Search results for: defect prediction
1368 Proactive Pure Handoff Model with SAW-TOPSIS Selection and Time Series Predict
Authors: Harold Vásquez, Cesar Hernández, Ingrid Páez
Abstract:
This paper approach cognitive radio technic and applied pure proactive handoff Model to decrease interference between PU and SU and comparing it with reactive handoff model. Through the study and analysis of multivariate models SAW and TOPSIS join to 3 dynamic prediction techniques AR, MA ,and ARMA. To evaluate the best model is taken four metrics: number failed handoff, number handoff, number predictions, and number interference. The result presented the advantages using this type of pure proactive models to predict changes in the PU according to the selected channel and reduce interference. The model showed better performance was TOPSIS-MA, although TOPSIS-AR had a higher predictive ability this was not reflected in the interference reduction.Keywords: cognitive radio, spectrum handoff, decision making, time series, wireless networks
Procedia PDF Downloads 4881367 Investigating the Demand of Short-Shelf Life Food Products for SME Wholesalers
Authors: Yamini Raju, Parminder S. Kang, Adam Moroz, Ross Clement, Alistair Duffy, Ashley Hopwell
Abstract:
Accurate prediction of fresh produce demand is one the challenges faced by Small Medium Enterprise (SME) wholesalers. Current research in this area focused on limited number of factors specific to a single product or a business type. This paper gives an overview of the current literature on the variability factors used to predict demand and the existing forecasting techniques of short shelf life products. It then extends it by adding new factors and investigating if there is a time lag and possibility of noise in the orders. It also identifies the most important factors using correlation and Principal Component Analysis (PCA).Keywords: demand forecasting, deteriorating products, food wholesalers, principal component analysis, variability factors
Procedia PDF Downloads 5201366 The Influence of Chevron Angle on Plate Heat Exchanger Thermal Performance with Considering Maldistribution
Authors: Hossein Shokouhmand, Majid Hasanpour
Abstract:
A new modification to the Strelow method of chevron-type plate heat exchangers (PHX) modeling is proposed. The effects of maldistribution are accounted in the resulting equation. The results of calculations are validated by reported experiences. The good accuracy of heat transfer performance prediction is shown. The results indicate that considering flow maldistribution improve the accuracy of predicting the flow and thermal behavior of the plate exchanger. Additionally, a wide range of the parametric study has been presented which brings out the effects of chevron angle of PHE on its thermal efficiency with considering maldistribution effect. In addition, the thermally optimal corrugation discussed for the chevron-type PHEs.Keywords: chevron angle, plate heat exchangers, maldistribution, strelow method
Procedia PDF Downloads 1901365 A General Strategy for Noise Assessment in Open Mining Industries
Authors: Diego Mauricio Murillo Gomez, Enney Leon Gonzalez Ramirez, Hugo Piedrahita, Jairo Yate
Abstract:
This paper proposes a methodology for the management of noise in open mining industries based on an integral concept, which takes into consideration occupational and environmental noise as a whole. The approach relies on the characterization of sources, the combination of several measurements’ techniques and the use of acoustic prediction software. A discussion about the difference between frequently used acoustic indicators such as Leq and LAV is carried out, aiming to establish common ground for homologation. The results show that the correct integration of this data not only allows for a more robust technical analysis but also for a more strategic route of intervention as several departments of the company are working together. Noise control measurements can be designed to provide a healthy acoustic surrounding in which the exposure workers but also the outdoor community is benefited.Keywords: environmental noise, noise control, occupational noise, open mining
Procedia PDF Downloads 2691364 A Tutorial on Model Predictive Control for Spacecraft Maneuvering Problem with Theory, Experimentation and Applications
Authors: O. B. Iskender, K. V. Ling, V. Dubanchet, L. Simonini
Abstract:
This paper discusses the recent advances and future prospects of spacecraft position and attitude control using Model Predictive Control (MPC). First, the challenges of the space missions are summarized, in particular, taking into account the errors, uncertainties, and constraints imposed by the mission, spacecraft and, onboard processing capabilities. The summary of space mission errors and uncertainties provided in categories; initial condition errors, unmodeled disturbances, sensor, and actuator errors. These previous constraints are classified into two categories: physical and geometric constraints. Last, real-time implementation capability is discussed regarding the required computation time and the impact of sensor and actuator errors based on the Hardware-In-The-Loop (HIL) experiments. The rationales behind the scenarios’ are also presented in the scope of space applications as formation flying, attitude control, rendezvous and docking, rover steering, and precision landing. The objectives of these missions are explained, and the generic constrained MPC problem formulations are summarized. Three key design elements used in MPC design: the prediction model, the constraints formulation and the objective cost function are discussed. The