Search results for: crop and property damage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4869

Search results for: crop and property damage

3609 Corrosion Risk Assessment/Risk Based Inspection (RBI)

Authors: Lutfi Abosrra, Alseddeq Alabaoub, Nuri Elhaloudi

Abstract:

Corrosion processes in the Oil & Gas industry can lead to failures that are usually costly to repair, costly in terms of loss of contaminated product, in terms of environmental damage and possibly costly in terms of human safety. This article describes the results of the corrosion review and criticality assessment done at Mellitah Gas (SRU unit) for pressure equipment and piping system. The information gathered through the review was intended for developing a qualitative RBI study. The corrosion criticality assessment has been carried out by applying company procedures and industrial recommended practices such as API 571, API 580/581, ASME PCC 3, which provides a guideline for establishing corrosion integrity assessment. The corrosion review is intimately related to the probability of failure (POF). During the corrosion study, the process units are reviewed by following the applicable process flow diagrams (PFDs) in the presence of Mellitah’s personnel from process engineering, inspection, and corrosion/materials and reliability engineers. The expected corrosion damage mechanism (internal and external) was identified, and the corrosion rate was estimated for every piece of equipment and corrosion loop in the process units. A combination of both Consequence and Likelihood of failure was used for determining the corrosion risk. A qualitative consequence of failure (COF) for each individual item was assigned based on the characteristics of the fluid as per its flammability, toxicity, and pollution into three levels (High, Medium, and Low). A qualitative probability of failure (POF)was applied to evaluate the internal and external degradation mechanism, a high-level point-based (0 to 10) for the purpose of risk prioritizing in the range of Low, Medium, and High.

Keywords: corrosion, criticality assessment, RBI, POF, COF

Procedia PDF Downloads 54
3608 The Effect of Nanocomposite on the Release of Imipenem on Bacteria Causing Infections with Implants

Authors: Mohammad Hossein Pazandeh, Monir Doudi, Sona Rostampour Yasouri

Abstract:

—Results The prudent administration of antibiotics aims to avoid the side effects and the microbes' resistance to antibiotics. An approach developing methods of local administration of antibiotics is especially required for localized infections caused by bacterial colonization of medical devices or implant materials. Among the wide variety of materials used as drug delivery systems, bioactive glasses (BG) have large utilization in regenerative medicine . firstly, the production of bioactive glass/nickel oxide/tin dioxide nanocomposite using sol-gel method, and then, the controlled release of imipenem from the double metal oxide/bioactive glass nanocomposite, and finally, the investigation of the antibacterial property of the nanocomposite. against a number of implant-related infectious agents. In this study, BG/SnO2 and BG/NiO single systema with different metal oxide present and BG/NiO/SnO2 nanocomposites were synthesized by sol-gel as drug carriers for tetracycline and imepinem. These two antibiotics were widely used for osteomyelitis because of its favorable penetration and bactericidal effect on all the probable osteomyelitis pathogens. The antibacterial activity of synthesized samples were evaluated against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa as bacteria model using disk diffusion method. The BG modification using metal oxides results to antibacterial property of samples containing metal oxide with highest efficiency for nancomposite. bioactivity of all samples was assessed by determining the surface morphology, structural and composition changes using scanning electron microscopy (SEM), FTIR and X-ray diffraction (XRD) spectroscopy, respectively, after soaking in simulated body fluid (SBF) for 28 days. The hydroxyapatite formation was clearly observed as a bioactivity measurement. Then, BG nanocomposite sample was loaded using two antibiotics, separately and their release profiles were studied. The BG nancomposite sample was shown the slow and continuous drug releasing for a period of 72 hours which is desirable for a drug delivery system. The loaded antibiotic nanocomposite sample retaining antibacterial property and showing inactivation effect against bacteria under test. The modified bioactive glass forming hydroxyapatite with controlled release drug and effective against bacterial infections can be introduced as scaffolds for bone implants after clinical trials for biomedical applications . Considering the formation of biofilm by infectious bacteria after sticking on the surfaces of implants, medical devices, etc. Also, considering the complications of traditional methods, solving the problems caused by the above-mentioned microorganisms in technical and biomedical industries was one of the necessities of this research.

Keywords: antibacterial, bioglass, drug delivery system, sol- gel

Procedia PDF Downloads 41
3607 Influence of Low and Extreme Heat Fluxes on Thermal Degradation of Carbon Fibre-Reinforced Polymers

Authors: Johannes Bibinger, Sebastian Eibl, Hans-Joachim Gudladt

Abstract:

This study considers the influence of different irradiation scenarios on the thermal degradation of carbon fiber-reinforced polymers (CFRP). Real threats are simulated, such as fires with long-lasting low heat fluxes and nuclear heat flashes with short-lasting high heat fluxes. For this purpose, coated and uncoated quasi-isotropic samples of the commercially available CFRP HexPly® 8552/IM7 are thermally irradiated from one side by a cone calorimeter and a xenon short-arc lamp with heat fluxes between 5 and 175 W/cm² at varying time intervals. The specimen temperature is recorded on the front and backside as well as at different laminate depths. The CFRP is non-destructively tested with ultrasonic testing, infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and micro-focused computed X-Ray tomography (μCT). Destructive tests are performed to evaluate the mechanical properties in terms of interlaminar shear strength (ILSS), compressive and tensile strength. The irradiation scenarios vary significantly in heat flux and exposure time. Thus, different heating rates, radiation effects, and temperature distributions occur. This leads to unequal decomposition processes, which affect the sensitivity of the strength type and damage behaviour of the specimens. However, with the use of surface coatings, thermal degradation of composite materials can be delayed.

Keywords: CFRP, one-sided thermal damage, high heat flux, heating rate, non-destructive and destructive testing

Procedia PDF Downloads 92
3606 Sustainable Agriculture Practices Using Bacterial-mediated Alleviation of Salinity Stress in Crop Plants

Authors: Mohamed Trigui, Fatma Masmoudi, Imen Zouari

Abstract:

Massive utilizations of chemical fertilizer and chemical pesticides in agriculture sector to improve the farming productivity have created increasing environmental damages. Then, agriculture must become sustainable, focusing on production systems that respect the environment and help to reduce climate change. Isolation and microbial identification of new bacterial strains from naturally saline habitats and compost extracts could be a prominent way in pest management and crop production under saline conditions. In this study, potential mechanisms involved in plant growth promotion and suppressive activity against fungal diseases of a compost extract produced from poultry manure/olive husk compost and halotolerant and halophilic bacterial strains under saline stress were investigated. On the basis of the antimicrobial tests, different strains isolated from Sfax solar saltern (Tunisia) and from compost extracts were selected and tested for their plant growth promoting traits, such as siderophores production, nitrogen fixation, phosphate solubilization and the production of extracellular hydrolytic enzymes (protease and lipase) under in-vitro conditions. Among 450 isolated bacterial strains, 16 isolates showed potent antifungal activity against the tested plant pathogenic fungi. Their identification based on 16S rRNA gene sequence revealed they belonged to different species. Some of these strains were also characterized for their plant growth promoting capacities. Obtained results showed the ability of four strains belonging to Bacillus genesis to ameliorate germination rate and root elongation compared to the untreated positive controls. Combinatorial capacity of halotolerant bacteria with antimicrobial activity and plant growth promoting traits could be promising sources of interesting bioactive substances under saline stress.

