Search results for: mechanical and tribological behaviour
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5398

Search results for: mechanical and tribological behaviour

4138 Experimental Characterization of Fatigue Crack Initiation of AA320 Alloy under Combined Thermal Cycling (CTC) and Mechanical Loading (ML) during Four Point Rotating and Bending Fatigue Testing Machine

Authors: Rana Atta Ur Rahman, Daniel Juhre

Abstract:

Initiation of crack during fatigue of casting alloys are noticed mainly on the basis of experimental results. Crack initiation and strength of fatigue of AA320 are summarized here. Load sequence effect is applied to notify initiation phase life. Crack initiation at notch root and fatigue life is calculated under single & two-step mechanical loading (ML) with and without combined thermal cycling (CTC). An Experimental setup is proposed to create the working temperature as per alloy applications. S-N curves are plotted, and a comparison is made between crack initiation leading to failure under different ML with & without thermal loading (TL).

Keywords: fatigue, initiation, SN curve, alloy

Procedia PDF Downloads 395
4137 Influence of High Temperature and Humidity on Polymer Composites Used in Relining of Sewage

Authors: Parastou Kharazmi, Folke Björk

Abstract:

Some of the main causes for degradation of polymeric materials are thermal aging, hydrolysis, oxidation or chemical degradation by acids, alkalis or water. The first part of this paper provides a brief summary of advances in technology, methods and specification of composite materials for relining as a rehabilitation technique for sewage systems. The second part summarizes an investigation on frequently used composite materials for relining in Sweden, the rubber filled epoxy composite and reinforced polyester composite when they were immersed in deionized water or in dry conditions, and elevated temperatures up to 80°C in the laboratory. The tests were conducted by visual inspection, microscopy, Dynamic Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC) as well as mechanical testing, three point bending and tensile testing.

Keywords: composite, epoxy, polyester, relining, sewage

Procedia PDF Downloads 331
4136 Effect of Temperature Condition in Extracting Carbon Fibers on Mechanical Properties of Injection Molded Polypropylene Reinforced by Recycled Carbon Fibers

Authors: Shota Nagata, Kazuya Okubo, Toru Fujii

Abstract:

The purpose of this study is to investigate the proper condition in extracting carbon fibers as the reinforcement of composite molded by injection method. Recycled carbon fibers were extracted from wasted CFRP by pyrolyzing epoxy matrix of CFRP under air atmosphere at different temperature conditions 400, 600 and 800°C in this study. Recycled carbon fiber reinforced polypropylene (RCF/PP) pellets were prepared using twin screw extruder. The RCF/PP specimens were molded into dumbbell shaped specimens using injection molding machine. The tensile strength of recycled carbon fiber was decreased with rising pyrolysis temperature from 400 to 800°C. However, superior mechanical properties of tensile strength, tensile modulus and fracture strain of RCF/PP specimen were obtained when the extracting temperature was 600°C. Almost fibers in RCF/PP specimens were aligned in the mold filling direction in this study when the extracting temperature was 600°C. To discuss the results, the failure mechanisms of RCF/PP specimens was shown schematically. Finally, it was concluded that the temperature condition at 600°C should be selected in extracting carbon fibers as the reinforcement of RCF/PP composite molded by injection method.

Keywords: CFRP, recycled carbon fiber, injection molding, mechanical properties, fiber orientation, failure mechanism

Procedia PDF Downloads 430
4135 Changing Colours and Odours: Exploring Cues Used by Insect Pollinators in Two Brassicaceous Plants

Authors: Katherine Y. Barragan-Fonseca, Joop J. A. Van Loon, Marcel Dicke, Dani Lucas-Barbosa

Abstract:

Flowering plants use different traits to attract pollinators, which indicate flower location and reward quality. Visual and olfactory cues are among the most important floral traits exploited by pollinating insects. Pollination can alter physical and chemical cues of flowers, which can subsequently influence the behaviour of flower visitors. We investigated the main cues exploited by the syrphid fly Episyrphus balteatus and the butterfly Pieris brassicae when visiting flowers of Brassica nigra and Raphanus sativus plants. We studied post-pollination changes and their effects on the behaviour of flower visitors and flower volatile emission. Preference of pollinators was investigated by offering visual and olfactory cues simultaneously as well as separately in two-choice bioassays. We also assessed whether pollen is used as a cue by pollinating insects. In addition, we studied whether behavioural responses could be correlated with changes in plant volatile emission, by collecting volatiles from flower headspace. P. brassicae and E. balteatus did not use pollen as a cue in either of the two plant species studied. Interestingly, pollinators showed a strong bias for visual cues over olfactory cues when exposed to B. nigra plants. Flower visits by pollinators were influenced by post-pollination changes in B. nigra. In contrast, plant responses to pollination did not influence pollinator preference for R. sativus flowers. These results correlate well with floral volatile emission of B. nigra and R. sativus; pollination influenced the volatile profile of B. nigra flowers but not that of R. sativus. Collectively, our data show that different pollinators exploit different visual and olfactory traits when searching for nectar or pollen of flowers of two close related plant species. Although the syrphid fly consumes mostly pollen from brassicaceous flowers, it cannot detect pollen from a distance and likely associates other flower traits with quantity and quality of pollen.

