Search results for: vertical in-plane shear strength capacity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9107

Search results for: vertical in-plane shear strength capacity

7877 Rheological Behavior of Fresh Activated Sludge

Authors: Salam K. Al-Dawery

Abstract:

Despite of few research works on municipal sludge, still there is a lack of actual data. Thus, this work was focused on the conditioning and rheology of fresh activated sludge. The effect of cationic polyelectrolyte has been investigated at different concentrations and pH values in a comparative fashion. Yield stress is presented in all results indicating the minimum stress that necessary to reach flow conditions. Connections between particle-particle is the reason for this yield stress, also, the addition of polyelectrolyte causes strong bonds between particles and water resulting in the aggregation of particles which required higher shear stress in order to flow. The results from the experiments indicate that the cationic polyelectrolytes have significant effluence on the sludge characteristic and water quality such as turbidity, SVI, zone settling rate and shear stress.

Keywords: rheology, polyelectrolyte, settling volume index, turbidity

Procedia PDF Downloads 339
7876 Mechanical Properties of Waste Clay Brick Based Geopolymer Cured at Various Temperature

Authors: Shihab Ibrahim

Abstract:

Geopolymer binders as an alternative binder system to ordinary Portland cement are the focus of the past 2 decades of researches. In order to eliminate CO2 emission by cement manufacturing and utilizing construction waste as a source material, clean waste clay bricks which are the waste from Levent Brick factory was activated with a mixture of sodium hydroxide and sodium silicate solution. 12 molarity of sodium hydroxide solution was used and the ratio of sodium silicate to sodium hydroxide was 2.5. Alkaline solution to clay brick powder ratio of 0.35, 0.4, 0.45, and 0.5 was studied. Alkaline solution to powder ratio of 0.4 was found to be optimum ratio to have the same workability as ordinary Portland cement paste. Compressive strength of the clay brick based geopolymer paste samples was evaluated under different curing temperatures and curing durations. One day compressive strength of 57.3 MPa after curing at 85C for 24 hours was obtained which was higher than 7 days compressive strength of ordinary Portland cement paste. The highest compressive strength 71.4 MPa was achieved at seventh day age for the geopolymer paste samples cured at 85C for 24 hours. It was found that 8 hour curing at elevated temperature 85C, is sufficient to get 96% of total strength. 37.4 MPa strength at seventh day of clay brick based geopolymer sample cured at room temperature was achieved. Water absorption around 10% was found for clay brick based geopolymer samples cured at different temperatures with compare to 9.14% water absorption of ordinary Portland cement paste. The clay brick based geopolymer binder can have the potentiality to be used as an alternative binder to Portland cement in a case that the heat treatment provided. Further studies are needed in order to produce the binder in a way that can harden and gain strength without any elevated curing.

Keywords: construction and demolition waste, geopolymer, clay brick, compressive strength.

Procedia PDF Downloads 230
7875 Ceramic Ware Waste Potential as Co-Ballast in Dense Masonry Unit Production

Authors: A. A. Ajayi-Banji, M. A. Adegbile, T. D. Akpenpuun, J. Bello, O. Omobowale, D. A. Jenyo

Abstract:

Ceramic ware waste applicability as coarse aggregate was considered in this study for dense masonry unit production. The waste was crushed into 1.4 mm particle size and mixed with natural fine aggregate in the ratio 2:3. Portland ordinary cement, aggregate, and water mix ratio was 1:7:0.5. Masonry units produced were cured for 7, 21 and 28 days prior to compressive test. The result shows that curing age have a significant effect on all the compressive strength indices inspected except for Young’s modulus. Crushing force and the compressive strength of the ceramic-natural fine aggregate blocks increased by 11.7 – 54.7% and 11.6 – 59.2% respectively. The highest ceramic-natural fine block compressive strength at yield and peak, 4.97 MPa, was obtained after 21 days curing age. Ceramic aggregate introduced into the dense blocks improved the suitability of the blocks for construction purposes.

Keywords: ceramic ware waste, co-ballast, dense masonry unit, compressive strength, curing time

Procedia PDF Downloads 388
7874 Research of Strong-Column-Weak-Beam Criteria of Reinforced Concrete Frames Subjected to Biaxial Seismic Excitation

Authors: Chong Zhang, Mu-Xuan Tao

Abstract:

In several earthquakes, numerous reinforced concrete (RC) frames subjected to seismic excitation demonstrated a collapse pattern characterized by column hinges, though designed according to the Strong-Column-Weak-Beam (S-C-W-B) criteria. The effect of biaxial seismic excitation on the disparity between design and actual performance is carefully investigated in this article. First, a modified load contour method is proposed to derive a closed-form equation of biaxial bending moment strength, which is verified by numerical and experimental tests. Afterwards, a group of time history analyses of a simple frame modeled by fiber beam-column elements subjected to biaxial seismic excitation are conducted to verify that the current S-C-W-B criteria are not adequate to prevent the occurrence of column hinges. A biaxial over-strength factor is developed based on the proposed equation, and the reinforcement of columns is appropriately amplified with this factor to prevent the occurrence of column hinges under biaxial excitation, which is proved to be effective by another group of time history analyses.

