Search results for: Modified Spanning Tree (MST)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3469

Search results for: Modified Spanning Tree (MST)

2209 Mondoc: Informal Lightweight Ontology for Faceted Semantic Classification of Hypernymy

Authors: M. Regina Carreira-Lopez

Abstract:

Lightweight ontologies seek to concrete union relationships between a parent node, and a secondary node, also called "child node". This logic relation (L) can be formally defined as a triple ontological relation (LO) equivalent to LO in ⟨LN, LE, LC⟩, and where LN represents a finite set of nodes (N); LE is a set of entities (E), each of which represents a relationship between nodes to form a rooted tree of ⟨LN, LE⟩; and LC is a finite set of concepts (C), encoded in a formal language (FL). Mondoc enables more refined searches on semantic and classified facets for retrieving specialized knowledge about Atlantic migrations, from the Declaration of Independence of the United States of America (1776) and to the end of the Spanish Civil War (1939). The model looks forward to increasing documentary relevance by applying an inverse frequency of co-ocurrent hypernymy phenomena for a concrete dataset of textual corpora, with RMySQL package. Mondoc profiles archival utilities implementing SQL programming code, and allows data export to XML schemas, for achieving semantic and faceted analysis of speech by analyzing keywords in context (KWIC). The methodology applies random and unrestricted sampling techniques with RMySQL to verify the resonance phenomena of inverse documentary relevance between the number of co-occurrences of the same term (t) in more than two documents of a set of texts (D). Secondly, the research also evidences co-associations between (t) and their corresponding synonyms and antonyms (synsets) are also inverse. The results from grouping facets or polysemic words with synsets in more than two textual corpora within their syntagmatic context (nouns, verbs, adjectives, etc.) state how to proceed with semantic indexing of hypernymy phenomena for subject-heading lists and for authority lists for documentary and archival purposes. Mondoc contributes to the development of web directories and seems to achieve a proper and more selective search of e-documents (classification ontology). It can also foster on-line catalogs production for semantic authorities, or concepts, through XML schemas, because its applications could be used for implementing data models, by a prior adaptation of the based-ontology to structured meta-languages, such as OWL, RDF (descriptive ontology). Mondoc serves to the classification of concepts and applies a semantic indexing approach of facets. It enables information retrieval, as well as quantitative and qualitative data interpretation. The model reproduces a triple tuple ⟨LN, LE, LT, LCF L, BKF⟩ where LN is a set of entities that connect with other nodes to concrete a rooted tree in ⟨LN, LE⟩. LT specifies a set of terms, and LCF acts as a finite set of concepts, encoded in a formal language, L. Mondoc only resolves partial problems of linguistic ambiguity (in case of synonymy and antonymy), but neither the pragmatic dimension of natural language nor the cognitive perspective is addressed. To achieve this goal, forthcoming programming developments should target at oriented meta-languages with structured documents in XML.

Keywords: hypernymy, information retrieval, lightweight ontology, resonance

Procedia PDF Downloads 125
2208 Evaluation of Robust Feature Descriptors for Texture Classification

Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo

Abstract:

Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.

Keywords: texture classification, texture descriptor, SIFT, SURF, ORB

Procedia PDF Downloads 369
2207 A Study of Permission-Based Malware Detection Using Machine Learning

Authors: Ratun Rahman, Rafid Islam, Akin Ahmed, Kamrul Hasan, Hasan Mahmud

Abstract:

Malware is becoming more prevalent, and several threat categories have risen dramatically in recent years. This paper provides a bird's-eye view of the world of malware analysis. The efficiency of five different machine learning methods (Naive Bayes, K-Nearest Neighbor, Decision Tree, Random Forest, and TensorFlow Decision Forest) combined with features picked from the retrieval of Android permissions to categorize applications as harmful or benign is investigated in this study. The test set consists of 1,168 samples (among these android applications, 602 are malware and 566 are benign applications), each consisting of 948 features (permissions). Using the permission-based dataset, the machine learning algorithms then produce accuracy rates above 80%, except the Naive Bayes Algorithm with 65% accuracy. Of the considered algorithms TensorFlow Decision Forest performed the best with an accuracy of 90%.

Keywords: android malware detection, machine learning, malware, malware analysis

Procedia PDF Downloads 167
2206 Regression Model Evaluation on Depth Camera Data for Gaze Estimation

Authors: James Purnama, Riri Fitri Sari

Abstract:

We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.

Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python

Procedia PDF Downloads 538
2205 Preparation and Characterization of Anti-Acne Dermal Products Based on Erythromycin β-Cyclodextrin Lactide Complex

Authors: Lacramioara Ochiuz, Manuela Hortolomei, Aurelia Vasile, Iulian Stoleriu, Marcel Popa, Cristian Peptu

Abstract:

Local antibiotherapy is one of the most effective acne therapies. Erythromycin (ER) is a macrolide antibiotic topically administered for over 30 years in the form of gel, ointment or hydroalcoholic solution for the acne therapy. The use of ER as a base for topical dosage forms raises some technological challenges due to the physicochemical properties of this substance. The main disadvantage of ER is the poor water solubility (2 mg/mL) that limits both formulation using hydrophilic bases and skin permeability. Cyclodextrins (CDs) are biocompatible cyclic oligomers of glucose, with hydrophobic core and hydrophilic exterior. CDs are used to improve the bioavailability of drugs by increasing their solubility and/or their rate of dissolution after including the poorly water soluble substances (such as ER) in the hydrophobic cavity of CDs. Adding CDs leads to the increase of solubility and improved stability of the drug substance, increased permeability of substances of low water solubility, decreased toxicity and even to active dose reduction as a result of increased bioavailability. CDs increase skin tolerability by reducing the irritant effect of certain substances. We have included ER to lactide modified β-cyclodextrin, in order to improve the therapeutic effect of topically administered ER. The aims of the present study were to synthesise and describe a new complex with prolonged release of ER with lactide modified β-cyclodextrin (CD-LA_E), to investigate the CD-LA_E complex by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), to analyse the effect of semisolid base on the in vitro and ex vivo release characteristics of ER in the CD-LA_E complex by assessing the permeability coefficient and the release kinetics by fitting on mathematical models. SEM showed that, by complexation, ER changes its crystal structure and enters the amorphous phase. FTIR analysis has shown that certain specific bands of some groups in the ER structure move during the incapsulation process. The structure of the CD-LA_E complex has a molar ratio of 2.12 to 1 between lactide modified β-cyclodextrin and ER. The three semisolid bases (2% Carbopol, 13% Lutrol 127 and organogel based on Lutrol and isopropyl myristate) show a good capacity for incorporating the CD-LA_E complex, having a content of active ingredient ranging from 98.3% to 101.5% as compared to the declared value of 2% ER. The results of the in vitro dissolution test showed that the ER solubility was significantly increased by CDs incapsulation. The amount of ER released from the CD-LA_E gels was in the range of 76.23% to 89.01%, whereas gels based on ER released a maximum percentage of 26.01% ER. The ex vivo dissolution test confirms the increased ER solubility achieved by complexation, and supports the assumption that the use of this process might increase ER permeability. The highest permeability coefficient was obtained in ER released from gel based on 2% Carbopol: in vitro 33.33 μg/cm2/h, and ex vivo 26.82 μg/cm2/h, respectively. The release kinetics of complexed ER is performed by Fickian diffusion, according to the results obtained by fitting the data in the Korsmeyer-Peppas model.

Keywords: erythromycin, acne, lactide, cyclodextrin

Procedia PDF Downloads 266
2204 The Moderating Role of Firm Size in Financing Policies of Non-Public Firms in the EU

Authors: Julia Koralun-Bereźnicka, Ewa Majerowska

Abstract:

This study explores the moderating role of firm size in shaping the financing policies of non-public firms across 12 European Union countries. The analysis targets private companies, offering new insights into an often-overlooked segment of the economy. Utilising a multi-country dataset spanning two decades (2000–2020), the research investigates how firm size interacts with key determinants of capital structure, including profitability, liquidity, asset tangibility, and risk, to influence debt composition and financing strategies. It incorporates a detailed analysis of different debt maturities, encompassing both short- and long-term debt structures. The findings indicate variations in financing patterns among small, medium, and large enterprises. Small firms are found to rely more heavily on short-term debt due to constrained access to long-term financing, whereas larger firms benefit from more diverse funding sources and lower perceived risk from creditors. Beyond its direct effects, firm size is shown to play a considerable indirect role by moderating the strength and direction of primary capital structure determinants. This approach highlights firm size not only as a primary determinant of capital structure but also as a secondary factor influencing financial decision-making. Employing advanced panel data modelling, the study emphasizes the importance of firm size in shaping financing strategies and the complex interactions between capital structure determinants. The findings provide insights into the financial behaviour of private firms and offer practical implications for improving access to capital and promoting financial stability across firm sizes.

Keywords: capital structure, panel data modelling, firm size effect, private companies

Procedia PDF Downloads 0
2203 Dominant Correlation Effects in Atomic Spectra

Authors: Hubert Klar

Abstract:

High double excitation of two-electron atoms has been investigated using hyperpherical coordinates within a modified adiabatic expansion technique. This modification creates a novel fictitious force leading to a spontaneous exchange symmetry breaking at high double excitation. The Pauli principle must therefore be regarded as approximation valid only at low excitation energy. Threshold electron scattering from high Rydberg states shows an unexpected time reversal symmetry breaking. At threshold for double escape we discover a broad (few eV) Cooper pair.