Keywords: plant volatiles, pollinators, post-pollination changes, visual and odour cues

Procedia PDF Downloads 147
4134 Effect of Sodium Hydroxide Treatment on the Mechanical Properties of Crushed and Uncrushed Luffa cylindrica Fibre Reinforced rLDPE Composites

Authors: Paschal A. Ubi, Salawu Abdul Rahman Asipita

Abstract:

The use of suitable engineering materials which poses less harm to ,an and the environment is sort for in recent times, thus giving rise to polymer composites filled with natural organic reinforcement which are biodegradable. Treatment of natural fibres is essential in improving matrix to filler adhesion, hence improving its mechanical properties. In this study, investigations were carried out to determine the effect of sodium hydroxide treatment on the tensile, flexural, impact and hardness properties of crushed and uncrushed luffa cylindrica fibre reinforced recycled low density polyethylene composites. The LC (Luffa Cylindrica) fibres were treated with 0%, 2%, 4%, 6%, 8%, and 10% wt. NaOH concentrations for a period of 24 hours under room temperature conditions. The compounding of the waste LDPE was done using a two roll mill at a temperature of 150 oC and cured in a hydraulic press at a temperature of 150oC for 3 minutes at 3 metric tonnes. A formulation of 20/80g (reinforcement to matrix ratio in grams) was maintained for all fabricated samples. Analysis of the results showed that the uncrushed luffa fibre samples gave better mechanical properties compared with the crushed luffa fibre samples. The uncrushed luffa fibre composites had optimum tensile and flexural strengths of 7.65MPa and 17.08Mpa respectively corresponding to a young modulus and flexural modulus of 21.08MPa and 232.22MPa for the 8% and 4%wt. NaOH concentration respectively. Results obtained in the research showed that NaOH treatment with the 8% NaOH concentration improves the mechanical properties of the LC fibre reinforced composites when compared with other NaOH treatment concentration values.

Keywords: LC fibres, NaOH concentration, LC/rLDPE composite, tensile strength, flexural strength

Procedia PDF Downloads 268
4133 Portuguese Guitar Strings Characterization and Comparison

Authors: P. Serrão, E. Costa, A. Ribeiro, V. Infante

Abstract:

The characteristic sonority of the Portuguese guitar is in great part what makes Fado so distinguishable from other traditional song styles. The Portuguese guitar is a pear-shaped plucked chordophone with six courses of double strings. This study compares the two types of plain strings available for Portuguese guitar and used by the musicians. One is stainless steel spring wire, the other is high carbon spring steel (music wire). Some musicians mention noticeable differences in sound quality between these two string materials, such as a little more brightness and sustain in the steel strings. Experimental tests were performed to characterize string tension at pitch; mechanical strength and tuning stability using the universal testing machine; dimensional control and chemical composition analysis using the scanning electron microscope. The string dynamical behaviour characterization experiments, including frequency response, inharmonicity, transient response, damping phenomena and were made in a monochord test set-up designed and built in-house. Damping factor was determined for the fundamental frequency. As musicians are able to detect very small damping differences, an accurate a characterization of the damping phenomena for all harmonics was necessary. With that purpose, another improved monochord was set and a new system identification methodology applied. Due to the complexity of this task several adjustments were necessary until obtaining good experimental data. In a few cases, dynamical tests were repeated to detect any evolution in damping parameters after break-in period when according to players experience a new string sounds gradually less dull until reaching the typically brilliant timbre. Finally, each set of strings was played on one guitar by a distinguished player and recorded. The recordings which include individual notes, scales, chords and a study piece, will be analysed to potentially characterize timbre variations.

Keywords: damping factor, music wire, portuguese guitar, string dynamics

Procedia PDF Downloads 539
4132 A Way to Recognize Origin of Soil Conditioners

Authors: Laura Santagostini, Vittoria Guglielmi

Abstract:

The meaning of the word 'Nature' (literally 'that which is about to be born') has accompanied researchers throughout their study of the environment and has led to the design of technical means to improve the properties of the soil, modifying its structure and/or consistency, thus favouring the emergence and growth of plants. These include soil improvers, i.e. any substance, natural or synthetic, mineral or organic, capable of modifying and improving the chemical, physical, biological and mechanical properties and characteristics of the soil. In particular, GCSCs (Green Composted Soil Conditioners) are soil conditioners produced through a controlled process of transforming selected organic green waste materials, such as clippings from the maintenance of ornamental greenery, crop residues and other plant waste. The use of GCSC in horticulture, fruit growing, industrial cultivation and nursery gardening is an active way to return organic carbon to the soil, thus limiting CO2 emissions and the production of greenhouse gases, and also to limit the environmental impact of peat extraction, which is normally used in these areas of application. With a view to distinguish between GCSC and peats and to assess what further contributions GCSC can provide to the soil and growing plants, we studied the behaviour of the two substrates by chromatographic techniques. After treating the individual soil improvers with different solvents, used individually or by applying a polarity gradient, the extracts obtained were analysed by HPLC and LCMS in order to assess their composition mainly from a qualitative point of view. Data obtained show in GCSC the presence of polyphenolic derivatives attributable to the degradation of plant material and potentially useful for the development and growth of young plants, while commercial peat-based products only sporadically showed the presence of recognisable molecules, confirming the lower complexity of the matrix under analysis. These results allowed us to distinguish the two different types of soil conditioner based on their chromatographic profiles.

Keywords: chromatographic profile, HPLC, polyphenols, soil conditioners

Procedia PDF Downloads 111
4131 Tensile Properties of 3D Printed PLA under Unidirectional and Bidirectional Raster Angle: A Comparative Study

Authors: Shilpesh R. Rajpurohit, Harshit K. Dave

Abstract:

Fused deposition modeling (FDM) gains popularity in recent times, due to its capability to create prototype as well as functional end use product directly from CAD file. Parts fabricated using FDM process have mechanical properties comparable with those of injection-molded parts. However, performance of the FDM part is severally affected by the poor mechanical properties of the part due to nature of layered structure of printed part. Mechanical properties of the part can be improved by proper selection of process variables. In the present study, a comparative study between unidirectional and bidirectional raster angle has been carried out at a combination of different layer height and raster width. Unidirectional raster angle varied at five different levels, and bidirectional raster angle has been varied at three different levels. Fabrication of tensile specimen and tensile testing of specimen has been conducted according to ASTM D638 standard. From the results, it can be observed that higher tensile strength has been obtained at 0° raster angle followed by 45°/45° raster angle, while lower tensile strength has been obtained at 90° raster angle. Analysis of fractured surface revealed that failure takes place along with raster deposition direction for unidirectional and zigzag failure can be observed for bidirectional raster angle.