Keywords: biaxial bending moment capacity, biaxial seismic excitation, fiber beam model, load contour method, strong-column-weak-beam

Procedia PDF Downloads 86
7873 Bonding Characteristics Between FRP and Concrete Substrates

Authors: Houssam A. Toutanji, Meng Han

Abstract:

This study focuses on the development of a fracture mechanics based-model that predicts the debonding behavior of FRP strengthened RC beams. In this study, a database includes 351 concrete prisms bonded with FRP plates tested in single and double shear were prepared. The existing fracture-mechanics-based models are applied to this database. Unfortunately the properties of adhesive layer, especially a soft adhesive layer, used on the specimens in the existing studies were not always able to found. Thus, the new model’s proposal was based on fifteen newly conducted pullout tests and twenty four data selected from two independent existing studies with the application of a soft adhesive layers and the availability of adhesive properties.

Keywords: carbon fiber composite materials, interface response, fracture characteristics, maximum shear stress, ultimate transferable load

Procedia PDF Downloads 245
7872 Evaluating Acid Buffering Capacity of Sewage Sludge Barrier for Inhibiting Remobilization of Heavy Metals in Tailing Impoundment

Authors: Huyuan Zhang, Yi Chen

Abstract:

Compacted sewage sludge has been proved to be feasible as a barrier material for tailing impoundment because of its low permeability and retardation of heavy metals. The long-term penetration of acid mine drainage, however, would acidify the barrier system and result in remobilization of previously immobilized heavy metal pollutants. In this study, the effect of decreasing pH on the mobility of three typical heavy metals (Zn, Pb, and Cu) is investigated by acid titration test on sewage sludge under various conditions. The remobilization of heavy metals is discussed based on the acid buffering capacity of sewage sludge-leachate system. Test results indicate that heavy metals are dramatically released out when pH is decreased below 6.2, and their amounts take the order of Zn > Cu > Pb. The acid buffering capacity of sewage sludge decreases with the solid-liquid ratio but increases with the anaerobic incubation time, and it is mainly governed by dissolution of contained carbonate and organics. These results reveal that the sewage sludge possesses enough acid buffering capacity to consume protons within the acid mine drainage. Thus, this study suggests that an explosive remobilization of heavy metals is not expected in a long-term perspective.

Keywords: acid buffering capacity, barrier, heavy metals, remobilization, sewage sludge

Procedia PDF Downloads 303
7871 Detection and Classification Strabismus Using Convolutional Neural Network and Spatial Image Processing

Authors: Anoop T. R., Otman Basir, Robert F. Hess, Eileen E. Birch, Brooke A. Koritala, Reed M. Jost, Becky Luu, David Stager, Ben Thompson

Abstract:

Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. We developed a two-stage method for strabismus detection and classification based on photographs of the face. The first stage detects the presence or absence of strabismus, and the second stage classifies the type of strabismus. The first stage comprises face detection using Haar cascade, facial landmark estimation, face alignment, aligned face landmark detection, segmentation of the eye region, and detection of strabismus using VGG 16 convolution neural networks. Face alignment transforms the face to a canonical pose to ensure consistency in subsequent analysis. Using facial landmarks, the eye region is segmented from the aligned face and fed into a VGG 16 CNN model, which has been trained to classify strabismus. The CNN determines whether strabismus is present and classifies the type of strabismus (exotropia, esotropia, and vertical deviation). If stage 1 detects strabismus, the eye region image is fed into stage 2, which starts with the estimation of pupil center coordinates using mask R-CNN deep neural networks. Then, the distance between the pupil coordinates and eye landmarks is calculated along with the angle that the pupil coordinates make with the horizontal and vertical axis. The distance and angle information is used to characterize the degree and direction of the strabismic eye misalignment. This model was tested on 100 clinically labeled images of children with (n = 50) and without (n = 50) strabismus. The True Positive Rate (TPR) and False Positive Rate (FPR) of the first stage were 94% and 6% respectively. The classification stage has produced a TPR of 94.73%, 94.44%, and 100% for esotropia, exotropia, and vertical deviations, respectively. This method also had an FPR of 5.26%, 5.55%, and 0% for esotropia, exotropia, and vertical deviation, respectively. The addition of one more feature related to the location of corneal light reflections may reduce the FPR, which was primarily due to children with pseudo-strabismus (the appearance of strabismus due to a wide nasal bridge or skin folds on the nasal side of the eyes).