prediction models can be linear time invariant or time varying depending on the geometry of the orbit, whether it is circular or elliptic. The constraints can be given as linear inequalities for input or output constraints, which can be written in the same form. Moreover, the recent convexification techniques for the non-convex geometrical constraints (i.e., plume impingement, Field-of-View (FOV)) are presented in detail. Next, different objectives are provided in a mathematical framework and explained accordingly. Thirdly, because MPC implementation relies on finding in real-time the solution to constrained optimization problems, computational aspects are also examined. In particular, high-speed implementation capabilities and HIL challenges are presented towards representative space avionics. This covers an analysis of future space processors as well as the requirements of sensors and actuators on the HIL experiments outputs. The HIL tests are investigated for kinematic and dynamic tests where robotic arms and floating robots are used respectively. Eventually, the proposed algorithms and experimental setups are introduced and compared with the authors' previous work and future plans. The paper concludes with a conjecture that MPC paradigm is a promising framework at the crossroads of space applications while could be further advanced based on the challenges mentioned throughout the paper and the unaddressed gap.Keywords: convex optimization, model predictive control, rendezvous and docking, spacecraft autonomy
Procedia PDF Downloads 1101363 Biological Optimization following BM-MSC Seeding of Partially Demineralized and Partially Demineralized Laser-Perforated Structural Bone Allografts Implanted in Critical Femoral Defects
Authors: S. AliReza Mirghasemi, Zameer Hussain, Mohammad Saleh Sadeghi, Narges Rahimi Gabaran, Mohamadreza Baghaban Eslaminejad
Abstract:
Background: Despite promising results have shown by osteogenic cell-based demineralized bone matrix composites, they need to be optimized for grafts that act as structural frameworks in load-bearing defects. The purpose of this experiment is to determine the effect of bone-marrow-mesenchymal-stem-cells seeding on partially demineralized laser-perforated structural allografts that have been implanted in critical femoral defects. Materials and Methods: P3 stem cells were used for graft seeding. Laser perforation in four rows of three holes was achieved. Cell-seeded grafts were incubated for one hour until they were planted into the defect. We used four types of grafts: partially demineralized only (Donly), partially demineralized stem cell seeded (DST), partially demineralized laser-perforated (DLP), and partially demineralized laser-perforated stem cell seeded (DLPST). histologic and histomorphometric analysis were performed at 12 weeks. Results: Partially demineralized laser-perforated had the highest woven bone formation within graft limits, stem cell seeded demineralized laser-perforated remained intact, and the difference between partially demineralized only and partially demineralized stem cell seeded was insignificant. At interface, partially demineralized laser-perforated and partially demineralized only had comparable osteogenesis, but partially demineralized stem cell seeded was inferior. The interface in stem cell seeded demineralized laser-perforated was almost replaced by distinct endochondral osteogenesis with higher angiogenesis in the vicinity. Partially demineralized stem cell seeded and stem cell seeded demineralized laser-perforated graft surfaces had extra vessel-ingrowth-like porosities, a sign of delayed resorption. Conclusion: This demonstrates that simple cell-based composites are not optimal and necessitates the supplementation of synergistic stipulations and surface changes.Keywords: structural bone allograft, partial demineralization, laser perforation, mesenchymal stem cell
Procedia PDF Downloads 4141362 Simulation of Piezoelectric Laminated Smart Structure under Strong Electric Field
Authors: Shun-Qi Zhang, Shu-Yang Zhang, Min Chen
Abstract:
Applying strong electric field on piezoelectric actuators, on one hand very significant electroelastic material nonlinear effects will occur, on the other hand piezo plates and shells may undergo large displacements and rotations. In order to give a precise prediction of piezolaminated smart structures under large electric field, this paper develops a finite element (FE) model accounting for both electroelastic material nonlinearity and geometric nonlinearity with large rotations based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is applied to analyze a piezolaminated semicircular shell structure.Keywords: smart structures, piezolamintes, material nonlinearity, strong electric field
Procedia PDF Downloads 4271361 Energy Models for Analyzing the Economic Wide Impact of the Environmental Policies
Authors: Majdi M. Alomari, Nafesah I. Alshdaifat, Mohammad S. Widyan
Abstract:
Different countries have introduced different schemes and policies to counter global warming. The rationale behind the proposed policies and the potential barriers to successful implementation of the policies adopted by the countries were analyzed and estimated based on different models. It is argued that these models enhance the transparency and provide a better understanding to the policy makers. However, these models are underpinned with several structural and baseline assumptions. These assumptions, modeling features and future prediction of emission reductions and other implication such as cost and benefits of a transition to a low-carbon economy and its economy wide impacts were discussed. On the other hand, there are potential barriers in the form political, financial, and cultural and many others that pose a threat to the mitigation options.Keywords: energy models, environmental policy instruments, mitigating CO2 emission, economic wide impact