Keywords: abiotic stress, biofertilizer, biotic stress, compost extract, halobacteria, plant growth promoting (PGP), soil fertility

Procedia PDF Downloads 75
3605 Development of Coastal Inundation–Inland and River Flow Interface Module Based on 2D Hydrodynamic Model

Authors: Eun-Taek Sin, Hyun-Ju Jang, Chang Geun Song, Yong-Sik Han

Abstract:

Due to the climate change, the coastal urban area repeatedly suffers from the loss of property and life by flooding. There are three main causes of inland submergence. First, when heavy rain with high intensity occurs, the water quantity in inland cannot be drained into rivers by increase in impervious surface of the land development and defect of the pump, storm sewer. Second, river inundation occurs then water surface level surpasses the top of levee. Finally, Coastal inundation occurs due to rising sea water. However, previous studies ignored the complex mechanism of flooding, and showed discrepancy and inadequacy due to linear summation of each analysis result. In this study, inland flooding and river inundation were analyzed together by HDM-2D model. Petrov-Galerkin stabilizing method and flux-blocking algorithm were applied to simulate the inland flooding. In addition, sink/source terms with exponentially growth rate attribute were added to the shallow water equations to include the inland flooding analysis module. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. To consider the coastal surge, another module was developed by adding seawater to the existing Inland Flooding-River Inundation binding module for comprehensive flooding analysis. Based on the combined modules, the Coastal Inundation – Inland & River Flow Interface was simulated by inputting the flow rate and depth data in artificial flume. Accordingly, it was able to analyze the flood patterns of coastal cities over time. This study is expected to help identify the complex causes of flooding in coastal areas where complex flooding occurs, and assist in analyzing damage to coastal cities. Acknowledgements—This research was supported by a grant ‘Development of the Evaluation Technology for Complex Causes of Inundation Vulnerability and the Response Plans in Coastal Urban Areas for Adaptation to Climate Change’ [MPSS-NH-2015-77] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of Korea.

Keywords: flooding analysis, river inundation, inland flooding, 2D hydrodynamic model

Procedia PDF Downloads 346
3604 Seismic Performance Evaluation of the Composite Structural System with Separated Gravity and Lateral Resistant Systems

Authors: Zi-Ang Li, Mu-Xuan Tao

Abstract:

During the process of the industrialization of steel structure housing, a composite structural system with separated gravity and lateral resistant systems has been applied in engineering practices, which consists of composite frame with hinged beam-column joints, steel brace and RC shear wall. As an attempt in steel structural system area, seismic performance evaluation of the separated composite structure is important for further application in steel housing. This paper focuses on the seismic performance comparison of the separated composite structural system and traditional steel frame-shear wall system under the same inter-story drift ratio (IDR) provision limit. The same architectural layout of a high-rise building is designed as two different structural systems at the same IDR level, and finite element analysis using pushover method is carried out. Static pushover analysis implies that the separated structural system exhibits different lateral deformation mode and failure mechanism with traditional steel frame-shear wall system. Different indexes are adopted and discussed in seismic performance evaluation, including IDR, safe factor (SF), shear wall damage, etc. The performance under maximum considered earthquake (MCE) demand spectrum shows that the shear wall damage of two structural systems are similar; the separated composite structural system exhibits less plastic hinges; and the SF index value of the separated composite structural system is higher than the steel frame shear wall structural system.

Keywords: finite element analysis, new composite structural system, seismic performance evaluation, static pushover analysis

Procedia PDF Downloads 115
3603 Assessing the Impact of Climate Change on Pulses Production in Khyber Pakhtunkhwa, Pakistan

Authors: Khuram Nawaz Sadozai, Rizwan Ahmad, Munawar Raza Kazmi, Awais Habib

Abstract:

Climate change and crop production are intrinsically associated with each other. Therefore, this research study is designed to assess the impact of climate change on pulses production in Southern districts of Khyber Pakhtunkhwa (KP) Province of Pakistan. Two pulses (i.e. chickpea and mung bean) were selected for this research study with respect to climate change. Climatic variables such as temperature, humidity and precipitation along with pulses production and area under cultivation of pulses were encompassed as the major variables of this study. Secondary data of climatic variables and crop variables for the period of thirty four years (1986-2020) were obtained from Pakistan Metrological Department and Agriculture Statistics of KP respectively. Panel data set of chickpea and mung bean crops was estimated separately. The analysis validate that both data sets were a balanced panel data. The Hausman specification test was run separately for both the panel data sets whose findings had suggested the fixed effect model can be deemed as an appropriate model for chickpea panel data, however random effect model was appropriate for estimation of the panel data of mung bean. Major findings confirm that maximum temperature is statistically significant for the chickpea yield. This implies if maximum temperature increases by 1 0C, it can enhance the chickpea yield by 0.0463 units. However, the impact of precipitation was reported insignificant. Furthermore, the humidity was statistically significant and has a positive association with chickpea yield. In case of mung bean the minimum temperature was significantly contributing in the yield of mung bean. This study concludes that temperature and humidity can significantly contribute to enhance the pulses yield. It is recommended that capacity building of pulses growers may be made to adapt the climate change strategies. Moreover, government may ensure the availability of climate change resistant varieties of pulses to encourage the pulses cultivation.

Keywords: climate change, pulses productivity, agriculture, Pakistan

Procedia PDF Downloads 30
3602 Assessment of Cytogenetic Damage as a Function of Radiofrequency Electromagnetic Radiations Exposure Measured by Electric Field Strength: A Gender Based Study

Authors: Ramanpreet, Gursatej Gandhi

Abstract:

Background: Dependence on electromagnetic radiations involved in communication and information technologies has incredibly increased in the personal and professional world. Among the numerous radiations, sources are fixed site transmitters, mobile phone base stations, and power lines beside indoor devices like cordless phones, WiFi, Bluetooth, TV, radio, microwave ovens, etc. Rather there is the continuous emittance of radiofrequency radiations (RFR) even to those not using the devices from mobile phone base stations. The consistent and widespread usage of wireless devices has build-up electromagnetic fields everywhere. In fact, the radiofrequency electromagnetic field (RF-EMF) has insidiously become a part of the environment and like any contaminant may pose to be health-hazardous requiring assessment. Materials and Methods: In the present study, cytogenetic damage was assessed using the Buccal Micronucleus Cytome (BMCyt) assay as a function of radiation exposure after Institutional Ethics Committee clearance of the study and written voluntary informed consent from the participants. On a pre-designed questionnaire, general information lifestyle patterns (diet, physical activity, smoking, drinking, use of mobile phones, internet, Wi-Fi usage, etc.) genetic, reproductive (pedigrees) and medical histories were recorded. For this, 24 hour-personal exposimeter measurements (PEM) were recorded for unrelated 60 healthy adults (40 cases residing in the vicinity of mobile phone base stations since their installation and 20 controls residing in areas with no base stations). The personal exposimeter collects information from all the sources generating EMF (TETRA, GSM, UMTS, DECT, and WLAN) as total RF-EMF uplink and downlink. Findings: The cases (n=40; 23-90 years) and the controls (n=20; 19-65 years) matched for alcohol drinking, smoking habits, and mobile and cordless phone usage. The PEM in cases (149.28 ± 8.98 mV/m) revealed significantly higher (p=0.000) electric field strength compared to the recorded value (80.40 ± 0.30 mV/m) in controls. The GSM 900 uplink (p=0.000), GSM 1800 downlink (p=0.000),UMTS (both uplink; p=0.013 and downlink; p=0.001) and DECT (p=0.000) electric field strength were significantly elevated in the cases as compared to controls. The electric field strength in the cases was significantly from GSM1800 (52.26 ± 4.49mV/m) followed by GSM900 (45.69 ± 4.98mV/m), UMTS (25.03 ± 3.33mV/m), DECT (18.02 ± 2.14mV/m) and was least from WLAN (8.26 ± 2.35mV/m). The higher significantly (p=0.000) increased exposure to the cases was from GSM (97.96 ± 6.97mV/m) in comparison to UMTS, DECT, and WLAN. The frequencies of micronuclei (1.86X, p=0.007), nuclear buds (2.95X, p=0.002) and cell death parameter (condensed chromatin cells) were significantly (1.75X, p=0.007) elevated in cases compared to that in controls probably as a function of radiofrequency radiation exposure. Conclusion: In the absence of other exposure(s), any cytogenetic damage if unrepaired is a cause of concern as it can cause malignancy. Larger sample size with the clinical assessment will prove more insightful of such an effect.

Keywords: Buccal micronucleus cytome assay, cytogenetic damage, electric field strength, personal exposimeter

Procedia PDF Downloads 145
3601 Meld of Lactobacillus and Rangiferinus for Emendation of Endotoxemia in Alcoholic Liver Damage in Rats

Authors: Shukla Ila, Azmi Lubna, S. S. Gupta, Ch. V. Rao

Abstract:

Oxidative stress has been increasingly associated with the induction and progression of liver damage. The current study was conducted to record the effect of combination of Lactobacillus and Lichen rangiferinus extract (LRE + Lac) on the severity of injury in experimental alcoholic liver disease and how it affects plasma levels of prostaglandin E2, endotoxin, thromboxane B2, and leukotriene B4. Male Wistar rats were grouped into five comprising six animals in each group. Group 1 served as negative control. Groups 2-5 were administered 10% ethanol for six weeks. Group 3 was administered with extract (200 mg/kg), group 4 received the diet containing 10% ethanol plus a bolus of lactobacilli GG (1010 CFU), and group 5 animals were given silymarin along with alcohol and it served as positive control. Aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total protein content, γ-glutamyltransferase, glutathione S-transferase, oxidative stress markers, glutathione, malondialdehyde and glutathione reductase were determined using standard diagnostic kits. Histopathological analysis of liver tissue was also made. A positive relation was found between plasma endotoxin levels and degree of liver injury. The pathology records were also related positively with leukotriene B4 and thromboxane B2. But a negative correlation was obtained with PgE2 levels. This study led us to hypothesize that the increased endotoxin levels modulate liver metabolism of eicosanoid, which gradually leads to liver injury. Endotoxemia increases leukotriene and thromboxane levels in plasma.

Keywords: lactobacillus, Lichen rangiferinus, endotoxemia, silymarin

Procedia PDF Downloads 309
3600 Lessons from Farmers Performing Agroforestry for Reclamation of Gold Mine Spoils in Colombia

Authors: Bibiana Betancur-Corredor, Juan Carlos Loaiza, Manfred Denich, Christian Borgemeister

Abstract:

Alluvial gold mining generates a vast amount of deposits that cover the natural soil and negatively impacts riverbeds and valleys, causing loss of livelihood opportunities for farmers of these regions. In Colombia, more than 79,000 ha are affected by alluvial gold mining, therefore developing strategies to return this land to productivity is of crucial importance for the country. A novel restoration strategy has been created by a mining company, where the land is restored through the establishment of agroforestry systems, in which agricultural crops and livestock are combined to complement reforestation in the area. The purpose of this study is to capture the knowledge of farmers who perform agroforestry in areas with deposits created by alluvial gold mining activities. Semi structured interviews were conducted with farmers with regard to the following: indicators of soil fertility, management practices, soil heterogeneity, pest outbreaks and weeds. In order to compare the perceptions of soil fertility of farmers with physicochemical properties of soils, the farmers were asked to identify spots within their farms that have exhibited good and poor yields. Soil samples were collected in order to correlate farmer’s perceptions with soil physicochemical properties. The findings suggest that the main challenge that farmers face is the identification of fertile soil for crop establishment. They identify the fertile soil through visually analyzing soil color and compaction as well as the use of spontaneous growth of specific plants as indicator of soil fertility. For less fertile areas, nitrogen fixing plants are used as green manure to restore soil fertility for crop establishment. The findings of this study imply that if gold mining is followed by reclamation practices that involve the successful establishment of productive farmlands, agricultural productivity of these lands might improve, increasing food security of the affected communities.

Keywords: agroforestry, knowledge, mining, restoration

Procedia PDF Downloads 219
3599 Rural Farmers-Herdsmen Conflicts, State Mediation Failure and Prospects of Traditional Institutions’ Intervention in Southwest Nigeria

Authors: Grace Adebo

Abstract:

Rural Farmers-herdsmen conflicts have resulted in a large number of causalities in many parts of Nigeria. Herds of cattle have died, while farmers recorded inestimable losses of their crops and harvests. The overall consequences have impacted negatively on food security across the country. There are divided opinions by scholars, agricultural experts and conflict analysts on the root causes of the conflicts and why traditional institutional interventions are ineffective in resolving the crisis. The study, therefore, aims to investigate the fundamentality of the conflicts’ causes in Southwest Nigeria and the correlates between traditional institutional authorities’ intervention and farmers-herdsmen conflicts in Southwest Nigeria. A structured interview schedule and focus group discussion were employed to elicit information from 180 farmers and 48 herdsmen selected through a multistage sampling procedure from the conflict zones in Southwest Nigeria. Collected data were analyzed using frequency counts, percentages, means and the Relative Importance Index (RII). The study found that climate change effects, farmland encroachment, crop damage, theft, and competition for land and water resources and pollution were the root causes of the violent herders-rural farmer’s clashes. The quest for wealth acquisition by some traditional rulers and some notable individuals in the conflict neighborhoods, occasioned tribal-mix herds possession and, thus undermining local institutional interventions and perverting justice through weak conflict resolution strategies, therefore, fueling further conflicts. Most farmers in the conflict zones have abandoned their farms for fear of death. This coupled with physical, social, economic and psychological consequences have deepened food insecurity and impaired the economic conditions of the herdsmen and the farmers. Currently, there are no mutually established mediation mechanisms as most states are opposed to the enactment of grazing laws to protect territorial encroachments of lands and subsequent multiplication of the herdsmen. It is suggested that government and Non-Governmental Organisation (NGOs) should encourage a functional stakeholder's forum for sustainable conflict resolution and establish a compensation scheme for losses incurred while extension agents are equipped with knowledge on conflict management strategies for peace attainment with the envisioned goal of achieving sustainable livelihoods and food security in Southwest Nigeria.