Keywords: strabismus, deep neural networks, face detection, facial landmarks, face alignment, segmentation, VGG 16, mask R-CNN, pupil coordinates, angle deviation, horizontal and vertical deviation

Procedia PDF Downloads 63
7870 Efficacy Study of Post-Tensioned I Girder Made of Ultra-High Performance Fiber Reinforced Concrete and Ordinary Concrete for IRC Loading

Authors: Ayush Satija, Ritu Raj

Abstract:

Escalating demand for elevated structures as a remedy for traffic congestion has led to a surge in the construction of viaducts and bridges predominantly employing prestressed beams. However, post-tensioned I-girder superstructures are gaining traction for their attributes like structural efficiency, cost-effectiveness, and easy construction. Recently, Ultra-high-performance fiber-reinforced concrete (UHPFRC) has emerged as a revolutionary material in reshaping conventional infrastructure engineering. UHPFRC offers exceptional properties including high compressive and tensile strength, alongside enhanced durability. Its adoption in bridges yields benefits, notably a remarkable strength-to-weight ratio enabling the design of lighter and slender structural elements, enhancing functionality and sustainability. Despite its myriad advantages, integration of UHPFRC in construction is still evolving, hindered by factors like cost, material availability, and design standardization. Consequently, there's a need to assess the feasibility of substituting ordinary concrete (OC) with UHPFRC in bridges, focusing on economic considerations. This research undertakes an efficacy study between post-tensioned I-girders fabricated from UHPFRC and OC, evaluating cost parameters associated with concrete production, reinforcement, and erection. The study reveals that UHPFRC becomes economically viable for spans exceeding 40.0m. This shift in cost-effectiveness is attributed to factors like reduced girder depth, elimination of un-tensioned steel, diminished need for shear reinforcement and decreased erection costs.

Keywords: post tensioned I girder, superstructure, ultra-high-performance fiber reinforced concrete, ordinary concrete

Procedia PDF Downloads 15
7869 Experimental Study Analyzing the Similarity Theory Formulations for the Effect of Aerodynamic Roughness Length on Turbulence Length Scales in the Atmospheric Surface Layer

Authors: Matthew J. Emes, Azadeh Jafari, Maziar Arjomandi

Abstract:

Velocity fluctuations of shear-generated turbulence are largest in the atmospheric surface layer (ASL) of nominal 100 m depth, which can lead to dynamic effects such as galloping and flutter on small physical structures on the ground when the turbulence length scales and characteristic length of the physical structure are the same order of magnitude. Turbulence length scales are a measure of the average sizes of the energy-containing eddies that are widely estimated using two-point cross-correlation analysis to convert the temporal lag to a separation distance using Taylor’s hypothesis that the convection velocity is equal to the mean velocity at the corresponding height. Profiles of turbulence length scales in the neutrally-stratified ASL, as predicted by Monin-Obukhov similarity theory in Engineering Sciences Data Unit (ESDU) 85020 for single-point data and ESDU 86010 for two-point correlations, are largely dependent on the aerodynamic roughness length. Field measurements have shown that longitudinal turbulence length scales show significant regional variation, whereas length scales of the vertical component show consistent Obukhov scaling from site to site because of the absence of low-frequency components. Hence, the objective of this experimental study is to compare the similarity theory relationships between the turbulence length scales and aerodynamic roughness length with those calculated using the autocorrelations and cross-correlations of field measurement velocity data at two sites: the Surface Layer Turbulence and Environmental Science Test (SLTEST) facility in a desert ASL in Dugway, Utah, USA and the Commonwealth Scientific and Industrial Research Organisation (CSIRO) wind tower in a rural ASL in Jemalong, NSW, Australia. The results indicate that the longitudinal turbulence length scales increase with increasing aerodynamic roughness length, as opposed to the relationships derived by similarity theory correlations in ESDU models. However, the ratio of the turbulence length scales in the lateral and vertical directions to the longitudinal length scales is relatively independent of surface roughness, showing consistent inner-scaling between the two sites and the ESDU correlations. Further, the diurnal variation of wind velocity due to changes in atmospheric stability conditions has a significant effect on the turbulence structure of the energy-containing eddies in the lower ASL.

Keywords: aerodynamic roughness length, atmospheric surface layer, similarity theory, turbulence length scales

Procedia PDF Downloads 114
7868 The Mineralogy of Shales from the Pilbara and How Chemical Weathering Affects the Intact Strength

Authors: Arturo Maldonado

Abstract:

In the iron ore mining industry, the intact strength of rock units is defined using the uniaxial compressive strength (UCS). This parameter is very important for the classification of shale materials, allowing the split between rock and cohesive soils based on the magnitude of UCS. For this research, it is assumed that UCS less than or equal to 1 MPa is representative of soils. Several researchers have anticipated that the magnitude of UCS reduces with weathering progression, also since UCS is a directional property, its magnitude depends upon the rock fabric orientation. Thus, the paper presents how the UCS of shales is affected by both weathering grade and bedding orientation. The mineralogy of shales has been defined using Hyper-spectral and chemical assays to define the mineral constituents of shale and other non-shale materials. Geological classification tools have been used to define distinct lithological types, and in this manner, the author uses mineralogical datasets to recognize and isolate shales from other rock types and develop tertiary plots for fresh and weathered shales. The mineralogical classification of shales has reduced the contamination of lithology types and facilitated the study of the physical factors affecting the intact strength of shales, like anisotropic strength due to bedding orientation. The analysis of mineralogical characteristics of shales is perhaps the most important contribution of this paper to other researchers who may wish to explore similar methods.