Keywords: correlation, resonances, threshold ionization, Cooper pair

Procedia PDF Downloads 348
2202 Forest Fire Burnt Area Assessment in a Part of West Himalayan Region Using Differenced Normalized Burnt Ratio and Neural Network Approach

Authors: Sunil Chandra, Himanshu Rawat, Vikas Gusain, Triparna Barman

Abstract:

Forest fires are a recurrent phenomenon in the Himalayan region owing to the presence of vulnerable forest types, topographical gradients, climatic weather conditions, and anthropogenic pressure. The present study focuses on the identification of forest fire-affected areas in a small part of the West Himalayan region using a differential normalized burnt ratio method and spectral unmixing methods. The study area has a rugged terrain with the presence of sub-tropical pine forest, montane temperate forest, and sub-alpine forest and scrub. The major reason for fires in this region is anthropogenic in nature, with the practice of human-induced fires for getting fresh leaves, scaring wild animals to protect agricultural crops, grazing practices within reserved forests, and igniting fires for cooking and other reasons. The fires caused by the above reasons affect a large area on the ground, necessitating its precise estimation for further management and policy making. In the present study, two approaches have been used for carrying out a burnt area analysis. The first approach followed for burnt area analysis uses a differenced normalized burnt ratio (dNBR) index approach that uses the burnt ratio values generated using the Short-Wave Infrared (SWIR) band and Near Infrared (NIR) bands of the Sentinel-2 image. The results of the dNBR have been compared with the outputs of the spectral mixing methods. It has been found that the dNBR is able to create good results in fire-affected areas having homogenous forest stratum and with slope degree <5 degrees. However, in a rugged terrain where the landscape is largely influenced by the topographical variations, vegetation types, tree density, the results may be largely influenced by the effects of topography, complexity in tree composition, fuel load composition, and soil moisture. Hence, such variations in the factors influencing burnt area assessment may not be effectively carried out using a dNBR approach which is commonly followed for burnt area assessment over a large area. Hence, another approach that has been attempted in the present study utilizes a spectral mixing method where the individual pixel is tested before assigning an information class to it. The method uses a neural network approach utilizing Sentinel-2 bands. The training and testing data are generated from the Sentinel-2 data and the national field inventory, which is further used for generating outputs using ML tools. The analysis of the results indicates that the fire-affected regions and their severity can be better estimated using spectral unmixing methods, which have the capability to resolve the noise in the data and can classify the individual pixel to the precise burnt/unburnt class.

Keywords: categorical data, log linear modeling, neural network, shifting cultivation

Procedia PDF Downloads 54
2201 Generalized Chaplygin Gas and Varying Bulk Viscosity in Lyra Geometry

Authors: A. K. Sethi, R. N. Patra, B. Nayak

Abstract:

In this paper, we have considered Friedmann-Robertson-Walker (FRW) metric with generalized Chaplygin gas which has viscosity in the context of Lyra geometry. The viscosity is considered in two different ways (i.e. zero viscosity, non-constant r (rho)-dependent bulk viscosity) using constant deceleration parameter which concluded that, for a special case, the viscous generalized Chaplygin gas reduces to modified Chaplygin gas. The represented model indicates on the presence of Chaplygin gas in the Universe. Observational constraints are applied and discussed on the physical and geometrical nature of the Universe.

Keywords: bulk viscosity, lyra geometry, generalized chaplygin gas, cosmology

Procedia PDF Downloads 176
2200 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images

Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi

Abstract:

Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.

Keywords: hyperspectral, PolSAR, feature selection, SVM

Procedia PDF Downloads 416
2199 Theoretical Modeling of Mechanical Properties of Eco-Friendly Composites Derived from Sugar Palm

Authors: J. Sahari, S. M. Sapuan

Abstract:

Eco-friendly composites have been successfully prepared by using sugar palm tree as a sources. The effect of fibre content on mechanical properties of (SPF/SPS) biocomposites have been done and the experimentally tensile properties (tensile strength and modulus) of biocomposites have been compared with the existing theories of reinforcement. The biocomposites were prepared with different amounts of fibres (i.e. 10%, 20% and 30% by weight percent). The mechanical properties of plasticized SPS improved with the incorporation of fibres. Both approaches (experimental and theoretical) show that the young’s modulus of the biocomposites is consistently increased when the sugar palm fibre (SPF) are placed into the sugar palm starch matrix (SPS). Surface morphological study through scanning electron microscopy showed homogeneous distribution of fibres and matrix with good adhesion which play an important role in improving the mechanical properties of biocomposites. The observed deviations between the experimental and theoretical values are explained by the simplifying model assumptions applied for the configuration of the composites, in particular the sugar palm starch composites.