Keywords: conflict resolution, food security, herdsmen-farmers conflict, sustainable livelihoods, traditional institutions

Procedia PDF Downloads 97
3598 Design and Developing the Infrared Sensor for Detection and Measuring Mass Flow Rate in Seed Drills

Authors: Bahram Besharti, Hossein Navid, Hadi Karimi, Hossein Behfar, Iraj Eskandari

Abstract:

Multiple or miss sowing by seed drills is a common problem on the farm. This problem causes overuse of seeds, wasting energy, rising crop treatment cost and reducing crop yield in harvesting. To be informed of mentioned faults and monitoring the performance of seed drills during sowing, developing a seed sensor for detecting seed mass flow rate and monitoring in a delivery tube is essential. In this research, an infrared seed sensor was developed to estimate seed mass flow rate in seed drills. The developed sensor comprised of a pair of spaced apart circuits one acting as an IR transmitter and the other acting as an IR receiver. Optical coverage in the sensing section was obtained by setting IR LEDs and photo-diodes directly on opposite sides. Passing seeds made interruption in radiation beams to the photo-diode which caused output voltages to change. The voltage difference of sensing units summed by a microcontroller and were converted to an analog value by DAC chip. The sensor was tested by using a roller seed metering device with three types of seeds consist of chickpea, wheat, and alfalfa (representing large, medium and fine seed, respectively). The results revealed a good fitting between voltage received from seed sensor and mass flow of seeds in the delivery tube. A linear trend line was set for three seeds collected data as a model of the mass flow of seeds. A final mass flow model was developed for various size seeds based on receiving voltages from the seed sensor, thousand seed weight and equivalent diameter of seeds. The developed infrared seed sensor, besides monitoring mass flow of seeds in field operations, can be used for the assessment of mechanical planter seed metering unit performance in the laboratory and provide an easy calibrating method for seed drills before planting in the field.

Keywords: seed flow, infrared, seed sensor, seed drills

Procedia PDF Downloads 342
3597 Chemical and Physical Properties and Biocompatibility of Ti–6Al–4V Produced by Electron Beam Rapid Manufacturing and Selective Laser Melting for Biomedical Applications

Authors: Bing–Jing Zhao, Chang-Kui Liu, Hong Wang, Min Hu

Abstract:

Electron beam rapid manufacturing (EBRM) or Selective laser melting is an additive manufacturing process that uses 3D CAD data as a digital information source and energy in the form of a high-power laser beam or electron beam to create three-dimensional metal parts by fusing fine metallic powders together.Object:The present study was conducted to evaluate the mechanical properties ,the phase transformation,the corrosivity and the biocompatibility of Ti-6Al-4V by EBRM,SLM and forging technique.Method: Ti-6Al-4V alloy standard test pieces were manufactured by EBRM, SLM and forging technique according to AMS4999,GB/T228 and ISO 10993.The mechanical properties were analyzed by universal test machine. The phase transformation was analyzed by X-ray diffraction and scanning electron microscopy. The corrosivity was analyzed by electrochemical method. The biocompatibility was analyzed by co-culturing with mesenchymal stem cell and analyzed by scanning electron microscopy (SEM) and alkaline phosphatase assay (ALP) to evaluate cell adhesion and differentiation, respectively. Results: The mechanical properties, the phase transformation, the corrosivity and the biocompatibility of Ti-6Al-4V by EBRM、SLM were similar to forging and meet the mechanical property requirements of AMS4999 standard. a­phase microstructure for the EBM production contrast to the a’­phase microstructure of the SLM product. Mesenchymal stem cell adhesion and differentiation were well. Conclusion: The property of the Ti-6Al-4V alloy manufactured by EBRM and SLM technique can meet the medical standard from this study. But some further study should be proceeded in order to applying well in clinical practice.

Keywords: 3D printing, Electron Beam Rapid Manufacturing (EBRM), Selective Laser Melting (SLM), Computer Aided Design (CAD)

Procedia PDF Downloads 443
3596 Evaluation of the Protective Effect of Pterocarpus mildbraedii Extract on Propanil-Induced Hepatotoxicity

Authors: Chiagoziem A. Otuechere, Ebenezer O. Farombi

Abstract:

The protective effect of dichloromethane: methanol extract of Pterocarpus mildbraedii (PME), a widely consumed Nigerian leafy vegetable, on the toxicity of propanil was investigated in male rats. Animals were distributed into eight groups of five each. Group 1 served as control and received normal saline while rats in groups 2, 3, and 4 received 100 mg/kg, 200 mg/kg, and 400 mg/kg extract doses respectively. Group 5 rats were orally administered 200 mg/kg propanil while groups 6, 7, and 8 rats were given propanil plus extract. Oral administration of propanil elicited a 14.8%, 5%, 122%, and 78% increase in the activity of serum enzymes; alanine aminotransferase (AST), alanine aminotransferase(ALT), Alkaline phoshatase (ALP) and Gamma glutamyl transferase (ﻻGT). There were also increase in Lactate dehydrogenase (LDH) activity, direct bilirubin and lipid peroxidation levels. Furthermore, PME significantly attenuated the marked hepatic oxidative damage that accompanied propanil treatment. The extract significantly decreased LDH activity and bilirubin levels following propanil treatment. Furthermore, propanil-induced alterations in the activities of antioxidant enzymes: Superoxide dismutase (SOD), catalase (CAT) and glutathione s-transferase (GST) in these rats were modulated by the extract. The percentage DPPH Radical Scavenging Activity of the extract was determined as 55% and compared to those of Gallic acid (49%). Hepatic histology examination further confirmed the damage to the liver as it revealed severe periportal cellular infiltration of the hepatocytes. These biochemical and morphological alterations were attenuated in rats pre-treated with 100 mg/kg and 200 mg/kg doses of the extract. These results suggest that PME possesses protective effect against propanil-induced hepatotoxicity.