Keywords: rock mechanics, mineralogy, shales, weathering, anisotropy

Procedia PDF Downloads 29
7867 Investigation of Compressive Strength of Fly Ash-Based Geopolymer Bricks with Hierarchical Bayesian Path Analysis

Authors: Ersin Sener, Ibrahim Demir, Hasan Aykut Karaboga, Kadir Kilinc

Abstract:

Bayesian methods, which have very wide range of applications, are implemented to the data obtained from the production of F class fly ash-based geopolymer bricks’ experimental design. In this study, dependent variable is compressive strength, independent variables are treatment type (oven and steam), treatment time, molding time, temperature, water absorbtion ratio and density. The effect of independent variables on compressive strength is investigated. There is no difference among treatment types, but there is a correlation between independent variables. Therefore, hierarchical Bayesian path analysis is applied. In consequence of analysis we specified that treatment time, temperature and density effects on compressive strength is higher, molding time, and water absorbtion ratio is relatively low.

Keywords: experimental design, F class fly ash, geopolymer bricks, hierarchical Bayesian path analysis

Procedia PDF Downloads 367
7866 Investigation of Heat Transfer by Natural Convection in an Open Channel

Authors: Mahmoud S. Ahmed, Hany A. Mohamed, Mohamed A. Omara, Mohamed F. Abdeen

Abstract:

Experimental study of natural convection heat transfer inside smooth and rough surfaces of vertical and inclined equilateral triangular channels of different inclination angles with a uniformly heated surface are performed. The inclination angle is changed from 15º to 90º. Smooth and rough surface of average roughness (0.02 mm) are used and their effect on the heat transfer characteristics are studied. The local and average heat transfer coefficients and Nusselt number are obtained for smooth and rough channels at different heat flux values, different inclination angles and different Rayleigh numbers (Ra) 6.48 × 105 ≤ Ra ≤ 4.78 × 106. The results show that the local Nusselt number decreases with increase of axial distance from the lower end of the triangular channel to a point near the upper end of channel, and then, it slightly increases. Higher values of local Nusselt number for rough channel along the axial distance compared with the smooth channel. The average Nusselt number of rough channel is higher than that of smooth channel by about 8.1% for inclined case at θ = 45o and 10% for vertical case. The results obtained are correlated using dimensionless groups for both rough and smooth surfaces of the inclined and vertical triangular channels.

Keywords: natural heat transfer convection, constant heat flux, open channels, heat transfer

Procedia PDF Downloads 380
7865 Numerical Analysis and Influence of the Parameters on Slope Stability

Authors: Fahim Kahlouche, Alaoua Bouaicha, Sihem Chaîbeddra, Sid-Ali Rafa, Abdelhamid Benouali

Abstract:

A designing of a structure requires its realization on rough or sloping ground. Besides the problem of the stability of the landslide, the behavior of the foundations that are bearing the structure is influenced by the destabilizing effect of the ground’s slope. This article focuses on the analysis of the slope stability exposed to loading by introducing the different factors influencing the slope’s behavior on the one hand, and on the influence of this slope on the foundation’s behavior on the other hand. This study is about the elastoplastic modelization using FLAC 2D. This software is based on the finite difference method, which is one of the older methods of numeric resolution of differential equations system with initial and boundary conditions. It was developed for the geotechnical simulation calculation. The aim of this simulation is to demonstrate the notable effect of shear modulus « G », cohesion « C », inclination angle (edge) « β », and distance between the foundation and the head of the slope on the stability of the slope as well as the stability of the foundation. In our simulation, the slope is constituted by homogenous ground. The foundation is considered as rigid/hard; therefore, the loading is made by the application of the vertical strengths on the nodes which represent the contact between the foundation and the ground. 

Keywords: slope, shallow foundation, numeric method, FLAC 2D

Procedia PDF Downloads 268
7864 Ultimate Stress of the Steel Tube in Circular Concrete-Filled Steel Tube Stub Columns Subjected to Axial Compression

Authors: Siqi Lin, Yangang Zhao

Abstract:

Concrete-filled steel tube column achieves the excellent performance of high strength, stiffness, and ductility due to the confinement from the steel tube. Well understanding the stress of the steel tube is important to make clear the confinement effect. In this paper, the ultimate stress of the steel tube in circular concrete-filled steel tube columns subjected to axial compression was studied. Experimental tests were conducted to investigate the effects of the parameters, including concrete strength, steel strength, and D/t ratio, on the ultimate stress of the steel tube. The stress of the steel tube was determined by employing the Prandtl-Reuss flow rule associated with isotropic strain hardening. Results indicate that the stress of steel tube was influenced by the parameters. Specimen with higher strength ratio fy/fc and smaller D/t ratio generally leads to a higher utilization efficiency of the steel tube.