Keywords: eco-friendly, biocomposite, mechanical, experimental, theoretical

Procedia PDF Downloads 443
2198 Transdisciplinary Methodological Innovation: Connecting Natural and Social Sciences Research through a Training Toolbox

Authors: Jessica M. Black

Abstract:

Although much of natural and social science research aims to enhance human flourishing and address social problems, the training within the two fields is significantly different across theory, methodology, and implementation of results. Social scientists are trained in social, psychological, and to the extent that it is relevant to their discipline, spiritual development, theory, and accompanying methodologies. They tend not to receive training or learn about accompanying methodology related to interrogating human development and social problems from a biological perspective. On the other hand, those in the natural sciences, and for the purpose of this work, human biological sciences specifically – biology, neuroscience, genetics, epigenetics, and physiology – are often trained first to consider cellular development and related methodologies, and may not have opportunity to receive formal training in many of the foundational principles that guide human development, such as systems theory or person-in-environment framework, methodology related to tapping both proximal and distal psycho-social-spiritual influences on human development, and foundational principles of equity, justice and inclusion in research design. There is a need for disciplines heretofore siloed to know one another, to receive streamlined, easy to access training in theory and methods from one another and to learn how to build interdisciplinary teams that can speak and act upon a shared research language. Team science is more essential than ever, as are transdisciplinary approaches to training and research design. This study explores the use of a methodological toolbox that natural and social scientists can use by employing a decision-making tree regarding project aims, costs, and participants, among other important study variables. The decision tree begins with a decision about whether the researcher wants to learn more about social sciences approaches or biological approaches to study design. The toolbox and platform are flexible, such that users could also choose among modules, for instance, reviewing epigenetics or community-based participatory research even if those are aspects already a part of their home field. To start, both natural and social scientists would receive training on systems science, team science, transdisciplinary approaches, and translational science. Next, social scientists would receive training on grounding biological theory and the following methodological approaches and tools: physiology, (epi)genetics, non-invasive neuroimaging, invasive neuroimaging, endocrinology, and the gut-brain connection. Natural scientists would receive training on grounding social science theory, and measurement including variables, assessment and surveys on human development as related to the developing person (e.g., temperament and identity), microsystems (e.g., systems that directly interact with the person such as family and peers), mesosystems (e.g., systems that interact with one another but do not directly interact with the individual person, such as parent and teacher relationships with one another), exosystems (e.g., spaces and settings that may come back to affect the individual person, such as a parent’s work environment, but within which the individual does not directly interact, macrosystems (e.g., wider culture and policy), and the chronosystem (e.g., historical time, such as the generational impact of trauma). Participants will be able to engage with the toolbox and one another to foster increased transdisciplinary work

Keywords: methodology, natural science, social science, transdisciplinary

Procedia PDF Downloads 115
2197 On an Approach for Rule Generation in Association Rule Mining

Authors: B. Chandra

Abstract:

In Association Rule Mining, much attention has been paid for developing algorithms for large (frequent/closed/maximal) itemsets but very little attention has been paid to improve the performance of rule generation algorithms. Rule generation is an important part of Association Rule Mining. In this paper, a novel approach named NARG (Association Rule using Antecedent Support) has been proposed for rule generation that uses memory resident data structure named FCET (Frequent Closed Enumeration Tree) to find frequent/closed itemsets. In addition, the computational speed of NARG is enhanced by giving importance to the rules that have lower antecedent support. Comparative performance evaluation of NARG with fast association rule mining algorithm for rule generation has been done on synthetic datasets and real life datasets (taken from UCI Machine Learning Repository). Performance analysis shows that NARG is computationally faster in comparison to the existing algorithms for rule generation.

Keywords: knowledge discovery, association rule mining, antecedent support, rule generation

Procedia PDF Downloads 324
2196 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children

Authors: Norah Mohammed Alshahrani, Abdulaziz Almaleh

Abstract:

Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD and they are Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then Feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by the Support Vector Machine (SVM), achieving 0.98% in the toddler dataset and 0.99% in the children dataset.

Keywords: autism spectrum disorder, machine learning, feature selection, support vector machine

Procedia PDF Downloads 152
2195 Efficient Recommendation System for Frequent and High Utility Itemsets over Incremental Datasets

Authors: J. K. Kavitha, D. Manjula, U. Kanimozhi

Abstract:

Mining frequent and high utility item sets have gained much significance in the recent years. When the data arrives sporadically, incremental and interactive rule mining and utility mining approaches can be adopted to handle user’s dynamic environmental needs and avoid redundancies, using previous data structures, and mining results. The dependence on recommendation systems has exponentially risen since the advent of search engines. This paper proposes a model for building a recommendation system that suggests frequent and high utility item sets over dynamic datasets for a cluster based location prediction strategy to predict user’s trajectories using the Efficient Incremental Rule Mining (EIRM) algorithm and the Fast Update Utility Pattern Tree (FUUP) algorithm. Through comprehensive evaluations by experiments, this scheme has shown to deliver excellent performance.