Keywords: additive manufacturing, fused deposition modeling, unidirectional, bidirectional, raster angle, tensile strength

Procedia PDF Downloads 170
4130 Characterization of the Ignitability and Flame Regression Behaviour of Flame Retarded Natural Fibre Composite Panel

Authors: Timine Suoware, Sylvester Edelugo, Charles Amgbari

Abstract:

Natural fibre composites (NFC) are becoming very attractive especially for automotive interior and non-structural building applications because they are biodegradable, low cost, lightweight and environmentally friendly. NFC are known to release high combustible products during exposure to heat atmosphere and this behaviour has raised concerns to end users. To improve on their fire response, flame retardants (FR) such as aluminium tri-hydroxide (ATH) and ammonium polyphosphate (APP) are incorporated during processing to delay the start and spread of fire. In this paper, APP was modified with Gum Arabic powder (GAP) and synergized with carbon black (CB) to form new FR species. Four FR species at 0, 12, 15 and 18% loading ratio were added to oil palm fibre polyester composite (OPFC) panels as follows; OPFC12%APP-GAP, OPFC15%APP-GAP/CB, OPFC18%ATH/APP-GAP and OPFC18%ATH/APPGAP/CB. The panels were produced using hand lay-up compression moulding and cured at room temperature. Specimens were cut from the panels and these were tested for ignition time (Tig), peak heat released rate (HRRp), average heat release rate (HRRavg), peak mass loss rate (MLRp), residual mass (Rm) and average smoke production rate (SPRavg) using cone calorimeter apparatus as well as the available flame energy (ɸ) in driving the flame using radiant panel flame spread apparatus. From the ignitability data obtained at 50 kW/m2 heat flux (HF), it shows that the hybrid FR modified with APP that is OPFC18%ATH/APP-GAP exhibited superior flame retardancy and the improvement was based on comparison with those without FR which stood at Tig = 20 s, HRRp = 86.6 kW/m2, HRRavg = 55.8 kW/m2, MLRp =0.131 g/s, Rm = 54.6% and SPRavg = 0.05 m2/s representing respectively 17.6%, 67.4%, 62.8%, 50.9%, 565% and 62.5% improvements less than those without FR (OPFC0%). In terms of flame spread, the least flame energy (ɸ) of 0.49 kW2/s3 for OPFC18%ATH/APP-GAP caused early flame regression. This was less than 39.6 kW2/s3 compared to those without FR (OPFC0%). It can be concluded that hybrid FR modified with APP could be useful in the automotive and building industries to delay the start and spread of fire.

Keywords: flame retardant, flame regression, oil palm fibre, composite panel

Procedia PDF Downloads 123
4129 Mechanical Properties and Durability of Concretes Manufactured Using Pre-Coated Recycled Fine Aggregate

Authors: An Cheng, Hui-Mi Hsu, Sao-Jeng Chao, Wei-Ting Lin

Abstract:

This study investigated the mechanical properties and durability of concrete produced using recycled fine aggregate (RFA) pre-coated with fly ash, slag, and a polymer solution (PVA). We investigated the physical and microscopic properties of fresh concrete while adjusting several of the fabrication parameters, such as the constituent makeup and thickness of RFA pre-coatings. The study is divided into two parts. The first part involves mortar testing in which the RFA used for coating had a water/cement ratio of 0.5 and fly ash, slag, and PVA viscosity of 5~6cps, 21~26cps, 25~30cps, or 44~50cps. In these tests, 100% of the natural fine aggregate was replaced by RCA. The second part of the study involved the mixing of concrete with 25% FRA, which was respectively coated with fly ash, slag, or PVA at a viscosity of 44~50cps. In these tests, the water/cement ratio was either .4 or 0.6. The major findings in this study are summarized as follows: Coating RFA coated with fly ash and PVA was shown to increase flow in the fresh concrete; however, the coating of FRA with slag resulted in a slight decrease in flow. Coating FRA with slag was shown to improve the compressive and splitting strength to a greater degree than that achieved by coating FRA with fly ash and PVA. The mechanical properties of concrete mixed with slag were shown to increase with the thickness of the coating. Coating FRA with slag was also shown to enhance the durability of the concrete, regardless of the water/cement ratio.

Keywords: recycled fine aggregates, pre-coated, fly ash, slag, pre-coated thickness

Procedia PDF Downloads 314
4128 Influence of Processing Regime and Contaminants on the Properties of Postconsumer Thermoplastics

Authors: Fares Alsewailem

Abstract:

Material recycling of thermoplastic waste offers practical solution for municipal solid waste reduction. Post-consumer plastics such as polyethylene (PE), polyethyleneterephtalate (PET), and polystyrene (PS) may be separated from each other by physical methods such as density difference and hence processed as single plastic, however one should be cautious about the contaminants presence in the waste stream inform of paper, glue, etc. since these articles even in trace amount may deteriorate properties of the recycled plastics especially the mechanical properties. furthermore, melt processing methods used to recycle thermoplastics such as extrusion and compression molding may induce degradation of some of the recycled plastics such as PET and PS. In this research, it is shown that care should be taken when processing recycled plastics by melt processing means in two directions, first contaminants should be extremely minimized, and secondly melt processing steps should also be minimum.

Keywords: Recycling, PET, PS, HDPE, mechanical

Procedia PDF Downloads 277
4127 Light Weight Mortars Produced from Recycled Foam

Authors: Siwat Kamonkunanon

Abstract:

This paper presents results of an experimental study on the use of recycled foam with cement-based mixtures to produce light weight mortar. Several mortar grades were obtained by mixing cement with different amounts of recycled foam, aggregate and water. The physical and mechanical properties of the samples such as density, thermal conductivity, thermal resistivity and compressive strength were investigated. Results show that an increase in the amount of recycled foam affects the mortar, decreasing its density and mechanical properties while increasing its workability, permeability, and occluded air content. These results confirm that mortar produced with recycled foam is comparable to light weight mortar made with traditional materials.