Keywords: concrete-filled steel tube, axial compression, ultimate stress, utilization efficiency

Procedia PDF Downloads 399
7863 Numerical Simulation on Airflow Structure in the Human Upper Respiratory Tract Model

Authors: Xiuguo Zhao, Xudong Ren, Chen Su, Xinxi Xu, Fu Niu, Lingshuai Meng

Abstract:

The respiratory diseases such as asthma, emphysema and bronchitis are connected with the air pollution and the number of these diseases tends to increase, which may attribute to the toxic aerosol deposition in human upper respiratory tract or in the bifurcation of human lung. The therapy of these diseases mostly uses pharmaceuticals in the form of aerosol delivered into the human upper respiratory tract or the lung. Understanding of airflow structures in human upper respiratory tract plays a very important role in the analysis of the “filtering” effect in the pharynx/larynx and for obtaining correct air-particle inlet conditions to the lung. However, numerical simulation based CFD (Computational Fluid Dynamics) technology has its own advantage on studying airflow structure in human upper respiratory tract. In this paper, a representative human upper respiratory tract is built and the CFD technology was used to investigate the air movement characteristic in the human upper respiratory tract. The airflow movement characteristic, the effect of the airflow movement on the shear stress distribution and the probability of the wall injury caused by the shear stress are discussed. Experimentally validated computational fluid-aerosol dynamics results showed the following: the phenomenon of airflow separation appears near the outer wall of the pharynx and the trachea. The high velocity zone is created near the inner wall of the trachea. The airflow splits at the divider and a new boundary layer is generated at the inner wall of the downstream from the bifurcation with the high velocity near the inner wall of the trachea. The maximum velocity appears at the exterior of the boundary layer. The secondary swirls and axial velocity distribution result in the high shear stress acting on the inner wall of the trachea and bifurcation, finally lead to the inner wall injury. The enhancement of breathing intensity enhances the intensity of the shear stress acting on the inner wall of the trachea and the bifurcation. If human keep the high breathing intensity for long time, not only the ability for the transportation and regulation of the gas through the trachea and the bifurcation fall, but also result in the increase of the probability of the wall strain and tissue injury.

Keywords: airflow structure, computational fluid dynamics, human upper respiratory tract, wall shear stress, numerical simulation

Procedia PDF Downloads 225
7862 Sustainability Innovation Capacity Building Framework for UN Sustainable Development Goals

Authors: C. Park, H. Lee, Y-J. Lee

Abstract:

Aim: This study aims to present the Sustainability Innovation Capacity Building Framework (SICBF) to enable the wider public to achieve UN Sustainable Development Goals (UN SDGs) for a sustainable future. The intrinsically interwoven nature of sustainability requires systematic approaches to attain. However, there is a lack of an effective framework for capacity building that enables a systematic implementation approach for UN SDGs. The SICBF illustrates the six core components and their dynamics: 1. Momentum creation; 2. Exposure to diverse worldviews; 3. Serendipity/Eureka moment; 4. Creative problem solving; 5. Individual empowerment; 6. Systems thinking. Method: First, a structured literature review was used to synthesise existing sustainability competencies studies and generic innovation competencies. Secondly, the conceptual framework based on literature findings was tested with the participants' survey and interview data collected from four sets of MAKEathon events. The interview analysis and event observation data were used to further refine and validate the conceptual framework. Contributions: The scientific contribution of this study is to pave the way for SDGs specific capacity building framework that caters to the need for systematic approaches to allow the wider public aspiring to tackle the seemingly intractable sustainable development goals. The framework will aid sustainable development academics, educators, and practitioners in understanding the dynamics of how capacity building can be facilitated.

Keywords: capacity building, sustainability innovation, sustainable development, systems thinking, UN SDGs

Procedia PDF Downloads 56
7861 Application of Multilinear Regression Analysis for Prediction of Synthetic Shear Wave Velocity Logs in Upper Assam Basin

Authors: Triveni Gogoi, Rima Chatterjee

Abstract:

Shear wave velocity (Vs) estimation is an important approach in the seismic exploration and characterization of a hydrocarbon reservoir. There are varying methods for prediction of S-wave velocity, if recorded S-wave log is not available. But all the available methods for Vs prediction are empirical mathematical models. Shear wave velocity can be estimated using P-wave velocity by applying Castagna’s equation, which is the most common approach. The constants used in Castagna’s equation vary for different lithologies and geological set-ups. In this study, multiple regression analysis has been used for estimation of S-wave velocity. The EMERGE module from Hampson-Russel software has been used here for generation of S-wave log. Both single attribute and multi attributes analysis have been carried out for generation of synthetic S-wave log in Upper Assam basin. Upper Assam basin situated in North Eastern India is one of the most important petroleum provinces of India. The present study was carried out using four wells of the study area. Out of these wells, S-wave velocity was available for three wells. The main objective of the present study is a prediction of shear wave velocities for wells where S-wave velocity information is not available. The three wells having S-wave velocity were first used to test the reliability of the method and the generated S-wave log was compared with actual S-wave log. Single attribute analysis has been carried out for these three wells within the depth range 1700-2100m, which corresponds to Barail group of Oligocene age. The Barail Group is the main target zone in this study, which is the primary producing reservoir of the basin. A system generated list of attributes with varying degrees of correlation appeared and the attribute with the highest correlation was concerned for the single attribute analysis. Crossplot between the attributes shows the variation of points from line of best fit. The final result of the analysis was compared with the available S-wave log, which shows a good visual fit with a correlation of 72%. Next multi-attribute analysis has been carried out for the same data using all the wells within the same analysis window. A high correlation of 85% has been observed between the output log from the analysis and the recorded S-wave. The almost perfect fit between the synthetic S-wave and the recorded S-wave log validates the reliability of the method. For further authentication, the generated S-wave data from the wells have been tied to the seismic and correlated them. Synthetic share wave log has been generated for the well M2 where S-wave is not available and it shows a good correlation with the seismic. Neutron porosity, density, AI and P-wave velocity are proved to be the most significant variables in this statistical method for S-wave generation. Multilinear regression method thus can be considered as a reliable technique for generation of shear wave velocity log in this study.

Keywords: Castagna's equation, multi linear regression, multi attribute analysis, shear wave logs

Procedia PDF Downloads 205
7860 Treatment and Reuse of Nonmetallic PCBs Waste

Authors: Johan Sohaili, Siti Suhaila Mohamad, Shantha Kumari Muniyandi

Abstract:

The strength development, durability and leachability aspects of mortar added with nonmetallic printed circuit board (NMPCBs) were investigated. This study aims to propose methods for treatment and reuse of NMPCBs waste. The leachability of raw NMPCBs was tested for toxicity by performing the Crushed Block Leachability (CBL) test. The effectiveness of the treatment was evaluated by performing compressive, flexural strength, durability and whole block leachability (WBL) tests on the mortar. The results indicated that the concentration of metals leach from the raw NMPCBs are within the standard limits and higher than the concentration of metals from WBL test. The compressive and flexural strength of the NMPCBs mortar was generally lower than the standard mortar. From durability tests, weight and compressive strength both of mortars was decrease after soaking in acid solution. As a conclusion, the treated NMPCBs can be reused in profitable and environmentally friendly ways and has broad application prospects.

Keywords: nonmetallic, printed circuit board, treatment, reuse

Procedia PDF Downloads 449
7859 Effect of Column Stiffness and Orientation on Seismic Behaviour of Buildings with Vertical Irregularities

Authors: Saraswati Verma, Ankit Batra

Abstract:

In the modern day, structures are designed with a lot of complexities due to economical, aesthetical, and functional needs causing various levels of irregularities to be induced. In the past, several studies have repeatedly shown that irregular structures suffer more damage than regular structures during earthquakes. The present study makes an effort to study the contribution of the orientation of columns in the seismic behaviour of buildings with vertical irregularities namely, soft storey irregularity, mass irregularity and geometric irregularity. The response of the various models is analysed using sap2000 version 14. The parameters through which a comparative response is investigated are displacement, variation in the stiffness contribution, and inter-storey drift. Models with different configurations of column orientations were studied for each vertical irregularity and it was observed that column orientation contributed significantly in affecting a better seismic response. Square columns of the same cross-sectional area showed a good response as compared to that of rectangular columns. The study concludes that as displacement values for buildings with a soft storey and mass irregularity are very high, square columns could be used to minimise the effect of displacement in x and y-axis. In buildings with geometric irregularity, exterior column orientations can be played with to enhance the stiffness in the shorter direction to control the displacement and drift values in both x and y directions.

Keywords: soft storey, mass irregularity, geometric irregularity, column orientation, square column

Procedia PDF Downloads 365
7858 Mechanical Characterization of Extrudable Foamed Concrete: An Experimental Study

Authors: D. Falliano, D. De Domenico, G. Ricciardi, E. Gugliandolo

Abstract:

This paper is focused on the mechanical characterization of foamed concrete specimens with protein-based foaming agent. Unlike classic foamed concrete, a peculiar property of the analyzed foamed concrete is the extrudability, which is achieved via a specific additive in the concrete mix that significantly improves the cohesion and viscosity of the fresh cementitious paste. A broad experimental campaign was conducted to evaluate the compressive strength and the indirect tensile strength of the specimens. The study has comprised three different cement types, two water/cement ratios, three curing conditions and three target dry densities. The variability of the strength values upon the above mentioned factors is discussed.