Keywords: data sets, recommendation system, utility item sets, frequent item sets mining

Procedia PDF Downloads 293
2194 Using Machine Learning to Predict Answers to Big-Five Personality Questions

Authors: Aadityaa Singla

Abstract:

The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.

Keywords: machine learning, personally, big five personality traits, cognitive science

Procedia PDF Downloads 145
2193 Utility of Cardiac Biomarkers in Combination with Exercise Stress Testing in Patients with Suspected Ischemic Heart Disease

Authors: Rawa Delshada, Sanaa G. Hamab, Rastee D. Koyeec

Abstract:

Eighty patients with suspected ischemic heart disease were enrolled in the present study. They were classified into two groups: patients with positive exercise stress test results (n=40) and control group with negative exercise stress test results (n=40). Serum concentration of troponin I, Heart-type Fatty Acid Binding Protein (H-FABP) and Ischemia Modified Albumin (IMA) were measured one hour after performing stress test. Enzyme Linked Immunosorbent Assay was used to measure both troponin I, H-FABP levels, while IMA levels were measured by albumin cobalt binding test. There was no statistically significant difference in the mean concentration of troponin I between two groups (0.75±0.55ng/ml) for patients with positive test result vs. (0.71±0.55ng/ml) for negative test result group with P>0.05. Contrary to our expectation, mean IMA level was slightly higher among control group (70.88±39.76U/ml) compared to (62.7±51.9U/ml) in positive test result group, but still with no statistically significant difference (P>0.05). Median H-FABP level was also higher among negative exercise stress testing group compared the positive one (2ng/ml vs. 1.9ng/ml respectively), but failed to reach statistically significant difference (P>0.05). When quartiles model used to explore the possible association between each study biomarkers with the others; serum H-FABP level was lowest (1.7ng/ml) in highest quartile of IMA and lowest H-FABP (1.8ng/ml) in highest quartile of troponin I but with no statistically significant association (P>0.05). Myocardial ischemia, more likely occurred after exercise stress test, is not capable of causing troponin I release. Furthermore, an increase in H-FABP and IMA levels after stress test are not reflecting myocardial ischemia. Moreover, the combination of troponin I, H-FABP and IMA after measuring their post exercise levels does not improve the diagnostic utility of exercise stress test enormously.

Keywords: cardiac biomarkers, ischemic heart disease, troponin I, ischemia modified albumin, heart-type fatty acid binding protein, exercise stress testing

Procedia PDF Downloads 249
2192 Development of Innovative Islamic Web Applications

Authors: Farrukh Shahzad

Abstract:

The rich Islamic resources related to religious text, Islamic sciences, and history are widely available in print and in electronic format online. However, most of these works are only available in Arabic language. In this research, an attempt is made to utilize these resources to create interactive web applications in Arabic, English and other languages. The system utilizes the Pattern Recognition, Knowledge Management, Data Mining, Information Retrieval and Management, Indexing, storage and data-analysis techniques to parse, store, convert and manage the information from authentic Arabic resources. These interactive web Apps provide smart multi-lingual search, tree based search, on-demand information matching and linking. In this paper, we provide details of application architecture, design, implementation and technologies employed. We also presented the summary of web applications already developed. We have also included some screen shots from the corresponding web sites. These web applications provide an Innovative On-line Learning Systems (eLearning and computer based education).

Keywords: Islamic resources, Muslim scholars, hadith, narrators, history, fiqh

Procedia PDF Downloads 283
2191 Determination of Pesticides Residues in Tissue of Two Freshwater Fish Species by Modified QuEChERS Method

Authors: Iwona Cieślik, Władysław Migdał, Kinga Topolska, Ewa Cieślik

Abstract:

The consumption of fish is recommended as a means of preventing serious diseases, especially cardiovascular problems. Fish is known to be a valuable source of protein (rich in essential amino acids), unsaturated fatty acids, fat-soluble vitamins, macro- and microelements. However, it can also contain several contaminants (e.g. pesticides, heavy metals) that may pose considerable risks for humans. Among others, pesticide are of special concern. Their widespread use has resulted in the contamination of environmental compartments, including water. The occurrence of pesticides in the environment is a serious problem, due to their potential toxicity. Therefore, a systematic monitoring is needed. The aim of the study was to determine the organochlorine and organophosphate pesticide residues in fish muscle tissues of the pike (Esox lucius, L.) and the rainbow trout (Oncorhynchus mykkis, Walbaum) by a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method, using Gas Chromatography Quadrupole Mass Spectrometry (GC/Q-MS), working in selected-ion monitoring (SIM) mode. The analysis of α-HCH, β-HCH, lindane, diazinon, disulfoton, δ-HCH, methyl parathion, heptachlor, malathion, aldrin, parathion, heptachlor epoxide, γ-chlordane, endosulfan, α-chlordane, o,p'-DDE, dieldrin, endrin, 4,4'-DDD, ethion, endrin aldehyde, endosulfan sulfate, 4,4'-DDT, and metoxychlor was performed in the samples collected in the Carp Valley (Malopolska region, Poland). The age of the pike (n=6) was 3 years and its weight was 2-3 kg, while the age of the rainbow trout (n=6) was 0.5 year and its weight was 0.5-1.0 kg. Detectable pesticide (HCH isomers, endosulfan isomers, DDT and its metabolites as well as metoxychlor) residues were present in fish samples. However, all these compounds were below the limit of quantification (LOQ). The other examined pesticide residues were below the limit of detection (LOD). Therefore, the levels of contamination were - in all cases - below the default Maximum Residue Levels (MRLs), established by Regulation (EC) No 396/2005 of the European Parliament and of the Council. The monitoring of pesticide residues content in fish is required to minimize potential adverse effects on the environment and human exposure to these contaminants.

Keywords: contaminants, fish, pesticides residues, QuEChERS method

Procedia PDF Downloads 220
2190 Study of Proton-9,11Li Elastic Scattering at 60~75 MeV/Nucleon

Authors: Arafa A. Alholaisi, Jamal H. Madani, M. A. Alvi

Abstract:

The radial form of nuclear matter distribution, charge and the shape of nuclei are essential properties of nuclei, and hence, are of great attention for several areas of research in nuclear physics. More than last three decades have witnessed a range of experimental means employing leptonic probes (such as muons, electrons etc.) for exploring nuclear charge distributions, whereas the hadronic probes (for example alpha particles, protons, etc.) have been used to investigate the nuclear matter distributions. In this paper, p-9,11Li elastic scattering differential cross sections in the energy range  to  MeV have been studied by means of Coulomb modified Glauber scattering formalism. By applying the semi-phenomenological Bhagwat-Gambhir-Patil [BGP] nuclear density for loosely bound neutron rich 11Li nucleus, the estimated matter radius is found to be 3.446 fm which is quite large as compared to so known experimental value 3.12 fm. The results of microscopic optical model based calculation by applying Bethe-Brueckner–Hartree–Fock formalism (BHF) have also been compared. It should be noted that in most of phenomenological density model used to reproduce the p-11Li differential elastic scattering cross sections data, the calculated matter radius lies between 2.964 and 3.55 fm. The calculated results with phenomenological BGP model density and with nucleon density calculated in the relativistic mean-field (RMF) reproduces p-9Li and p-11Li experimental data quite nicely as compared to Gaussian- Gaussian or Gaussian-Oscillator densities at all energies under consideration. In the approach described here, no free/adjustable parameter has been employed to reproduce the elastic scattering data as against the well-known optical model based studies that involve at least four to six adjustable parameters to match the experimental data. Calculated reaction cross sections σR for p-11Li at these energies are quite large as compared to estimated values reported by earlier works though so far no experimental studies have been performed to measure it.

Keywords: Bhagwat-Gambhir-Patil density, Coulomb modified Glauber model, halo nucleus, optical limit approximation

Procedia PDF Downloads 162
2189 Image Compression on Region of Interest Based on SPIHT Algorithm

Authors: Sudeepti Dayal, Neelesh Gupta

Abstract:

Image abbreviation is utilized for reducing the size of a file without demeaning the quality of the image to an objectionable level. The depletion in file size permits more images to be deposited in a given number of spaces. It also minimizes the time necessary for images to be transferred. Storage of medical images is a most researched area in the current scenario. To store a medical image, there are two parameters on which the image is divided, regions of interest and non-regions of interest. The best way to store an image is to compress it in such a way that no important information is lost. Compression can be done in two ways, namely lossy, and lossless compression. Under that, several compression algorithms are applied. In the paper, two algorithms are used which are, discrete cosine transform, applied to non-region of interest (lossy), and discrete wavelet transform, applied to regions of interest (lossless). The paper introduces SPIHT (set partitioning hierarchical tree) algorithm which is applied onto the wavelet transform to obtain good compression ratio from which an image can be stored efficiently.

Keywords: Compression ratio, DWT, SPIHT, DCT

Procedia PDF Downloads 349
2188 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes

Authors: L. S. Chathurika

Abstract:

Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.