Keywords: light weight, mortars, recycled foam, civil engineering

Procedia PDF Downloads 297
4126 Evaluation of Mechanical Properties of Welds Fabricated at a Close Proximity on Offshore Structures

Authors: T. Nakkeran, C. Dhamodharan, Win Myint Soe , Ramasamy Deverajan, M. Ganesh Babu

Abstract:

This manuscript presents the results of an experimental investigation performed to study the material and mechanical properties of two weld joints fabricated within close proximity. The experiment was designed using welded S355 D Z35 with distances between two parallel adjacent weld toes at 8 mm. These distances were less than the distance that has normally been recommended in standards, codes, and specifications. The main idea of the analysis is to determine any significant effects when welding the joints with the close proximity of 8mm using the SAW welding process of the one joint with high heat put and one joint welded with the FCAW welding process and evaluating the destructing and nondestructive testing between the welded joints. Further, we have evaluated the joints with Mechanical Testing for evaluating by performing Tensile test, bend testing, Macrostructure, Microstructure, Hardness test, and Impact testing. After evaluating the final outcome of the result, no significant changes were observed for welding the close proximity of weld of 8mm distance between the joints as compared to the specification minimum distance between the weldments of any design should be 50mm.

Keywords: S355 carbon steel, weld proximity, SAW process, FCAW process, heat input, bend test, tensile test, hardness test, impact test, macro and microscopic examinations

Procedia PDF Downloads 89
4125 Surface Morphology Refinement and Laves Phase Control of Inconel 718 during Plasma Arc Additive Manufacturing by Alternating Magnetic Field

Authors: Yi Zheng

Abstract:

Improving formability and mechanical properties have always been one of the challenges in the field of additive manufacturing (AM) of nickel-based superalloys. In this work, the effect of a coaxially coupled alternating magnetic field (AMF) on surface morphology and mechanical properties of plasma arc-based additive manufactured Inconel 718 deposit were investigated. Results show that the Lorentz force induced by AMF strongly alters the flow behavior of the plasma jet and the molten pool, suppressing the tendency of the liquid metal in the molten pool to flow down on the two sides face of the deposit, which in turn remarkably improved the surface accuracy of the thin-walled deposit. Furthermore, the electromagnetic stirring induced by AMF can effectively enhance the convection between the dendrites, which could not only contribute to the formation of finer dendrites but also alleviate the enrichment of the elements (i.e., Nb and Mo) at the solid-liquid interface and inhibits the precipitation of Laves phase. The smallest primary dendritic arm spacing (~13 μm) and lowest Laves phases area fraction (3.12%) were witnessed in the bottom region of the AMF-assisted deposit. The mechanical test confirmed that the deposit's micro-hardness and tensile properties were moderately improved compared with the counterpart without AMF.

Keywords: additive manufacturing, inconel 718, alternating magnetic field, laves phase

Procedia PDF Downloads 73
4124 Comparative Analysis of Real and Virtual Garment Fit

Authors: Kristina Ancutiene

Abstract:

The goal of this research is to perform comparative analysis between the virtual fit of the woman's dress and the fit on a real person. The dress fitting was done using mechanical and structural parameters of the 100 % linen fabric and using Modaris_3D_Fit software (CAD Lectra). The dress was also sawn after which garment fit differences of real and virtual dress was researched. Four respondents whose figures were similar were used to evaluate the ease and strain deformations of the real and virtual dress. The scores that were given by the respondents wearing the real dress were compared to the ease and strain results that were given by the software. The main result was that respondents feel similar to the virtual stretch deformations but their ease feeling is not always matching the virtual ones. The results may be influenced by psychological factors and different understanding about purpose of garment.

Keywords: virtual garment, 3D CAD, garment fit, mechanical properties

Procedia PDF Downloads 325
4123 The Mechanical and Electrochemical Properties of DC-Electrodeposited Ni-Mn Alloy Coating with Low Internal Stress

Authors: Chun-Ying Lee, Kuan-Hui Cheng, Mei-Wen Wu

Abstract:

The nickel-manganese (Ni-Mn) alloy coating prepared from DC electrodeposition process in sulphamate bath was studied. The effects of process parameters, such as current density and electrolyte composition, on the cathodic current efficiency, microstructure, internal stress and mechanical properties were investigated. Because of its crucial effect on the application to the electroforming of microelectronic components, the development of low internal stress coating with high leveling power was emphasized. It was found that both the coating’s manganese content and the cathodic current efficiency increased with the raise in current density. In addition, the internal stress of the deposited coating showed compressive nature at low current densities while changed to tensile one at higher current densities. Moreover, the metallographic observation, X-ray diffraction measurement, transmission electron microscope (TEM) examination, and polarization curve measurement were conducted. It was found that the Ni-Mn coating consisted of nano-sized columnar grains and the maximum hardness of the coating was associated with (111) preferred orientation in the microstructure. The grain size was refined along with the increase in the manganese content of the coating, which accordingly, raised its hardness and mechanical tensile strength. In summary, the Ni-Mn coating prepared at lower current density of 1-2 A/dm2 had low internal stress, high leveling power, and better corrosion resistance.

Keywords: Ni-Mn coating, DC plating, internal stress, leveling power

Procedia PDF Downloads 359
4122 Mechanical Properties of Kenaf Reinforced Composite with Different Fiber Orientation

Authors: Y. C. Ching, K. H. Chong

Abstract:

The increasing of environmental awareness has led to grow interest in the expansion of materials with eco-friendly attributes. In this study, a 3 ply sandwich layer of kenaf fiber reinforced unsaturated polyester with various fiber orientations was developed. The effect of the fiber orientation on mechanical and thermal stability properties of polyester was studied. Unsaturated polyester as a face sheets and kenaf fibers as a core was fabricated with combination of hand lay-up process and cold compression method. Tested result parameters like tensile, flexural, impact strength, melting point, and crystallization point were compared and recorded based on different fiber orientation. The failure mechanism and property changes associated with directional change of fiber to polyester composite were discussed.