Procedia PDF Downloads 5241360 Prediction of the Performance of a Bar-Type Piezoelectric Vibration Actuator Depending on the Frequency Using an Equivalent Circuit Analysis
Authors: J. H. Kim, J. H. Kwon, J. S. Park, K. J. Lim
Abstract:
This paper has investigated a technique that predicts the performance of a bar-type unimorph piezoelectric vibration actuator depending on the frequency. This paper has been proposed an equivalent circuit that can be easily analyzed for the bar-type unimorph piezoelectric vibration actuator. In the dynamic analysis, rigidity and resonance frequency, which are important mechanical elements, were derived using the basic beam theory. In the equivalent circuit analysis, the displacement and bandwidth of the piezoelectric vibration actuator depending on the frequency were predicted. Also, for the reliability of the derived equations, the predicted performance depending on the shape change was compared with the result of a finite element analysis program.Keywords: actuator, piezoelectric, performance, unimorph
Procedia PDF Downloads 4641359 Predictive Semi-Empirical NOx Model for Diesel Engine
Authors: Saurabh Sharma, Yong Sun, Bruce Vernham
Abstract:
Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model. Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.Keywords: diesel engine, machine learning, NOₓ emission, semi-empirical
Procedia PDF Downloads 1141358 The Effect of Particle Porosity in Mixed Matrix Membrane Permeation Models
Authors: Z. Sadeghi, M. R. Omidkhah, M. E. Masoomi
Abstract:
The purpose of this paper is to examine gas transport behavior of mixed matrix membranes (MMMs) combined with porous particles. Main existing models are categorized in two main groups; two-phase (ideal contact) and three-phase (non-ideal contact). A new coefficient, J, was obtained to express equations for estimating effect of the particle porosity in two-phase and three-phase models. Modified models evaluates with existing models and experimental data using Matlab software. Comparison of gas permeability of proposed modified models with existing models in different MMMs shows a better prediction of gas permeability in MMMs.Keywords: mixed matrix membrane, permeation models, porous particles, porosity
Procedia PDF Downloads 3851357 Non-Homogeneous Layered Fiber Reinforced Concrete
Authors: Vitalijs Lusis, Andrejs Krasnikovs
Abstract:
Fiber reinforced concrete is important material for load bearing structural elements. Usually fibers are homogeneously distributed in a concrete body having arbitrary spatial orientations. At the same time, in many situations, fiber concrete with oriented fibers is more optimal. Is obvious, that is possible to create constructions with oriented short fibers in them, in different ways. Present research is devoted to one of such approaches- fiber reinforced concrete prisms having dimensions 100 mm×100 mm×400 mm with layers of non-homogeneously distributed fibers inside them were fabricated. Simultaneously prisms with homogeneously dispersed fibers were produced for reference as well. Prisms were tested under four point bending conditions. During the tests vertical deflection at the center of every prism and crack opening were measured (using linear displacements transducers in real timescale). Prediction results were discussed.Keywords: fiber reinforced concrete, 4-point bending, steel fiber, construction engineering
Procedia PDF Downloads 3671356 DFT and SCAPS Analysis of an Efficient Lead-Free Inorganic CsSnI₃ Based Perovskite Solar Cell by Modification of Hole Transporting Layer
Authors: Seyedeh Mozhgan Seyed Talebi, Chih -Hao Lee
Abstract:
With an abrupt rise in the power conservation efficiency (PCE) of perovskite solar cells (PSCs) within a short span of time, the toxicity of lead was raised as a major hurdle in the path toward their commercialization. In the present research, a systematic investigation of the electrical and optical characteristics of the all-inorganic CsSnI₃ perovskite absorber layer was performed with the Vienna Ab Initio Simulation Package (VASP) using the projector-augmented wave method. The presence of inorganic halide perovskite offers the advantages of enhancing the degradation resistance of the device, reducing the cost of cells, and minimizing the recombination of generated carriers. The simulated standard device using a 1D simulator like solar cell capacitance simulator (SCAPS) version 3308 involves FTO/n-TiO₂/CsSnI₃ Perovskite absorber/Spiro OmeTAD HTL/Au contact layer. The variation in the device design key parameters such as the thickness and defect density of perovskite absorber, hole transport layer and electron transport layer and interfacial defects are examined with their impact on the photovoltaic characteristic parameters. The effect of an increase in operating temperature from 300 K to 400 K on the performance of CsSnI3-based perovskite devices is also investigated. The optimized standard device at room temperature shows the highest PCE of 25.18 % with FF of 75.71 %, Voc of 0.96 V, and Jsc of 34.67 mA/cm². The outcomes and interpretation of different inorganic Cu-based HTLs presence, such as CuSCN, Cu₂O, CuO, CuI, SrCu₂O₂, and CuSbS₂, here represent a critical avenue for the possibility of fabricating high PCE perovskite devices made of stable, low-cost, efficient, safe, and eco-friendly all-inorganic materials like CsSnI₃ perovskite light absorber.Keywords: CsSnI₃, hole transporting layer (HTL), lead-free perovskite solar cell, SCAPS-1D software