Keywords: algorithm, classification, evaluation, features, testing, training

Procedia PDF Downloads 119
2187 Molecular Cloning and Identification of a Double WAP Domain–Containing Protein 3 Gene from Chinese Mitten Crab Eriocheir sinensis

Authors: Fengmei Li, Li Xu, Guoliang Xia

Abstract:

Whey acidic proteins (WAP) domain-containing proteins in crustacean are involved in innate immune response against microbial invasion. In the present study, a novel double WAP domain (DWD)-containing protein gene 3 was identified from Chinese mitten crab Eriocheir sinensis (designated EsDWD3) by expressed sequence tag (EST) analysis and PCR techniques. The full-length cDNA of EsDWD3 was of 1223 bp, consisting of a 5′-terminal untranslated region (UTR) of 74 bp, a 3′ UTR of 727 bp with a polyadenylation signal sequence AATAAA and a polyA tail, and an open reading frame (ORF) of 423 bp. The ORF encoded a polypeptide of 140 amino acids with a signal peptide of 22 amino acids. The deduced protein sequence EsDWD3 showed 96.4 % amino acid similar to other reported EsDWD1 from E. sinensis, and phylogenetic tree analysis revealed that EsDWD3 had closer relationships with the reported two double WAP domain-containing proteins of E. sinensis species.

Keywords: Chinese mitten crab, Eriocheir sinensis, cloning, double WAP domain-containing protein

Procedia PDF Downloads 355
2186 A Predictive Machine Learning Model of the Survival of Female-led and Co-Led Small and Medium Enterprises in the UK

Authors: Mais Khader, Xingjie Wei

Abstract:

This research sheds light on female entrepreneurs by providing new insights on the survival predictions of companies led by females in the UK. This study aims to build a predictive machine learning model of the survival of female-led & co-led small & medium enterprises (SMEs) in the UK over the period 2000-2020. The predictive model built utilised a combination of financial and non-financial features related to both companies and their directors to predict SMEs' survival. These features were studied in terms of their contribution to the resultant predictive model. Five machine learning models are used in the modelling: Decision tree, AdaBoost, Naïve Bayes, Logistic regression and SVM. The AdaBoost model had the highest performance of the five models, with an accuracy of 73% and an AUC of 80%. The results show high feature importance in predicting companies' survival for company size, management experience, financial performance, industry, region, and females' percentage in management.

Keywords: company survival, entrepreneurship, females, machine learning, SMEs

Procedia PDF Downloads 101
2185 Neural Network Based Decision Trees Using Machine Learning for Alzheimer's Diagnosis

Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, S. Meenakshi Sundaram

Abstract:

Alzheimer’s disease is one of the prevalent kind of ailment, expected for impudent reconciliation or an effectual therapy is to be accredited hitherto. Probable detonation of patients in the upcoming years, and consequently an enormous deal of apprehension in early discovery of the disorder, this will conceivably chaperon to enhanced healing outcomes. Complex impetuosity of the brain is an observant symbolic of the disease and a unique recognition of genetic sign of the disease. Machine learning alongside deep learning and decision tree reinforces the aptitude to absorb characteristics from multi-dimensional data’s and thus simplifies automatic classification of Alzheimer’s disease. Susceptible testing was prophesied and realized in training the prospect of Alzheimer’s disease classification built on machine learning advances. It was shrewd that the decision trees trained with deep neural network fashioned the excellent results parallel to related pattern classification.

Keywords: Alzheimer's diagnosis, decision trees, deep neural network, machine learning, pattern classification

Procedia PDF Downloads 297
2184 Comparison of On-Site Stormwater Detention Real Performance and Theoretical Simulations

Authors: Pedro P. Drumond, Priscilla M. Moura, Marcia M. L. P. Coelho

Abstract:

The purpose of On-site Stormwater Detention (OSD) system is to promote the detention of addition stormwater runoff caused by impervious areas, in order to maintain the peak flow the same as the pre-urbanization condition. In recent decades, these systems have been built in many cities around the world. However, its real efficiency continues to be unknown due to the lack of research, especially with regard to monitoring its real performance. Thus, this study aims to compare the water level monitoring data of an OSD built in Belo Horizonte/Brazil with the results of theoretical methods simulations, usually adopted in OSD design. There were made two theoretical simulations, one using the Rational Method and Modified Puls method and another using the Soil Conservation Service (SCS) method and Modified Puls method. The monitoring data were obtained with a water level sensor, installed inside the reservoir and connected to a data logger. The comparison of OSD performance was made for 48 rainfall events recorded from April/2015 to March/2017. The comparison of maximum water levels in the OSD showed that the results of the simulations with Rational/Puls and SCS/Puls methods were, on average 33% and 73%, respectively, lower than those monitored. The Rational/Puls results were significantly higher than the SCS/Puls results, only in the events with greater frequency. In the events with average recurrence interval of 5, 10 and 200 years, the maximum water heights were similar in both simulations. Also, the results showed that the duration of rainfall events was close to the duration of monitored hydrograph. The rising time and recession time of the hydrographs calculated with the Rational Method represented better the monitored hydrograph than SCS Method. The comparison indicates that the real discharge coefficient value could be higher than 0.61, adopted in Puls simulations. New researches evaluating OSD real performance should be developed. In order to verify the peak flow damping efficiency and the value of the discharge coefficient is necessary to monitor the inflow and outflow of an OSD, in addition to monitor the water level inside it.