Keywords: antioxidant, hepatoprotection, Pterocarpus mildbraedii, propanil

Procedia PDF Downloads 402
3595 Study of Radiation Response in Lactobacillus Species

Authors: Kanika Arora, Madhu Bala

Abstract:

The small intestine epithelium is highly sensitive and major targets of ionizing radiation. Radiation causes gastrointestinal toxicity either by direct deposition of energy or indirectly (inflammation or bystander effects) generating free radicals and reactive oxygen species. Oxidative stress generated as a result of radiation causes active inflammation within the intestinal mucosa leading to structural and functional impairment of gut epithelial barrier. As a result, there is a loss of tolerance to normal dietary antigens and commensal flora together with exaggerated response to pathogens. Dysbiosis may therefore thought to play a role in radiation enteropathy and can contribute towards radiation induced bowel toxicity. Lactobacilli residing in the gut shares a long conjoined evolutionary history with their hosts and by doing so these organisms have developed an intimate and complex symbiotic relationships. The objective behind this study was to look for the strains with varying resistance to ionizing radiation and to see whether the niche of the bacteria is playing any role in radiation resistance property of bacteria. In this study, we have isolated the Lactobacillus spp. from probiotic preparation and murine gastrointestinal tract, both of which were supposed to be the important source for its isolation. Biochemical characterization did not show a significant difference in the properties, while a significant preference was observed in carbohydrate utilization capacity by the isolates. Effect of ionizing radiations induced by Co60 gamma radiation (10 Gy) on lactobacilli cells was investigated. A cellular survival curve versus absorbed doses was determined. Radiation resistance studies showed that the response of isolates towards cobalt-60 gamma radiation differs from each other and significant decrease in survival was observed in a dose-dependent manner. Thus the present study revealed that the property of radioresistance in Lactobacillus depends upon the source from where they have been isolated.

Keywords: dysbiosis, lactobacillus, mitigation, radiation

Procedia PDF Downloads 116
3594 Olive Oil (Olea europea L.) Protects against Mercury (II) Induced Oxidative Tissue Damage in Rats

Authors: Ahlem Bahi, Youcef Necib, Sakina Zerizer, Cherif Abdennour, Mohamed Salah Boulakoud

Abstract:

Mercury (II) is a highly toxic metal which induces oxidative stress in the body. In this study, we aimed to investigate the possible protective effect of olive oil, an antioxidant agent, against experimental mercury toxicity in rat model. Administration of mercuric chloride induced significant increase in serum: ALT, AST, and LPA activities; interleukine1, interleukine6, tumor necrosis factor α (TNFα), creatinine, urea, and uric acid levels. Mercuric chloride also induced oxidative stress, as indicate by decreased tissue of GSH level, GSH-Px, and GST activities along with increase the level of lipid peroxidation. Furthermore, treatment with mercuric chloride caused a marked elevation of kidney and liver weight and decreased body weight. Virgin olive oil treatment markedly reduced elevated serum: AST, ALT, and LPA activities; interleukine1, interleukine6, tumor necrosis factor α (TNFα), creatinine, urea, and uric acid levels and contracted the deterious effects of mercuric chloride on oxidative stress markers changes caused by HgCl2 in tissue as compared to control group. Our results implicate that mercury induced oxidative damage in liver and kidney tissue protected by virgin olive oil, with its antioxidant effects.

Keywords: mercury, antioxidant enzymes, pro-inflammatory cytokine, virgin olive oil, lipid peroxidation

Procedia PDF Downloads 345
3593 Developing a Toolkit of Undergraduate Nursing Student’ Desirable Characteristics (TNDC) : An application Item Response Theory

Authors: Parinyaporn Thanaboonpuang, Siridej Sujiva, Shotiga Pasiphul

Abstract:

The higher education reform that integration of nursing programmes into the higher education system. Learning outcomes represent one of the essential building blocks for transparency within higher education systems and qualifications. The purpose of this study is to develop a toolkit of undergraduate nursing student’desirable characteristics assessment on Thai Qualifications Framework for Higher education and to test psychometric property for this instrument. This toolkit seeks to improve on the Computer Multimedia test. There are three skills to be examined: Cognitive skill, Responsibility and Interpersonal Skill, and Information Technology Skill. The study was conduct in 4 phases. In Phase 1. Based on developed a measurement model and Computer Multimedia test. Phase 2 two round focus group were conducted, to determine the content validity of measurement model and the toolkit. In Phase 3, data were collected using a multistage random sampling of 1,156 senior undergraduate nursing student were recruited to test psychometric property. In Phase 4 data analysis was conducted by descriptive statistics, item analysis, inter-rater reliability, exploratory factor analysis and confirmatory factor analysis. The resulting TNDC consists of 74 items across the following four domains: Cognitive skill, Interpersonal Skill, Responsibility and Information Technology Skill. The value of Cronbach’ s alpha for the four domains were .781, 807, .831, and .865, respectively. The final model in confirmatory factor analysis fit quite well with empirical data. The TNDC was found to be appropriate, both theoretically and statistically. Due to these results, it is recommended that the toolkit could be used in future studies for Nursing Program in Thailand.

Keywords: toolkit, nursing student’ desirable characteristics, Thai qualifications framework

Procedia PDF Downloads 516
3592 Effect of Surface Treatments on the Cohesive Response of Nylon 6/silica Interfaces

Authors: S. Arabnejad, D. W. C. Cheong, H. Chaobin, V. P. W. Shim

Abstract:

Debonding is the one of the fundamental damage mechanisms in particle field composites. This phenomenon gains more importance in nano composites because of the extensive interfacial region present in these materials. Understanding the debonding mechanism accurately, can help in understanding and predicting the response of nano composites as the interface deteriorates. The small length scale of the phenomenon makes the experimental characterization complicated and the results of it, far from real physical behavior. In this study the damage process in nylon-6/silica interface is examined through Molecular Dynamics (MD) modeling and simulations. The silica has been modeled with three forms of surfaces – without any surface treatment, with the surface treatment of 3-aminopropyltriethoxysilane (APTES) and with Hexamethyldisilazane (HMDZ) surface treatment. The APTES surface modification used to create functional groups on the silica surface, reacts and form covalent bonds with nylon 6 chains while the HMDZ surface treatment only interacts with both particle and polymer by non-bond interaction. The MD model in this study uses a PCFF force field. The atomic model is generated in a periodic box with a layer of vacuum on top of the polymer layer. This layer of vacuum is large enough that assures us from not having any interaction between particle and substrate after debonding. Results show that each of these three models show a different traction separation behavior. However, all of them show an almost bilinear traction separation behavior. The study also reveals a strong correlation between the length of APTES surface treatment and the cohesive strength of the interface.