Procedia PDF Downloads 871355 Prediction of Unsaturated Permeability Functions for Clayey Soil
Authors: F. Louati, H. Trabelsi, M. Jamei
Abstract:
Desiccation cracks following drainage-humidification cycles. With water loss, mainly due to evaporation, suction in the soil increases, producing volumetric shrinkage and tensile stress. When the tensile stress reaches tensile strength, the soil cracks. Desiccation cracks networks can directly control soil hydraulic properties. The aim of this study was for quantifying the hydraulic properties for examples the water retention curve, the saturated hydraulic conductivity, the unsaturated hydraulic conductivity function, the shrinkage dynamics in Tibar soil- clay soil in the Northern of Tunisia. Then a numerical simulation of unsaturated hydraulic properties for a crack network has been attempted. The finite elements code ‘CODE_BRIGHT’ can be used to follow the hydraulic distribution in cracked porous media.Keywords: desiccation, cracks, permeability, unsaturated hydraulic flow, simulation
Procedia PDF Downloads 3001354 Simulations of a Jet Impinging on a Flat Plate
Authors: Reda Mankbadi
Abstract:
In this paper we explore the use of a second-order unstructured-grid, finite-volume code for direct noise prediction. We consider a Mach 1.5 jet impinging on a perpendicular flat plate. Hybrid LES-RANS simulations are used to calculate directly both the flow field and the radiated sound. The ANSYS Fluent commercial code is utilized for the calculations. The acoustic field is obtained directly from the simulations and is compared with the integral approach of Ffowcs Williams-Hawkings (FWH). Results indicate the existence of a preferred radiation angle. The spectrum obtained is in good agreement with observations. This points out to the possibility of handling the effects of complicated geometries on noise radiation by using unstructured second-orders codes.Keywords: CFD, Ffowcs Williams-Hawkings (FWH), imping jet, ANSYS fluent commercial code, hybrid LES-RANS simulations
Procedia PDF Downloads 4531353 Predictive Pathogen Biology: Genome-Based Prediction of Pathogenic Potential and Countermeasures Targets
Authors: Debjit Ray
Abstract:
Horizontal gene transfer (HGT) and recombination leads to the emergence of bacterial antibiotic resistance and pathogenic traits. HGT events can be identified by comparing a large number of fully sequenced genomes across a species or genus, define the phylogenetic range of HGT, and find potential sources of new resistance genes. In-depth comparative phylogenomics can also identify subtle genome or plasmid structural changes or mutations associated with phenotypic changes. Comparative phylogenomics requires that accurately sequenced, complete and properly annotated genomes of the organism. Assembling closed genomes requires additional mate-pair reads or “long read” sequencing data to accompany short-read paired-end data. To bring down the cost and time required of producing assembled genomes and annotating genome features that inform drug resistance and pathogenicity, we are analyzing the performance for genome assembly of data from the Illumina NextSeq, which has faster throughput than the Illumina HiSeq (~1-2 days versus ~1 week), and shorter reads (150bp paired-end versus 300bp paired end) but higher capacity (150-400M reads per run versus ~5-15M) compared to the Illumina MiSeq. Bioinformatics improvements are also needed to make rapid, routine production of complete genomes a reality. Modern assemblers such as SPAdes 3.6.0 running on a standard Linux blade are capable in a few hours of converting mixes of reads from different library preps into high-quality assemblies with only a few gaps. Remaining breaks in scaffolds are generally due to repeats (e.g., rRNA genes) are addressed by our software for gap closure techniques, that avoid custom PCR or targeted sequencing. Our goal is to improve the understanding of emergence of pathogenesis using sequencing, comparative genomics, and machine learning analysis of ~1000 pathogen genomes. Machine learning algorithms will be used to digest the diverse features (change in virulence genes, recombination, horizontal gene transfer, patient diagnostics). Temporal data and evolutionary models can thus determine whether the origin of a particular isolate is likely to have been from the environment (could it have evolved from previous isolates). It can be useful for comparing differences in virulence along or across the tree. More intriguing, it can test whether there is a direction to virulence strength. This would open new avenues in the prediction of uncharacterized clinical bugs and multidrug resistance evolution and pathogen emergence.Keywords: genomics, pathogens, genome assembly, superbugs
Procedia PDF Downloads 1971352 Comparison of Tribological and Mechanical Properties of White Metal Produced by Laser Cladding and Conventional Methods
Authors: Jae-Il Jeong, Hoon-Jae Park, Jung-Woo Cho, Yang-Gon Kim, Jin-Young Park, Joo-Young Oh, Si-Geun Choi, Seock-Sam Kim, Young Tae Cho, Chan Gyu Kim, Jong-Hyoung Kim
Abstract:
Bearing component has strongly required to decrease vibration and wear to achieve high durability and life time. In the industry field, bearing durability is improved by surface treatment on the bearing surface by centrifugal casting or gravity casting production method. However, this manufacturing method has caused problems such as long processing time, defect rate, and health harmful effect. To solve this problem, there is a laser cladding deposition treatment, which provides fast processing and food adhesion. Therefore, optimum conditions of white metal laser deposition should be studied to minimize bearing contact axis wear using laser cladding techniques. In this study, we deposit a soft white metal layer on SCM440, which is mainly used for shaft and bolt. On laser deposition process, the laser power and powder feed rate and laser head speed factors are controlled to find out the optimal conditions. We also measure hardness using micro Vickers, analyze FE-SEM (Field Emission Scanning Electron Microscope) and EDS (Energy Dispersive Spectroscopy) to study the mechanical properties and surface characteristics with various parameters change. Furthermore, this paper suggests the optimum condition of laser cladding deposition to apply in industrial fields. This work was supported by the Industrial Innovation Project of the Korea Evaluation Institute of Industrial Technology (KEIT) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (Research no. 10051653).Keywords: laser deposition, bearing, white metal, mechanical properties
Procedia PDF Downloads 2641351 Modeling and Simulation for 3D Eddy Current Testing in Conducting Materials
Authors: S. Bennoud, M. Zergoug
Abstract:
The numerical simulation of electromagnetic interactions is still a challenging problem, especially in problems that result in fully three dimensional mathematical models. The goal of this work is to use mathematical modeling to characterize the reliability and capacity of eddy current technique to detect and characterize defects embedded in aeronautical in-service pieces. The finite element method is used for describing the eddy current technique in a mathematical model by the prediction of the eddy current interaction with defects. However, this model is an approximation of the full Maxwell equations. In this study, the analysis of the problem is based on a three dimensional finite element model that computes directly the electromagnetic field distortions due to defects.Keywords: eddy current, finite element method, non destructive testing, numerical simulations
Procedia PDF Downloads 4431350 Measurement and Prediction of Speed of Sound in Petroleum Fluids
Authors: S. Ghafoori, A. Al-Harbi, B. Al-Ajmi, A. Al-Shaalan, A. Al-Ajmi, M. Ali Juma
Abstract:
Seismic methods play an important role in the exploration for hydrocarbon reservoirs. However, the success of the method depends strongly on the reliability of the measured or predicted information regarding the velocity of sound in the media. Speed of sound has been used to study the thermodynamic properties of fluids. In this study, experimental data are reported and analyzed on the speed of sound in toluene and octane binary mixture. Three-factor three-level Box-Benhkam design is used to determine the significance of each factor, the synergetic effects of the factors, and the most significant factors on speed of sound. The developed mathematical model and statistical analysis provided a critical analysis of the simultaneous interactive effects of the independent variables indicating that the developed quadratic models were highly accurate and predictive.Keywords: experimental design, octane, speed of sound, toluene
Procedia PDF Downloads 2761349 A Numerical Studies for Improving the Performance of Vertical Axis Wind Turbine by a Wind Power Tower
Authors: Soo-Yong Cho, Chong-Hyun Cho, Chae-Whan Rim, Sang-Kyu Choi, Jin-Gyun Kim, Ju-Seok Nam
Abstract:
Recently, vertical axis wind turbines (VAWT) have been widely used to produce electricity even in urban. They have several merits such as low sound noise, easy installation of the generator and simple structure without yaw-control mechanism and so on. However, their blades are operated under the influence of the trailing vortices generated by the preceding blades. This phenomenon deteriorates its output power and makes difficulty predicting correctly its performance. In order to improve the performance of VAWT, wind power towers can be applied. Usually, the wind power tower can be constructed as a multi-story building to increase the frontal area of the wind stream. Hence, multiple sets of the VAWT can be installed within the wind power tower, and they can be operated at high elevation. Many different types of wind power tower can be used in the field. In this study, a wind power tower with circular column shape was applied, and the VAWT was installed at the center of the wind power tower. Seven guide walls were used as a strut between the floors of the wind power tower. These guide walls were utilized not only to increase the wind velocity within the wind power tower but also to adjust the wind direction for making a better working condition on the VAWT. Hence, some important design variables, such as the distance between the wind turbine and the guide wall, the outer diameter of the wind power tower, the direction of the guide wall against the wind direction, should be considered to enhance the output power on the VAWT. A numerical analysis was conducted to find the optimum dimension on design variables by using the computational fluid dynamics (CFD) among many prediction methods. The CFD could be an accurate prediction method compared with the stream-tube methods. In order to obtain the accurate results in the CFD, it needs the transient analysis and the full three-dimensional (3-D) computation. However, this full 3-D CFD could be hard to be a practical tool because it requires huge computation time. Therefore, the reduced computational domain is applied as a practical method. In this study, the computations were conducted in the reduced computational domain and they were compared with the experimental results in the literature. It was examined the mechanism of the difference between the experimental results and the computational results. The computed results showed this computational method could be an effective method in the design methodology using the optimization algorithm. After validation of the numerical method, the CFD on the wind power tower was conducted with the important design variables affecting the performance of VAWT. The results showed that the output power of the VAWT obtained using the wind power tower was increased compared to them obtained without the wind power tower. In addition, they showed that the increased output power on the wind turbine depended greatly on the dimension of the guide wall.Keywords: CFD, performance, VAWT, wind power tower