Keywords: kenaf fiber, polyester, tensile, thermal stability

Procedia PDF Downloads 347
4121 Comparative Analysis of VTEC Bank of Rollers Brake Testers versus Maha, Ryme and Dynamometric Platform Testers Used at Ministry of Transport Facilities

Authors: Carolina Senabre, Sergio Valero, Emilio Velasco

Abstract:

This research objective is to compare the differences of brake measurements obtained with the same vehicle when braking on VTEQ Ministry of Transport (MOT) brake testers versus others such as Maha, Ryme and a dynamometric platform. These different types of brake testers have been used and analyzed by the mechanical engineering staffs at the mechanical laboratory at the Miguel Hernández University. Parameters of the vehicle have been controlled to be the same in all tests. Therefore, brake measurements variability will be due to the tester used. Advances and disadvantages of each brake tester have been analyzed.

Keywords: brake tester, Ministry of transport, longitudinal braking, Bank of Rollers

Procedia PDF Downloads 331
4120 Mechanical Behavior of Hybrid Hemp/Jute Fibers Reinforced Polymer Composites at Liquid Nitrogen Temperature

Authors: B. Vinod, L. Jsudev

Abstract:

Natural fibers as reinforcement in polymer matrix material is gaining lot of attention in recent years, as they are light in weight, less in cost, and ecologically advanced surrogate material to glass and carbon fibers in composites. Natural fibers like jute, sisal, coir, hemp, banana etc. have attracted substantial importance as a potential structural material because of its attractive features along with its good mechanical properties. Cryogenic applications of natural fiber reinforced polymer composites like cryogenic wind tunnels, cryogenic transport vessels, support structures in space shuttles and rockets are gaining importance. In these unique cryogenic applications, the requirements of polymer composites are extremely severe and complicated. These materials need to possess good mechanical and physical properties at cryogenic temperatures such as liquid helium (4.2 K), liquid hydrogen (20 K), liquid nitrogen (77 K), and liquid oxygen (90 K) temperatures, etc., to meet the high requirements by the cryogenic engineering applications. The objective of this work is to investigate the mechanical behavior of hybrid hemp/jute fibers reinforced epoxy composite material at liquid nitrogen temperature. Hemp and Jute fibers are used as reinforcement material as they have high specific strength, stiffness and good adhering property and has the potential to replace the synthetic fibers. Hybrid hemp/jute fibers reinforced polymer composite is prepared by hand lay-up method and test specimens are cut according to ASTM standards. These test specimens are dipped in liquid nitrogen for different time durations. The tensile properties, flexural properties and impact strength of the specimen are tested immediately after the specimens are removed from liquid nitrogen container. The experimental results indicate that the cryogenic treatment of the polymer composite has a significant effect on the mechanical properties of this material. The tensile properties and flexural properties of the hybrid hemp/jute fibers epoxy composite at liquid nitrogen temperature is higher than at room temperature. The impact strength of the material decreased after subjecting it to liquid nitrogen temperature.

Keywords: liquid nitrogen temperature, polymer composite, tensile properties, flexural properties

Procedia PDF Downloads 333
4119 Social Media Governance in UK Higher Education Institutions

Authors: Rebecca Lees, Deborah Anderson

Abstract:

Whilst the majority of research into social media in education focuses on the applications for teaching and learning environments, this study looks at how such activities can be managed by investigating the current state of social media regulation within UK higher education. Social media has pervaded almost all aspects of higher education; from marketing, recruitment and alumni relations to both distance and classroom-based learning and teaching activities. In terms of who uses it and how it is used, social media is growing at an unprecedented rate, particularly amongst the target market for higher education. Whilst the platform presents opportunities not found in more traditional methods of communication and interaction, such as speed and reach, it also carries substantial risks that come with inappropriate use, lack of control and issues of privacy. Typically, organisations rely on the concept of a social contract to guide employee behaviour to conform to the expectations of that organisation. Yet, where academia and social media intersect applying the notion of a social contract to enforce governance may be problematic; firstly considering the emphasis on treating students as customers with a growing focus on the use and collection of satisfaction metrics; and secondly regarding the notion of academic’s freedom of speech, opinion and discussion, which is a long-held tradition of learning instruction. Therefore the need for sound governance procedures to support expectations over online behaviour is vital, especially when the speed and breadth of adoption of social media activities has in the past outrun organisations’ abilities to manage it. An analysis of the current level of governance was conducted by gathering relevant policies, guidelines and best practice documentation available online via internet search and institutional requests. The documents were then subjected to a content analysis in the second phase of this study to determine the approach taken by institutions to apply such governance. Documentation was separated according to audience, i.e.: applicable to staff, students or all users. Given many of these included guests and visitors to the institution within their scope being easily accessible was considered important. Yet, within the UK only about half of all education institutions had explicit social media governance documentation available online without requiring member access or considerable searching. Where they existed, the majority focused solely on employee activities and tended to be policy based rather than rooted in guidelines or best practices, or held a fallback position of governing online behaviour via implicit instructions within IT and computer regulations. Explicit instructions over expected online behaviours is therefore lacking within UK HE. Given the number of educational practices that now include significant online components, it is imperative that education organisations keep up to date with the progress of social media use. Initial results from the second phase of this study which analyses the content of the governance documentation suggests they require reading levels at or above the target audience, with some considerable variability in length and layout. Further analysis will add to this growing field of investigating social media governance within higher education.

Keywords: governance, higher education, policy, social media

Procedia PDF Downloads 176
4118 Preparation and Analysis of Enhanced Glass Fiber Reinforced Plastics with Al Base Alloy

Authors: M. R. Ashok, S. Srivatsan, S. Vignesh

Abstract:

Common replacement for glass in composites is the Glass Fiber Reinforced Plastics (GFRP). The GFRP has its own advantages for being a good alternative. The purpose of this research is to find a suitable enhancement for the commonly used composite Glass Fiber Reinforced Plastics (GFRP). The goal is to enhance the material properties of the composite by providing a suitable matrix with Al base. The various mechanical tests are performed to analyze and compare the improvement in the mechanical properties of the composite. As a result, this material can be used as an alternative for the commonly used GFRP in various fields with increased effectiveness in its functioning.