Keywords: debonding, surface treatment, cohesive response, separation behaviour

Procedia PDF Downloads 441
3591 Antibacterial Property of ZnO Nanoparticles: Effect of Intrinsic Defects

Authors: Suresh Kumar Verma, Jugal Kishore Das, Ealisha Jha, Mrutyunjay Suar, SKS Parashar

Abstract:

In recent years nanoforms of inorganic metallic oxides has attracted a lot of interest due to their small size and significantly improved physical, chemical and biological properties compared to their molecular precursor. Some of the inorganic materials such as TiO2, ZnO, MgO, CaO, Al2O3 have been extensively used in biological applications. Zinc Oxide is a Wurtzite-type semiconductor and piezo-electric material exhibiting excellent electrical, optical and chemical properties with a band energy gap of 3.1-3.4 eV. Nanoforms of Zinc Oxide (ZnO) are increasingly recognised for their utility in biological application. The significant physical parameters such as surface area, particle size, surface charge and Zeta potential of Zinc Oxide (ZnO) nanoparticles makes it suitable for the uptake, persistance, biological, and chemical activities inside the living cells. The present study shows the effect of intrinsic defects of ZnO nanocrystals synthesized by high energy ball milling (HEBM) technique in their antibacterial activities. Bulk Zinc oxide purchased from market were ball milled for 7 h, 10 h, and 15 h respectively to produce nanosized Zinc Oxide. The structural and optical modification of such synthesized particles were determined by X-ray diffraction (XRD), Scanning Electron Microscopy and Electron Paramagnetic Resonance (EPR). The antibacterial property of synthesized Zinc Oxide nanoparticles was tested using well diffusion, minimum inhibitory Concentration, minimum bacteriocidal concentration, reactive oxygen species (ROS) estimation and membrane potential determination methods. In this study we observed that antibacterial activity of ZnO nanoparticles is because of the intrinsic defects that exist as a function of difference in size and milling time.

Keywords: high energy ball milling, ZnO nanoparticles, EPR, Antibacterial properties

Procedia PDF Downloads 411
3590 Stimulus-Response and the Innateness Hypothesis: Childhood Language Acquisition of “Genie”

Authors: Caroline Kim

Abstract:

Scholars have long disputed the relationship between the origins of language and human behavior. Historically, behaviorist psychologist B. F. Skinner argued that language is one instance of the general stimulus-response phenomenon that characterizes the essence of human behavior. Another, more recent approach argues, by contrast, that language is an innate cognitive faculty and does not arise from behavior, which might develop and reinforce linguistic facility but is not its source. Pinker, among others, proposes that linguistic defects arise from damage to the brain, both congenital and acquired in life. Much of his argument is based on case studies in which damage to the Broca’s and Wernicke’s areas of the brain results in loss of the ability to produce coherent grammatical expressions when speaking or writing; though affected speakers often utter quite fluent streams of sentences, the words articulated lack discernible semantic content. Pinker concludes on this basis that language is an innate component of specific, classically language-correlated regions of the human brain. Taking a notorious 1970s case of linguistic maladaptation, this paper queries the dominant materialist paradigm of language-correlated regions. Susan “Genie” Wiley was physically isolated from language interaction in her home and beaten by her father when she attempted to make any sort of sound. Though without any measurable resulting damage to the brain, Wiley was never able to develop the level of linguistic facility normally achieved in adulthood. Having received a negative reinforcement of language acquisition from her father and lacking the usual language acquisition period, in adulthood Wiley was able to develop language only at a quite limited level in later life. From a contemporary behaviorist perspective, this case confirms the possibility of language deficiency without brain pathology. Wiley’s potential language-determining areas in the brain were intact, and she was exposed to language later in her life, but she was unable to achieve the normal level of communication skills, deterring socialization. This phenomenon and others like it in the case limited literature on linguistic maladaptation pose serious clinical, scientific, and indeed philosophical difficulties for both of the major competing theories of language acquisition, innateness, and linguistic stimulus-response. The implications of such cases for future research in language acquisition are explored, with a particular emphasis on the interaction of innate capacity and stimulus-based development in early childhood.

Keywords: behaviorism, innateness hypothesis, language, Susan "Genie" Wiley

Procedia PDF Downloads 279
3589 Prediction of Damage to Cutting Tools in an Earth Pressure Balance Tunnel Boring Machine EPB TBM: A Case Study L3 Guadalajara Metro Line (Mexico)

Authors: Silvia Arrate, Waldo Salud, Eloy París

Abstract:

The wear of cutting tools is one of the most decisive elements when planning tunneling works, programming the maintenance stops and saving the optimum stock of spare parts during the evolution of the excavation. Being able to predict the behavior of cutting tools can give a very competitive advantage in terms of costs and excavation performance, optimized to the needs of the TBM itself. The incredible evolution of data science in recent years gives the option to implement it at the time of analyzing the key and most critical parameters related to machinery with the purpose of knowing how the cutting head is performing in front of the excavated ground. Taking this as a case study, Metro Line 3 of Guadalajara in Mexico will develop the feasibility of using Specific Energy versus data science applied over parameters of Torque, Penetration, and Contact Force, among others, to predict the behavior and status of cutting tools. The results obtained through both techniques are analyzed and verified in the function of the wear and the field situations observed in the excavation in order to determine its effectiveness regarding its predictive capacity. In conclusion, the possibilities and improvements offered by the application of digital tools and the programming of calculation algorithms for the analysis of wear of cutting head elements compared to purely empirical methods allow early detection of possible damage to cutting tools, which is reflected in optimization of excavation performance and a significant improvement in costs and deadlines.

Keywords: cutting tools, data science, prediction, TBM, wear

Procedia PDF Downloads 32
3588 A Review of the Drawbacks of Current Fixed Connection Façade Systems, Non-Structural Standards, and Ways of Integrating Movable Façade Technology into Buildings

Authors: P. Abtahi, B. Samali

Abstract:

Façade panels of various shapes, weights, and connections usually act as a barrier between the indoor and outdoor environments. They also play a major role in enhancing the aesthetics of building structures. They are attached by different types of connections to the primary structure or inner panels in double skin façade skins. Structural buildings designed to withstand seismic shocks have been undergoing a critical appraisal in recent years, with the emphasis changing from ‘strength’ to ‘performance’. Performance based design and analysis have found their way into research, development, and practice of earthquake engineering, particularly after the 1994 Northridge and 1995 Kobe earthquakes. The design performance of facades as non-structural elements has now focused mainly on evaluating the damage sustained by façade frames with fixed connections, not movable ones. This paper will review current design standards for structural buildings, including the performance of structural and non-structural components during earthquake excitations in order to overview and evaluate the damage assessment and behaviour of various façade systems in building structures during seismic activities. The proposed solutions for each facade system will be discussed case by case to evaluate their potential for incorporation with newly designed connections. Finally, Double-Skin-Facade systems can potentially be combined with movable facade technology, although other glazing systems would require minor to major changes in their design before being integrated into the system.