Procedia PDF Downloads 3871348 Using AI to Advance Factory Planning: A Case Study to Identify Success Factors of Implementing an AI-Based Demand Planning Solution
Authors: Ulrike Dowie, Ralph Grothmann
Abstract:
Rational planning decisions are based upon forecasts. Precise forecasting has, therefore, a central role in business. The prediction of customer demand is a prime example. This paper introduces recurrent neural networks to model customer demand and combines the forecast with uncertainty measures to derive decision support of the demand planning department. It identifies and describes the keys to the successful implementation of an AI-based solution: bringing together data with business knowledge, AI methods, and user experience, and applying agile software development practices.Keywords: agile software development, AI project success factors, deep learning, demand forecasting, forecast uncertainty, neural networks, supply chain management
Procedia PDF Downloads 1911347 A Multi-Agent Urban Traffic Simulator for Generating Autonomous Driving Training Data
Authors: Florin Leon
Abstract:
This paper describes a simulator of traffic scenarios tailored to facilitate autonomous driving model training for urban environments. With the rising prominence of self-driving vehicles, the need for diverse datasets is very important. The proposed simulator provides a flexible framework that allows the generation of custom scenarios needed for the validation and enhancement of trajectory prediction algorithms. Its controlled yet dynamic environment addresses the challenges associated with real-world data acquisition and ensures adaptability to diverse driving scenarios. By providing an adaptable solution for scenario creation and algorithm testing, this tool proves to be a valuable resource for advancing autonomous driving technology that aims to ensure safe and efficient self-driving vehicles.Keywords: autonomous driving, car simulator, machine learning, model training, urban simulation environment
Procedia PDF Downloads 621346 Comparative Study of Static and Dynamic Bending Forces during 3-Roller Cone Frustum Bending Process
Authors: Mahesh K. Chudasama, Harit K. Raval
Abstract:
3-roller conical bending process is widely used in the industries for manufacturing of conical sections and shells. It involves static as well dynamic bending stages. Analytical models for prediction of bending force during static as well as dynamic bending stage are available in the literature. In this paper, bending forces required for static bending stage and dynamic bending stages have been compared using the analytical models. It is concluded that force required for dynamic bending is very less as compared to the bending force required during the static bending stage.Keywords: analytical modeling, cone frustum, dynamic bending, static bending
Procedia PDF Downloads 3071345 Characteristics and Challenges of Post-Burn Contractures in Adults and Children: A Descriptive Study
Authors: Hardisiswo Soedjana, Inne Caroline
Abstract:
Deep dermal or full thickness burns are inevitably lead to post-burn contractures. These contractures remain to be one of the most concerning late complications of burn injuries. Surgical management includes releasing the contracture followed by resurfacing the defect accompanied by post-operative rehabilitation. Optimal treatment of post-burn contractures depends on the characteristics of the contractures. This study is aimed to describe clinical characteristics, problems, and management of post-burn contractures in adults and children. A retrospective analysis was conducted from medical records of patients suffered from contractures after burn injuries admitted to Hasan Sadikin general hospital between January 2016 and January 2018. A total of 50 patients with post burn contractures were included in the study. There were 17 adults and 33 children. Most patients were male, whose age range within 15-59 years old and 5-9 years old. Educational background was mostly senior high school among adults, while there was only one third of children who have entered school. Etiology of burns was predominantly flame in adults (82.3%); whereas flame and scald were the leading cause of burn injury in children (11%). Based on anatomical regions, hands were the most common affected both in adults (35.2%) and children (48.5%). Contractures were identified in 6-12 months since the initial burns. Most post-burn hand contractures were resurfaced with full-thickness skin graft (FTSG) both in adults and children. There were 11 patients who presented with recurrent contracture after previous history of contracture release. Post-operative rehabilitation was conducted for all patients; however, it is important to highlight that it is still challenging to control splinting and exercise when patients are discharged and especially the compliance in children. In order to improve quality of life in patients with history of deep burn injuries, prevention of contractures should begin right after acute care has been established. Education for the importance of splinting and exercise should be administered as comprehensible as possible for adult patients and parents of pediatric patients.Keywords: burn, contracture, education, exercise, splinting