Keywords: alloy based composites, composite materials, glass fiber reinforced plastics, sSuper composites

Procedia PDF Downloads 326
4117 Preparation and Properties of NR Based Ebonite Rubber Suitable for Use as Engineering Material

Authors: Dosu Malomo, O. E. Edeh, P. O. Okolo, F. C. Ibeh

Abstract:

The preparation of various samples of ebonite vulcanizates and their physico-mechanical properties have been investigated using standard methods. This work explores the production of ebonite dust, production of ebonite vulcanizates and investigation of the characterisation of the ebonite. Five different ebonite materials – labelled A, B, C, D, and E with sulphur content in parts per hundred grams of rubber (Phr) of 32, 34, 36, 38 and 40 respectively were produced. The physico-mechanical properties carried out were tensile strength, hardness and abrasion resistance. The tensile strength (MPa) for sample A, B, C, D and E were 5.6, 3.5, 4.7, 1.7 and 2.0 respectively while the abrasion(%mass loss) were 8.49, 4.24, 2.59, 1.08 and 1.05 respectively and the hardness (IRHD) being 63, 64, 65, 70 and 82. The results show that the preparation of ebonite from natural rubber as a base polymer is feasible considering the results of characterisation obtained.

Keywords: compounding, ebonite dust, natural rubber, vulcanization

Procedia PDF Downloads 152
4116 Effect of Printing Process on Mechanical Properties and Porosity of 3D Printed Concrete Strips

Authors: Wei Chen

Abstract:

3D concrete printing technology is a novel and highly efficient construction method that holds significant promise for advancing low-carbon initiatives within the construction industry. In contrast to traditional construction practices, 3D printing offers a manual and formwork-free approach, resulting in a transformative shift in labor requirements and fabrication techniques. This transition yields substantial reductions in carbon emissions during the construction phase, as well as decreased on-site waste generation. Furthermore, when compared to conventionally printed concrete, 3D concrete exhibits mechanical anisotropy due to its layer-by-layer construction methodology. Therefore, it becomes imperative to investigate the influence of the printing process on the mechanical properties of 3D printed strips and to optimize the mechanical characteristics of these coagulated strips. In this study, we conducted three-dimensional reconstructions of printed blocks using both circular and directional print heads, incorporating various overlap distances between strips, and employed CT scanning for comprehensive analysis. Our research focused on assessing mechanical properties and micro-pore characteristics under different loading orientations.Our findings reveal that increasing the overlap degree between strips leads to enhanced mechanical properties of the strips. However, it's noteworthy that once full overlap is achieved, further increases in the degree of coincidence do not lead to a decrease in porosity between strips. Additionally, due to its superior printing cross-sectional area, the square printing head exhibited the most favorable impact on mechanical properties.This paper aims to improve the tensile strength, tensile ductility, and bending toughness of a recently developed ‘one-part’ geopolymer for 3D concrete printing (3DCP) applications, in order to address the insufficient tensile strength and brittle fracture characteristics of geopolymer materials in 3D printing scenarios where materials are subjected to tensile stress. The effects of steel fiber content, and aspect ratio, on mechanical properties, were systematically discussed, including compressive strength, flexure strength, splitting tensile strength, uniaxial tensile strength, bending toughness, and the anisotropy of 3DP-OPGFRC, respectively. The fiber distribution in the printed samples was obtained through x-ray computed tomography (X-CT) testing. In addition, the underlying mechanisms were discussed to provide a deep understanding of the role steel fiber played in the reinforcement. The experimental results showed that the flexural strength increased by 282% to 26.1MP, and the compressive strength also reached 104.5Mpa. A high tensile ductility, appreciable bending toughness, and strain-hardening behavior can be achieved with steel fiber incorporation. In addition, it has an advantage over the OPC-based steel fiber-reinforced 3D printing materials given in the existing literature (flexural strength 15 Mpa); It is also superior to the tensile strength (<6Mpa) of current geopolymer fiber reinforcements used for 3D printing. It is anticipated that the development of this 3D printable steel fiber reinforced ‘one-part’ geopolymer will be used to meet high tensile strength requirements for printing scenarios.

Keywords: 3D printing concrete, mechanical anisotropy, micro-pore structure, printing technology

Procedia PDF Downloads 67
4115 Characterization of an Ecological Mortar Lightweight With Polystyrene

Authors: Aidoud Assia, Bencheikh Messaouda, Boukour Salima

Abstract:

Polystyrene is often seen in the ocean and on Algerian beaches, mainly as food containers. It's one of the top 10 most common items found there. This happens because it's light and easily carried away from its original source, like packaging or transport, into the environment. Unfortunately, it's not recycled much because it's not very profitable to do so. Hence, turning this waste into a resource can turn challenges into opportunities for a territory's economic and environmental development, which is the focus of this study. the goal is to analyze the physical and mechanical properties of a new type of mortar made from dune sand mixed with recycled polystyrene. it also aim to assess its potential for use in various construction applications. The mixtures were prepared by replacing portions of dune sand with polystyrene waste at varying volumes (10%, 20%, and 30%), while keeping the amount of cement constant. The results indicate a noticeable impact on both the physical and mechanical properties because of incorporating polystyrene waste.

Keywords: polystyrène, eco-mortier, sable de dune, résistance

Procedia PDF Downloads 32
4114 Mechanical Characteristics on Fatigue Crack Propagation in Aluminum Plate

Authors: A. Chellil, A. Nour, S. Lecheb , H. Mechakra, L. Addar, H. Kebir

Abstract:

This paper present a mechanical characteristics on fatigue crack propagation in Aluminium Plate based on strain and stress distribution using the abaqus software. The changes in shear strain and stress distribution during the fatigue cycle with crack growth is identified. In progressive crack in the strain distribution and the stress is increase in the critical zone. Numerical Modal analysis of the model developed, prove that the Eigen frequencies of aluminium plate were decreased after cracking, and this reduce is nonlinear. These results can provide a reference for analysts and designers of aluminium alloys in aeronautical systems. Therefore, the modal analysis is an important factor for monitoring the aeronautic structures.