Keywords: building performance, earthquake engineering, glazing system, movable façade technology

Procedia PDF Downloads 527
3587 Estimation of Constant Coefficients of Bourgoyne and Young Drilling Rate Model for Drill Bit Wear Prediction

Authors: Ahmed Z. Mazen, Nejat Rahmanian, Iqbal Mujtaba, Ali Hassanpour

Abstract:

In oil and gas well drilling, the drill bit is an important part of the Bottom Hole Assembly (BHA), which is installed and designed to drill and produce a hole by several mechanisms. The efficiency of the bit depends on many drilling parameters such as weight on bit, rotary speed, and mud properties. When the bit is pulled out of the hole, the evaluation of the bit damage must be recorded very carefully to guide engineers in order to select the bits for further planned wells. Having a worn bit for hole drilling may cause severe damage to bit leading to cutter or cone losses in the bottom of hole, where a fishing job will have to take place, and all of these will increase the operating cost. The main factor to reduce the cost of drilling operation is to maximize the rate of penetration by analyzing real-time data to predict the drill bit wear while drilling. There are numerous models in the literature for prediction of the rate of penetration based on drilling parameters, mostly based on empirical approaches. One of the most commonly used approaches is Bourgoyne and Young model, where the rate of penetration can be estimated by the drilling parameters as well as a wear index using an empirical correlation, provided all the constants and coefficients are accurately determined. This paper introduces a new methodology to estimate the eight coefficients for Bourgoyne and Young model using the gPROMS parameters estimation GPE (Version 4.2.0). Real data collected form similar formations (12 ¼’ sections) in two different fields in Libya are used to estimate the coefficients. The estimated coefficients are then used in the equations and applied to nearby wells in the same field to predict the bit wear.

Keywords: Bourgoyne and Young model, bit wear, gPROMS, rate of penetration

Procedia PDF Downloads 139
3586 Morphological and Molecular Characterization of Accessions of Black Fonio Millet (Digitaria Iburua Stapf) Grown in Selected Regions in Nigeria

Authors: Nwogiji Cletus Olando, Oselebe Happiness Ogba, Enoch Achigan-Dako

Abstract:

Digitaria iburua, commonly known as black fonio, is a cereal crop native to Africa and extensively cultivated by smallholder farmers in Northern Benin, Togo, and Nigeria. This crop holds immense nutritional and socio-cultural value. Unfortunately, limited knowledge about its genetic diversity exists due to a lack of scientific attention. As a result, its potential for improvement in food and agriculture remains largely untapped. To address this gap, a study was conducted using 41 accessions of D. iburua stored in the genebank of the Laboratory of Genetics, Biotechnology, and Seed Science at Abomey-Calavi University, Benin. The study employed both morphological and simple sequence repeat (SSR) markers to evaluate the genetic variability of the accessions. Agro-morphological assessments were carried out during the 2020 cropping season, utilizing an alpha lattice design with three replications. The collected data encompassed qualitative and quantitative traits. Additionally, molecular variability was assessed using eleven SSR markers. The results revealed significant phenotypic variability among the evaluated accessions, leading to their classification into three main clusters. Furthermore, the eleven SSR markers identified a total of 50 alleles, averaging 4.55 alleles per locus. The primers exhibited an average polymorphic information content value of 0.43, with the DE-ARC019 primer displaying the highest value (0.59). These findings suggest a substantial degree of genetic heterogeneity within the evaluated accessions, and the SSR markers employed in the study proved highly effective in detecting and characterizing this genetic variability. In conclusion, this study highlights the presence of significant genetic diversity in black fonio and provides valuable insights for future efforts aimed at its genetic improvement and conservation.

Keywords: genetic diversity, digitaria iburua, genetic improvement, simple sequence repeat markers, Nigeria, conservation

Procedia PDF Downloads 73
3585 Methods Employed to Mitigate Wind Damage on Ancient Egyptian Architecture

Authors: Hossam Mohamed Abdelfattah Helal Hegazi

Abstract:

Winds and storms are considered crucial weathering factors, representing primary causes of destruction and erosion for all materials on the Earth's surface. This naturally includes historical structures, with the impact of winds and storms intensifying their deterioration, particularly when carrying high-hardness sand particles during their passage across the ground. Ancient Egyptians utilized various methods to prevent wind damage to their ancient architecture throughout the ancient Egyptian periods . One of the techniques employed by ancient Egyptians was the use of clay or compacted earth as a filling material between opposing walls made of stone, bricks, or mud bricks. The walls made of reeds or woven tree branches were covered with clay to prevent the infiltration of winds and rain, enhancing structural integrity, this method was commonly used in hollow layers . Additionally, Egyptian engineers innovated a type of adobe brick with uniformly leveled sides, manufactured from dried clay. They utilized stone barriers, constructed wind traps, and planted trees in rows parallel to the prevailing wind direction. Moreover, they employed receptacles to drain rainwater resulting from wind-loaded rain and used mortar to fill gaps in roofs and structures. Furthermore, proactive measures such as the removal of sand from around historical and archaeological buildings were taken to prevent adverse effects

Keywords: winds, storms, weathering, destruction, erosion, materials, Earth's surface, historical structures, impact

Procedia PDF Downloads 41
3584 Cotton Transplantation as a Practice to Escape Infection with Some Soil-Borne Pathogens

Authors: E. M. H. Maggie, M. N. A. Nazmey, M. A. Abdel-Sattar, S. A. Saied

Abstract:

A successful trial of transplanting cotton is reported. Seeds grown in trays for 4-5 weeks in an easily prepared supporting medium such as peat moss or similar plant waste are tried. Careful transplanting of seedlings, with root system as intact as possible, is being made in the permanent field. The practice reduced damping-off incidence rate and allowed full winter crop revenues. Further work is needed to evaluate certain parameters such as growth curve, flowering curve, and yield at economic bases.

Keywords: cotton, transplanting cotton, damping-off diseases, environment sciences

Procedia PDF Downloads 342
3583 Development of Bicomponent Fibre to Combat Insects

Authors: M. Bischoff, F. Schmidt, J. Herrmann, J. Mattheß, G. Seide, T. Gries

Abstract:

Crop yields have not increased as dramatically as the demand for food. One method to counteract this is to use pesticides to keep away predators, e.g. several forms of insecticide are available to fight insects. These insecticides and pesticides are both controversial as their application and their residue in the food product can also harm humans. In this study an alternative method to combat insects is studied. A physical insect-killing effect of SiO2 particles is used. The particles are applied on fibres to avoid erosion in the fields, which would occur when applied separately. The development of such SiO2 functionalized PP fibres is shown.