Procedia PDF Downloads 1301344 Optimal Rotor Design of an 150kW-Class IPMSM through the 3D Voltage-Inductance Map Analysis Method
Authors: Eung-Seok Park, Tae-Chul Jeong, Hyun-Jong Park, Hyun-Woo Jun, Dong-Woo Kang, Ju Lee
Abstract:
This presents a methodology to determine detail design directions of an 150kW-class IPMSM (interior permanent magnet synchronous motor) and its detail design. The basic design of the stator and rotor was conducted. After dividing the designed models into the best cases and the worst cases based on rotor shape parameters, Sensitivity analysis and 3D Voltage-Inductance Map (3D EL-Map) parameters were analyzed. Then, the design direction for the final model was predicted. Based on the prediction, the final model was extracted with Trend analysis. Lastly, the final model was validated with experiments.Keywords: PMSM, optimal design, rotor design, voltage-inductance map
Procedia PDF Downloads 6741343 Development of Method for Detecting Low Concentration of Organophosphate Pesticides in Vegetables Using near Infrared Spectroscopy
Authors: Atchara Sankom, Warapa Mahakarnchanakul, Ronnarit Rittiron, Tanaboon Sajjaanantakul, Thammasak Thongket
Abstract:
Vegetables are frequently contaminated with pesticides residues resulting in the most food safety concern among agricultural products. The objective of this work was to develop a method to detect the organophosphate (OP) pesticides residues in vegetables using Near Infrared (NIR) spectroscopy technique. Low concentration (ppm) of OP pesticides in vegetables were investigated. The experiment was divided into 2 sections. In the first section, Chinese kale spiked with different concentrations of chlorpyrifos pesticide residues (0.5-100 ppm) was chosen as the sample model to demonstrate the appropriate conditions of sample preparation, both for a solution or solid sample. The spiked samples were extracted with acetone. The sample extracts were applied as solution samples, while the solid samples were prepared by the dry-extract system for infrared (DESIR) technique. The DESIR technique was performed by embedding the solution sample on filter paper (GF/A) and then drying. The NIR spectra were measured with the transflectance mode over wavenumber regions of 12,500-4000 cm⁻¹. The QuEChERS method followed by gas chromatography-mass spectrometry (GC-MS) was performed as the standard method. The results from the first section showed that the DESIR technique with NIR spectroscopy demonstrated good accurate calibration result with R² of 0.93 and RMSEP of 8.23 ppm. However, in the case of solution samples, the prediction regarding the NIR-PLSR (partial least squares regression) equation showed poor performance (R² = 0.16 and RMSEP = 23.70 ppm). In the second section, the DESIR technique coupled with NIR spectroscopy was applied to the detection of OP pesticides in vegetables. Vegetables (Chinese kale, cabbage and hot chili) were spiked with OP pesticides (chlorpyrifos ethion and profenofos) at different concentrations ranging from 0.5 to 100 ppm. Solid samples were prepared (based on the DESIR technique), then samples were scanned by NIR spectrophotometer at ambient temperature (25+2°C). The NIR spectra were measured as in the first section. The NIR- PLSR showed the best calibration equation for detecting low concentrations of chlorpyrifos residues in vegetables (Chinese kale, cabbage and hot chili) according to the prediction set of R2 and RMSEP of 0.85-0.93 and 8.23-11.20 ppm, respectively. For ethion residues, the best calibration equation of NIR-PLSR showed good indexes of R² and RMSEP of 0.88-0.94 and 7.68-11.20 ppm, respectively. As well as the results for profenofos pesticide, the NIR-PLSR also showed the best calibration equation for detecting the profenofos residues in vegetables according to the good index of R² and RMSEP of 0.88-0.97 and 5.25-11.00 ppm, respectively. Moreover, the calibration equation developed in this work could rapidly predict the concentrations of OP pesticides residues (0.5-100 ppm) in vegetables, and there was no significant difference between NIR-predicted values and actual values (data from GC-MS) at a confidence interval of 95%. In this work, the proposed method using NIR spectroscopy involving the DESIR technique has proved to be an efficient method for the screening detection of OP pesticides residues at low concentrations, and thus increases the food safety potential of vegetables for domestic and export markets.Keywords: NIR spectroscopy, organophosphate pesticide, vegetable, food safety
Procedia PDF Downloads 1501342 Two-Dimensional Material-Based Negative Differential Resistance Device with High Peak-to- Valley Current Ratio for Multi-Valued Logic Circuits
Authors: Kwan-Ho Kim, Jin-Hong Park
Abstract:
The multi-valued logic (MVL) circuits, which can handle more than two logic states, are one of the promising solutions to overcome the bit density limitations of conventional binary logic systems. Recently, tunneling devices such as Esaki diode and resonant tunneling diode (RTD) have been extensively explored to construct the MVL circuits. These tunneling devices present a negative differential resistance (NDR) phenomenon in which a current decreases as a voltage increases in a specific applied voltage region. Due to this non-monotonic current behavior, the tunneling devices have more than two threshold voltages, consequently enabling construction of MVL circuits. Recently, the emergence of two dimensional (2D) van der Waals (vdW) crystals has opened up the possibility to fabricate such tunneling devices easily. Owing to the defect-free surface of the 2D crystals, a very abrupt junction interface could be formed through a simple stacking process, which subsequently allowed the implementation of a high-performance tunneling device. Here, we report a vdW heterostructure based tunneling device with multiple threshold voltages, which was fabricated with black phosphorus (BP) and hafnium diselenide (HfSe₂). First, we exfoliated BP on the SiO₂ substrate and then transferred HfSe₂ on BP using dry transfer method. The BP and HfSe₂ form type-Ⅲ heterojunction so that the highly doped n+/p+ interface can be easily implemented without additional electrical or chemical doping process. Owing to high natural doping at the junction, record high peak to valley ratio (PVCR) of 16 was observed to the best our knowledge in 2D materials based NDR device. Furthermore, based on this, we first demonstrate the feasibility of the ternary latch by connecting two multi-threshold voltage devices in series.Keywords: two dimensional van der Waals crystal, multi-valued logic, negative differential resistnace, tunneling device
Procedia PDF Downloads 2131341 Airport Investment Risk Assessment under Uncertainty
Authors: Elena M. Capitanul, Carlos A. Nunes Cosenza, Walid El Moudani, Felix Mora Camino
Abstract:
The construction of a new airport or the extension of an existing one requires massive investments and many times public private partnerships were considered in order to make feasible such projects. One characteristic of these projects is uncertainty with respect to financial and environmental impacts on the medium to long term. Another one is the multistage nature of these types of projects. While many airport development projects have been a success, some others have turned into a nightmare for their promoters. This communication puts forward a new approach for airport investment risk assessment. The approach takes explicitly into account the degree of uncertainty in activity levels prediction and proposes milestones for the different stages of the project for minimizing risk. Uncertainty is represented through fuzzy dual theory and risk management is performed using dynamic programming. An illustration of the proposed approach is provided.Keywords: airports, fuzzy logic, risk, uncertainty
Procedia PDF Downloads 4131340 Pelvic Floor Electrophysiology Patterns Associated with Obstructed Defecation
Authors: Emmanuel Kamal Aziz Saba, Gihan Abd El-Lateif Younis El-Tantawi, Mohammed Hamdy Zahran, Ibrahim Khalil Ibrahim, Mohammed Abd El-Salam Shehata, Hussein Al-Moghazy Sultan, Medhat
Abstract:
Pelvic floor electrophysiological tests are essential for assessment of patients with obstructed defecation. The present study was conducted to determine the different patterns of pelvic floor electrophysiology that are associated with obstructed defecation. The present cross sectional study included 25 patients with obstructed defecation. A control group of 20 apparently healthy subjects were included. All patients were subjected to history taking, clinical examination, proctosigmoidoscopy, lateral proctography (evacuation proctography), dynamic pelvic magnetic resonance imaging, anal manometry and electrophysiological studies. Electrophysiological studies were including pudendal nerve motor conduction study, pudendo-anal reflex, needle electromyography of external anal sphincter and puborectalis muscles, pudendal somatosensory evoked potential and tibial somatosensory evoked potential. The control group was subjected to electrophysiological studies which included pudendal nerve motor conduction study, pudendo-anal reflex, pudendal somatosensory evoked potential and tibial somatosensory evoked potential. The most common pelvic floor electrodiagnostic pattern characteristics of obstructed defecation was pudendal neuropathy, denervation and anismus of external anal sphincter and puborectalis with complete interference pattern of external anal sphincter and puborectalis at squeezing and cough and no localized defect in external anal sphincter. In conclusion, there were characteristic pelvic floor electrodiagnostic patterns associated with obstructed defecation.Keywords: obstructed defecation, pudendal nerve terminal motor latency, pudendoanal reflex, sphincter electromyography
Procedia PDF Downloads 4391339 Electric Load Forecasting Based on Artificial Neural Network for Iraqi Power System
Authors: Afaneen Anwer, Samara M. Kamil
Abstract:
Load Forecast required prediction accuracy based on optimal operation and maintenance. A good accuracy is the basis of economic dispatch, unit commitment, and system reliability. A good load forecasting system fulfilled fast speed, automatic bad data detection, and ability to access the system automatically to get the needed data. In this paper, the formulation of the load forecasting is discussed and the solution is obtained by using artificial neural network method. A MATLAB environment has been used to solve the load forecasting schedule of Iraqi super grid network considering the daily load for three years. The obtained results showed a good accuracy in predicting the forecasted load.Keywords: load forecasting, neural network, back-propagation algorithm, Iraqi power system
Procedia PDF Downloads 583