Keywords: best management practices, on-site stormwater detention, source control, urban drainage

Procedia PDF Downloads 188
2183 Treadmill Negotiation: The Stagnation of the Israeli – Palestinian Peace Process

Authors: Itai Kohavi, Wojciech Nowiak

Abstract:

This article explores the stagnation of the Israeli -Palestinian peace negotiation process, and the reasons behind the failure of more than 12 international initiatives to resolve the conflict. Twenty-seven top members of the Israeli national security elite (INSE) were interviewed, including heads of the negotiation teams, the National Security Council, the Mossad, and other intelligence and planning arms. The interviewees provided their insights on the Israeli challenges in reaching a sustainable and stable peace agreement and in dealing with the international pressure on Israel to negotiate a peace agreement while preventing anti-Israeli UN decisions and sanctions. The findings revealed a decision tree, with red herring deception strategies implemented to postpone the negotiation process and to delay major decisions during the negotiation process. Beyond the possible applications for the Israeli – Palestinian conflict, the findings shed more light on the phenomenon of rational deception of allies in a negotiation process, a subject less frequently researched as compared with deception of rivals.

Keywords: deception, Israeli-Palestinian conflict, negotiation, red herring, terrorist state, treadmill negotiation

Procedia PDF Downloads 303
2182 Applications of Green Technology and Biomimicry in Civil Engineering with a Maglev Car Elevator

Authors: Sameer Ansari, Suhas Nitsure

Abstract:

Biomimicry has made a big move into the built environment by adapting nature's solutions to human designs and inventions. We can examine numerous aspects of the built environment right from generating energy, fed by rainwater and powered by sun to over all land use impacts. This paper discusses the potential of a man made building which will work for the welfare of humans and reduce the impact of the harmful environment on us which we ourselves created for us. Building services inspired by nature such as building walls from homeostasis in organisms, natural ventilation from termites, artificial aggregates from natural aggregates, solar panels from photosynthesis and building structure itself compared to tree as a cantilever. Environmental services such as using CO2 as a feedstock for construction related activities, using Ornilux glasses and  saving birds from collision with buildings, using prefabricated steel for fast building members- save time and also negligible waste as no formwork is used. Maglev inspired car elevators in building which is unique and giving all together new direction to technology.

Keywords: biomimicry, green technology, maglev car elevator, civil engineering

Procedia PDF Downloads 576
2181 A Novel Antenna Design for Telemedicine Applications

Authors: Amar Partap Singh Pharwaha, Shweta Rani

Abstract:

To develop a reliable and cost effective communication platform for the telemedicine applications, novel antenna design has been presented using bacterial foraging optimization (BFO) technique. The proposed antenna geometry is achieved by etching a modified Koch curve fractal shape at the edges and a square shape slot at the center of the radiating element of a patch antenna. It has been found that the new antenna has achieved 43.79% size reduction and better resonating characteristic than the original patch. Representative results for both simulations and numerical validations are reported in order to assess the effectiveness of the developed methodology.

Keywords: BFO, electrical permittivity, fractals, Koch curve

Procedia PDF Downloads 506
2180 A Numerical Study on the Influence of CO2 Dilution on Combustion Characteristics of a Turbulent Diffusion Flame

Authors: Yasaman Tohidi, Rouzbeh Riazi, Shidvash Vakilipour, Masoud Mohammadi

Abstract:

The objective of the present study is to numerically investigate the effect of CO2 replacement of N2 in air stream on the flame characteristics of the CH4 turbulent diffusion flame. The Open source Field Operation and Manipulation (OpenFOAM) has been used as the computational tool. In this regard, laminar flamelet and modified k-ε models have been utilized as combustion and turbulence models, respectively. Results reveal that the presence of CO2 in air stream changes the flame shape and maximum flame temperature. Also, CO2 dilution causes an increment in CO mass fraction.

Keywords: CH4 diffusion flame, CO2 dilution, OpenFOAM, turbulent flame

Procedia PDF Downloads 276