Keywords: agriculture, environment, insects, protection, silica, textile

Procedia PDF Downloads 281
3582 Importance of Insect Crop Pests in the Diet of the Cattle Egret Bubulcus Ibis (Linnaeus, 1758)

Authors: Rachida Gherbi-Salmi, Abdelkarim Si Bachir, Salah Eddine Doumandji

Abstract:

The Cattle Egret is a predatory bird with an insectivorous diet. It feeds in open environments (wetlands, meadows, farmland and cultivated land). Few studies have determined the status of its prey (useful or harmful species for agriculture). Hence, our study was carried out in the Bejaia region (Algeria). It consisted of examining adult rejection pellets collected in a heronry located in the lower Soummam Valley (El-Kseur), which has been a permanent habitat for over 30 years. Field sampling was carried out during the juvenile rearing period in 1998 (wet spring) and 2020 (almost dry spring). Examination of 50 pellets at a rate of 10 per month (May - September) in 1998 revealed the presence of 2,661 prey belonging to 170 species, i.e., an average of 53.36 prey per pellet. The results reveal that the diet of this Ardeidae consists mainly of Insecta (95.09%). Arachnida was a distant second (4.05%). Vertebrates (Reptilia and Rodentia) (0.82%) and myriapods (0.04%) are rare prey. We counted 2,154 plant pests (80.27%), of which 2,138 were insects (99.27%) and 0.73% rodents (Mus spretus). Of the plant-pest insects identified, 1385 were Orthoptera (64.78%). Fourmicidae came second (13.05%), and Coleoptera third (12.82%). Dermaptera, on the other hand, accounted for only 7.86%. Analysis of 30 rejection pellets, 10 per month (May - July) in 2020, identified 1,330 prey belonging to 80 species, an average of 44.33 prey per pellet. The results reveal that its diet is essentially made up of Insecta (94.81%). These are followed by Vertebrata (3.01%) and Arachnida (2.18%). We counted 1156 plant pests (86.82%), of which 86.02% are Insecta. Orthoptera are the most frequent (45.72%). They are followed by Dermaptera (33.74%) and Coleoptera (18.44%). The present study highlighted the importance of plant pests consumed by the Cattle Egret (80.27% in 1998 and 86.82% in 2020), which are far more numerous and diverse than auxiliary prey and pollinators. This confirms the bird's status as a biological control agent in the lower Soummam valley. It is, therefore, worth pointing out that this species deserves to be protected.

Keywords: bubulcus ibis, diet, lower soummam valley, insect crop pests

Procedia PDF Downloads 24
3581 A Novel Hybrid Deep Learning Architecture for Predicting Acute Kidney Injury Using Patient Record Data and Ultrasound Kidney Images

Authors: Sophia Shi

Abstract:

Acute kidney injury (AKI) is the sudden onset of kidney damage in which the kidneys cannot filter waste from the blood, requiring emergency hospitalization. AKI patient mortality rate is high in the ICU and is virtually impossible for doctors to predict because it is so unexpected. Currently, there is no hybrid model predicting AKI that takes advantage of two types of data. De-identified patient data from the MIMIC-III database and de-identified kidney images and corresponding patient records from the Beijing Hospital of the Ministry of Health were collected. Using data features including serum creatinine among others, two numeric models using MIMIC and Beijing Hospital data were built, and with the hospital ultrasounds, an image-only model was built. Convolutional neural networks (CNN) were used, VGG and Resnet for numeric data and Resnet for image data, and they were combined into a hybrid model by concatenating feature maps of both types of models to create a new input. This input enters another CNN block and then two fully connected layers, ending in a binary output after running through Softmax and additional code. The hybrid model successfully predicted AKI and the highest AUROC of the model was 0.953, achieving an accuracy of 90% and F1-score of 0.91. This model can be implemented into urgent clinical settings such as the ICU and aid doctors by assessing the risk of AKI shortly after the patient’s admission to the ICU, so that doctors can take preventative measures and diminish mortality risks and severe kidney damage.

Keywords: Acute kidney injury, Convolutional neural network, Hybrid deep learning, Patient record data, ResNet, Ultrasound kidney images, VGG

Procedia PDF Downloads 115
3580 Effect of Radioprotectors on DNA Repair Enzyme and Survival of Gamma-Irradiated Cell Division Cycle Mutants of Saccharomyces pombe

Authors: Purva Nemavarkar, Badri Narain Pandey, Jitendra Kumar

Abstract:

Introduction: The objective was to understand the effect of various radioprotectors on DNA damage repair enzyme and survival in gamma-irradiated wild and cdc mutants of S. pombe (fission yeast) cultured under permissive and restrictive conditions. DNA repair process, as influenced by radioprotectors, was measured by activity of DNA polymerase in the cells. The use of single cell gel electrophoresis assay (SCGE) or Comet Assay to follow gamma-irradiation induced DNA damage and effect of radioprotectors was employed. In addition, studying the effect of caffeine at different concentrations on S-phase of cell cycle was also delineated. Materials and Methods: S. pombe cells grown at permissive temperature (250C) and/or restrictive temperature (360C) were followed by gamma-radiation. Percentage survival and activity of DNA Polymerase (yPol II) were determined after post-irradiation incubation (5 h) with radioprotectors such as Caffeine, Curcumin, Disulphiram, and Ellagic acid (the dose depending on individual D 37 values). The gamma-irradiated yeast cells (with and without the radioprotectors) were spheroplasted by enzyme glusulase and subjected to electrophoresis. Radio-resistant cells were obtained by arresting cells in S-phase using transient treatment of hydroxyurea (HU) and studying the effect of caffeine at different concentrations on S-phase of cell cycle. Results: The mutants of S. pombe showed insignificant difference in survival when grown under permissive conditions. However, growth of these cells under restrictive temperature leads to arrest in specific phases of cell cycle in different cdc mutants (cdc10: G1 arrest, cdc22: early S arrest, cdc17: late S arrest, cdc25: G2 arrest). All the cdc mutants showed decrease in survival after gamma radiation when grown at permissive and restrictive temperatures. Inclusion of the radioprotectors at respective concentrations during post irradiation incubation showed increase in survival of cells. Activity of DNA polymerase enzyme (yPol II) was increased significantly in cdc mutant cells exposed to gamma-radiation. Following SCGE, a linear relationship was observed between doses of irradiation and the tail moments of comets. The radioprotection of the fission yeast by radioprotectors can be seen by the reduced tail moments of the yeast comets. Caffeine also exhibited its radio-protective ability in radio-resistant S-phase cells obtained after HU treatment. Conclusions: The radioprotectors offered notable radioprotection in cdc mutants when added during irradiation. The present study showed activation of DNA damage repair enzyme (yPol II) and an increase in survival after treatment of radioprotectors in gamma irradiated wild type and cdc mutants of S. pombe cells. Results presented here showed feasibility of applying SCGE in fission yeast to follow DNA damage and radioprotection at high doses, which are not feasible with other eukaryotes. Inclusion of caffeine at 1mM concentration to S phase cells offered protection and did not decrease the cell viability. It can be proved that at minimal concentration, caffeine offered marked radioprotection.

Keywords: radiation protection, cell cycle, fission yeast, comet assay, s-phase, DNA repair, radioprotectors, caffeine, curcumin, SCGE

Procedia PDF Downloads 85