Keywords: aluminum alloys, plate, crack, failure

Procedia PDF Downloads 421
4113 Numerical Investigation on Design Method of Timber Structures Exposed to Parametric Fire

Authors: Robert Pečenko, Karin Tomažič, Igor Planinc, Sabina Huč, Tomaž Hozjan

Abstract:

Timber is favourable structural material due to high strength to weight ratio, recycling possibilities, and green credentials. Despite being flammable material, it has relatively high fire resistance. Everyday engineering practice around the word is based on an outdated design of timber structures considering standard fire exposure, while modern principles of performance-based design enable use of advanced non-standard fire curves. In Europe, standard for fire design of timber structures EN 1995-1-2 (Eurocode 5) gives two methods, reduced material properties method and reduced cross-section method. In the latter, fire resistance of structural elements depends on the effective cross-section that is a residual cross-section of uncharred timber reduced additionally by so called zero strength layer. In case of standard fire exposure, Eurocode 5 gives a fixed value of zero strength layer, i.e. 7 mm, while for non-standard parametric fires no additional comments or recommendations for zero strength layer are given. Thus designers often implement adopted 7 mm rule also for parametric fire exposure. Since the latest scientific evidence suggests that proposed value of zero strength layer can be on unsafe side for standard fire exposure, its use in the case of a parametric fire is also highly questionable and more numerical and experimental research in this field is needed. Therefore, the purpose of the presented study is to use advanced calculation methods to investigate the thickness of zero strength layer and parametric charring rates used in effective cross-section method in case of parametric fire. Parametric studies are carried out on a simple solid timber beam that is exposed to a larger number of parametric fire curves Zero strength layer and charring rates are determined based on the numerical simulations which are performed by the recently developed advanced two step computational model. The first step comprises of hygro-thermal model which predicts the temperature, moisture and char depth development and takes into account different initial moisture states of timber. In the second step, the response of timber beam simultaneously exposed to mechanical and fire load is determined. The mechanical model is based on the Reissner’s kinematically exact beam model and accounts for the membrane, shear and flexural deformations of the beam. Further on, material non-linear and temperature dependent behaviour is considered. In the two step model, the char front temperature is, according to Eurocode 5, assumed to have a fixed temperature of around 300°C. Based on performed study and observations, improved levels of charring rates and new thickness of zero strength layer in case of parametric fires are determined. Thus, the reduced cross section method is substantially improved to offer practical recommendations for designing fire resistance of timber structures. Furthermore, correlations between zero strength layer thickness and key input parameters of the parametric fire curve (for instance, opening factor, fire load, etc.) are given, representing a guideline for a more detailed numerical and also experimental research in the future.

Keywords: advanced numerical modelling, parametric fire exposure, timber structures, zero strength layer

Procedia PDF Downloads 156
4112 Polymer-Ceramic Composite Film Fabrication and Characterization for Harsh Environment Applications

Authors: Santiranjan Shannigrahi, Mohit Sharma, Ivan Tan Chee Kiang, Yong Anna Marie

Abstract:

Polymer-ceramics composites are gaining importance due to their high specific strength, corrosion resistance, and high mechanical properties, as well as low cost. As a result, polymer composites are suitable for various industrial applications, like automobiles, aerospace, and biomedical areas. The present work comprises the development of polymer-ceramic composite films and is tested for the harsh environment including weatherability and UV barrier property. The polymer composite films are kept in weather chamber for a fixed period of time followed by tested for their physical, mechanical and chemical properties. The composite films are fabricated using compounding followed by hot pressing. UV-visible spectroscopy results reveal that the pure polymer polyethylene (PE) films are transparent in the visible range and do not absorb UV. However, polymer ceramic composite films start absorbing UV completely even at very low filler loading amount of 5 wt.%. The changes in tensile properties of the various composite films before and after UV illuminations for 40 hrs at 60 degC are analyzed. The tensile strength of neat PE film has been observed 8% reduction, whereas the remarkable increase in tensile strength has been observed (18% improvement for 10 wt. % filled composites films). The UV exposure leads to strengthen the crosslinking among PE polymer chains in the filled composite films, which contributes towards the incremented tensile strength properties.

Keywords: polymer ceramic composite, processing, harsh environment, mechanical properties

Procedia PDF Downloads 372
4111 Study Properties of Bamboo Composite after Treatment Surface by Chemical Method

Authors: Kiatnarong Supapanmanee, Ekkarin Phongphinittana, Pongsak Nimdum

Abstract:

Natural fibers are readily available raw materials that are widely used as composite materials. The most common problem facing many researchers with composites made from this fiber is the adhesion between the natural fiber contact surface and the matrix material. Part of the problem is due to the hydrophilic properties of natural fibers and the hydrophobic properties of the matrix material. Based on the aforementioned problems, this research selected bamboo fiber, which is a strong natural fiber in the research study. The first step was to study the effect of the mechanical properties of the pure bamboo strip by testing the tensile strength of different measurement lengths. The bamboo strip was modified surface with sodium hydroxide (NaOH) at 6wt% concentrations for different soaking periods. After surface modification, the physical and mechanical properties of the pure bamboo strip fibers were studied. The modified and unmodified bamboo strips were molded into a composite material using epoxy as a matrix to compare the mechanical properties and adhesion between the fiber surface and the material with tensile and bending tests. In addition, the results of these tests were compared with the finite element method (FEM). The results showed that the length of the bamboo strip affects the strength of the fibers, with shorter fibers causing higher tensile stress. Effects of surface modification of bamboo strip with NaOH, this chemical eliminates lignin and hemicellulose, resulting in the smaller dimension of the bamboo strip and increased density. From the pretreatment results above, it was found that the treated bamboo strip and composite material had better Ultimate tensile stress and Young's modulus. Moreover, that results in better adhesion between bamboo fiber and matrix material.

