberto Pimentel, Juliana Santos

Abstract:

An extremely disturbing and irritating element in the lives of people and organizations is the noise, the consequences that can bring us has a lot of connection with human health as well as financial and economic aspects. In order to improve the efficiency of buildings in Brazil in general, a performance standard was created, NBR 15.575 in which all buildings are seen in a more systemic and peculiar way, while following the requirements of the standard. The acoustic performance present in these buildings is one such requirement. Based on this, the present work was elaborated with the objective of evaluating through acoustic measurements the acoustic performance of vertical internal fences that are under the incidence of aerial noise of a building in the city of Brasilia-DF. A short theoretical basis is made and soon after the procedures of measurement are described through the control method established by the standard, and its results are evaluated according to the parameters of the same. The measurement performed between rooms of the same unit, presented a standardized sound pressure level difference (D nT, w) equal to 40 dB, thus being classified within the minimum performance required by the standard in question.

Keywords: airborne noise, performance standard, soundproofing, vertical seal

Procedia PDF Downloads 281