Keywords: bamboo fiber, bamboo strip, composite material, bamboo composite, pure bamboo, surface modification, mechanical properties of bamboo, bamboo finite element method

Procedia PDF Downloads 79
4110 The Investigation of Niobium Addition on Mechanical Properties of Al11Si alloy

Authors: Kerem Can Dizdar, Semih Ateş, Ozan Güler, Gökhan Basman, Derya Dışpınar, Cevat Fahir Arısoy

Abstract:

Grain refinement and obtaining homogeneous microstructure is the key parameter in casting of aluminum alloys. Ti has been traditionally used as grain refiner, however, inconsistency and heterogeneous dendrite arms, as well as fading efficiency, have been the drawbacks of Ti. Alternatively, Nb (Niobium) has gained attention. In this work, the effect of Nb was investigated in case of both as cast and T6 heat treated conditions. Different ratios of Nb (0.0, 0.03, 0.05, 0.07, 0.1 weight%) were added to AlSi11 alloy, mechanical properties were examined statistically, and relationship was established between microstructure and mechanical properties by examining the grain size and dendrite characteristics before and after heat treatment. Results indicate that in the case of as cast state; with the increasing addition of Nb has no significant effect on yield strength, however, it increases the tensile strength and elongation starting with 0.05wt% ratio, and it remains constant up to 0.1wt%. For the heat-treated condition; Nb addition provides increment at yield strength and tensile strength up to 0.05wt%, but it leads to decrementfrom 0.05 to 0.1wt%. The opposite is valid for the elongation; It decreases in between 0-0.05wt% then rises in range of 0.05-0.1wt%. Highest yield strength and ultimate tensile strength were found T6 heat treated 0.05wt% Nb addition. 0.05wt% was found as critical Nbaddition ratio for mechanical properties of Al-11Si alloys. Grain refinement and obtaining homogeneous microstructure is the key parameter in casting of aluminum alloys. Ti has been traditionally used as grain refiner, however, inconsistency and heterogeneous dendrite arms, as well as fading efficiency, have been the drawbacks of Ti. Alternatively, Nb (Niobium) has gained attention. In this work, the effect of Nb was investigated in case of both as cast and T6 heat treated conditions. Different ratios of Nb (0.0, 0.03, 0.05, 0.07, 0.1 weight%) were added to AlSi11 alloy, mechanical properties were examined statistically, and relationship was established between microstructure and mechanical properties by examining the grain size and dendrite characteristics before and after heat treatment. Results indicate that in the case of as cast state; with the increasing addition of Nb has no significant effect on yield strength, however, it increases the tensile strength and elongation starting with 0.05wt% ratio, and it remains constant up to 0.1wt%. For the heat-treated condition; Nb addition provides increment at yield strength and tensile strength up to 0.05wt%, but it leads to decrement from 0.05 to 0.1wt%. The opposite is valid for the elongation; It decreases in between 0-0.05wt% then rises in range of 0.05-0.1wt%. Highest yield strength and ultimate tensile strength were found T6 heat treated 0.05wt% Nb addition. 0.05wt% was found as critical Nbaddition ratio for mechanical properties of Al-11Si alloys.

Keywords: al-si alloy, grain refinement, heat treatment, mechanical properties, microstructure, niobium, sand casting

Procedia PDF Downloads 140
4109 A Flexible Piezoelectric - Polymer Composite for Non-Invasive Detection of Multiple Vital Signs of Human

Authors: Sarah Pasala, Elizabeth Zacharias

Abstract:

Vital sign monitoring is crucial for both everyday health and medical diagnosis. A significant factor in assessing a human's health is their vital signs, which include heart rate, breathing rate, blood pressure, and electrocardiogram (ECG) readings. Vital sign monitoring has been the focus of many system and method innovations recently. Piezoelectrics are materials that convert mechanical energy into electrical energy and can be used for vital sign monitoring. Piezoelectric energy harvesters that are stretchable and flexible can detect very low frequencies like airflow, heartbeat, etc. Current advancements in piezoelectric materials and flexible sensors have made it possible to create wearable and implantable medical devices that can continuously monitor physiological signals in humans. But because of their non-biocompatible nature, they also produce a large amount of e-waste and require another surgery to remove the implant. This paper presents a biocompatible and flexible piezoelectric composite material for wearable and implantable devices that offers a high-performance platform for seamless and continuous monitoring of human physiological signals and tactile stimuli. It also addresses the issue of e-waste and secondary surgery. A Lead-free piezoelectric, SrBi4Ti4O15, is found to be suitable for this application because the properties can be tailored by suitable substitutions and also by varying the synthesis temperature protocols. In the present work, SrBi4Ti4O15 modified by rare-earth has been synthesized and studied. Coupling factors are calculated from resonant (fr) and anti-resonant frequencies (fa). It is observed that Samarium substitution in SBT has increased the Curie temperature, dielectric and piezoelectric properties. From impedance spectroscopy studies, relaxation, and non-Debye type behaviour are observed. The composite of bioresorbable poly(l-lactide) and Lead-free rare earth modified Bismuth Layered Ferroelectrics leads to a flexible piezoelectric device for non-invasive measurement of vital signs, such as heart rate, breathing rate, blood pressure, and electrocardiogram (ECG) readings and also artery pulse signals in near-surface arteries. These composites are suitable to detect slight movement of the muscles and joints. This Lead-free rare earth modified Bismuth Layered Ferroelectrics – polymer composite is synthesized using a ball mill and the solid-state double sintering method. XRD studies indicated the two phases in the composite. SEM studies revealed the grain size to be uniform and in the range of 100 nm. The electromechanical coupling factor is improved. The elastic constants are calculated and the mechanical flexibility is found to be improved as compared to the single-phase rare earth modified Bismuth Latered piezoelectric. The results indicate that this composite is suitable for the non-invasive detection of multiple vital signs of humans.

Keywords: composites, flexible, non-invasive, piezoelectric

Procedia PDF Downloads 24