Keywords: cement type, curing conditions, density, extrudable concrete, foamed concrete, mechanical characterization

Procedia PDF Downloads 244
7857 Simplified Ultimate Strength Assessment of Ship Structures Based on Biro Klasifikasi Indonesia Rules for Hull

Authors: Sukron Makmun, Topan Firmandha, Siswanto

Abstract:

Ultimate Strength Assessment on ship cross section in accordance with Biro Klasifikasi Indonesia (BKI) Rules for Hull, follows step by step incremental iterative approach. In this approach, ship cross section is divided into plate-stiffener combinations and hard corners element. The average stress-strain relationship (σ-ε) for all structural elements will be defined, where the subscript k refers to the modes 0, 1, 2, 3 or 4. These results would be verified with a commercial software calculation in similar cases. The numerical calculations of buckling strength are in accordance with the commercial software (GL Rules ND). Then the comparison of failure behaviours of stiffened panels and hard corners are presented. Where failure modes 3 are likely to occur first follows the failure mode 4 and the last one is the failure mode 1.

Keywords: ultimate strength assessment, BKI rules, incremental, plate-stiffener combination and hard corner, commercial software

Procedia PDF Downloads 348
7856 Ground Motion Modelling in Bangladesh Using Stochastic Method

Authors: Mizan Ahmed, Srikanth Venkatesan

Abstract:

Geological and tectonic framework indicates that Bangladesh is one of the most seismically active regions in the world. The Bengal Basin is at the junction of three major interacting plates: the Indian, Eurasian, and Burma Plates. Besides there are many active faults within the region, e.g. the large Dauki fault in the north. The country has experienced a number of destructive earthquakes due to the movement of these active faults. Current seismic provisions of Bangladesh are mostly based on earthquake data prior to the 1990. Given the record of earthquakes post 1990, there is a need to revisit the design provisions of the code. This paper compares the base shear demand of three major cities in Bangladesh: Dhaka (the capital city), Sylhet, and Chittagong for earthquake scenarios of magnitudes 7.0MW, 7.5MW, 8.0MW and 8.5MW using a stochastic model. In particular, the stochastic model allows the flexibility to input region specific parameters such as shear wave velocity profile (that were developed from Global Crustal Model CRUST2.0) and include the effects of attenuation as individual components. Effects of soil amplification were analysed using the Extended Component Attenuation Model (ECAM). Results show that the estimated base shear demand is higher in comparison with code provisions leading to the suggestion of additional seismic design consideration in the study regions.

Keywords: attenuation, earthquake, ground motion, Stochastic, seismic hazard

Procedia PDF Downloads 232
7855 90-Day Strength Training Intervention Decreases Incidence of Sarcopenia: A Pre- and Posttest Pilot Study of Older Adults in a Skilled Nursing Facility

Authors: Donna-Marie Phyllis Lanton

Abstract:

Sarcopenia is a well-known geriatric syndrome characterized by the progressive and generalized loss of muscle quantity or quality. The incidence of sarcopenia increases with age and is associated with adverse outcomes such as the increased risk of falls, cognitive impairment, loss of independence, diminished quality of life, increased health costs, need for care in a skilled nursing facility, and increased mortality. Physical activity, including resistance training, is the most prevalent recommendation for treating and preventing sarcopenia. Residents (N = 23) of a skilled nursing facility in East Orlando, Florida, participated in a 90-day strength training program designed using the PARIHS framework to improve measures of muscle mass, muscle strength, physical performance, and quality of life. Residents engaged in both resistance and balance exercises for 1 hour two times a week. Baseline data were collected and compared to data at Days 30, 60, and 90. T tests indicated significant gains on all measures from baseline to 90 days: muscle mass increased by 1.2 (t[22] = 2.85, p = .009), grip strength increased by 4.02 (t[22] = 8.15, p < .001), balance increased by 2.13 (t[22] = 18.64, p < .001), gait speed increased by 1.83 (t[22] = 17.84, p < .001), chair speed increased 1.87 (t[22] = 16.36, p < .001), and quality of life score increased by 17.5 (t[22] = 19.26, p < .001). For residents with sarcopenia in skilled nursing facilities, a 90-day strength training program with resistance and balance exercises may provide an option for decreasing the incidence of sarcopenia among that population

Keywords: muscle mass, muscle strength, older adults, PARIHS framework

Procedia PDF Downloads 75
7854 Review of Sulfur Unit Capacity Expansion Options

Authors: Avinashkumar Karre

Abstract:

Sulfur recovery unit, most commonly called as Claus process, is very significant gas desulfurization process unit in refinery and gas industries. Explorations of new natural gas fields, refining of high-sulfur crude oils, and recent crude expansion projects are needing capacity expansion of Claus unit for many companies around the world. In refineries, the sulphur recovery units take acid gas from amine regeneration units and sour water strippers, converting hydrogen sulfide to elemental sulfur using the Claus process. The Claus process is hydraulically limited by mass flow rate. Reducing the pressure drop across control valves, flow meters, lines, knock-out drums, and packing improves the capacity. Oxygen enrichment helps improve the capacity by removing nitrogen, this is more commonly done on all capacity expansion projects. Typical upgrades required due to oxygen enrichment are new burners, new refractory in thermal reactor, resizing of 1st condenser, instrumentation changes, and steam/condensate heat integration. Some other capacity expansion options typically considered are tail gas compressor, replacing air blower with higher head, hydrocarbon minimization in the feed, water removal, and ammonia removal. Increased capacity related upgrades in sulfur recovery unit also need changes in the tail gas treatment unit, typical changes include improvement to quench tower duty, packing area upgrades in quench and absorber towers and increased amine circulation flow rates.

Keywords: Claus process, oxygen enrichment, sulfur recovery unit, tail gas treatment unit

Procedia PDF Downloads 105
7853 Analysis of Tilting Cause of a Residential Building in Durres by the Use of Cptu Test

Authors: Neritan Shkodrani

Abstract:

On November 26, 2019, an earthquake hit the central western part of Albania. It was assessed as Mw 6.4. Its epicenter was located offshore north western Durrës, about 7 km north of the city. In this paper, the consequences of settlements of very soft soils have been discussed for the case of a residential building, mentioned as “K Building”, which was suffering a significant tilting after the earthquake. “KBuilding” is an RC framed building having 12+1 (basement) storiesand a floor area of 21000 m2. The construction of the building was completed in 2012. “KBuilding”, located in Durres city, suffered severe non-structural damage during November 26, 2019, Durrës Earthquake sequences. During the in-site inspections immediately after the earthquake, the general condition of the buildings, the presence of observable settlements on the ground, and the crack situation in the structure were determined, and damage inspection were performed. It was significant to note that the “K Building” presented tilting that might be attributed, as it was believed at the beginning, partially to the failure of the columns of the ground floor and partially to liquefaction phenomena, but it did not collapse. At the first moment was not clear if the foundation had a bearing capacity failure or the foundation failed because of the soil liquefaction. Geotechnical soil investigations by using CPTU test were executed, and their data are usedto evaluatebearing capacity, consolidation settlement of the mat foundation, and soil liquefaction since they were believed to be the main reasons of this building tilting.Geotechnical soil investigation consist in 5 (five) Static Cone Penetration tests with pore pressure measurement (piezocone test). They reached a penetration depth of 20.0 m to 30.0 mand, clearly shown the presence of very soft and organic soils in the soil profile of the site. Geotechnical CPT based analysis of bearing capacity, consolidation, and secondary settlement are applied, and results are reported for each test. These results shown very small values of allowable bearing capacity and very high values of consolidation and secondary settlements. Liquefaction analysis based on the data of CPTU tests and the characteristics of ground shaking of the mentioned earthquake has shown the possibility of liquefaction for some layers of the considered soil profile, but the estimated vertical settlements are at a small range and clearly shown that the main reason of the building tilting was not related to the consequences of liquefaction, but was an existing settlement caused from the applied bearing pressure of this building. All the CPTU tests were carried out on August 2021, almost two years after the November 26, 2019, Durrës Earthquake and when the building itself was demolished. After removing the mat foundation on September 2021, it was possible to carry out CPTU tests even on the footprint of the existing building, which made possible to observe the effects of long time applied of foundation bearing pressure to the consolidation on the considered soil profile.

Keywords: bearing capacity, cone penetration test, consolidation settlement, secondary settlement, soil liquefaction, etc

Procedia PDF Downloads 87
7852 Optimal Decisions for Personalized Products with Demand Information Updating and Limited Capacity

Authors: Meimei Zheng

Abstract:

Product personalization could not only bring new profits to companies but also provide the direction of long-term development for companies. However, the characteristics of personalized product cause some new problems. This paper investigates how companies make decisions on the supply of personalized products when facing different customer attitudes to personalized product and service, constraints due to limited capacity and updates of personalized demand information. This study will provide optimal decisions for companies to develop personalized markets, resulting in promoting business transformation and improving business competitiveness.

Keywords: demand forecast updating, limited capacity, personalized products, optimization

Procedia PDF Downloads 236
7851 The Effect of an Infill on the Bearing Capacity and Stiffness of Infilled Frames

Authors: Goran Baloevic, Jure Radnic, Nikola Grgic

Abstract:

The application of frames with masonry or panel infill is common in the engineering practice. In these cases, a frame is often considered to be a primary structure, while an infill is considered to be a secondary structure. In past calculations, the infill was rarely included in the design of frame structures in terms of their bearing capacity and safety. Recent calculations of such structures necessarily include the effect of infill since it contributes to stiffness and bearing capacity of overall system, especially under horizontal loads. In certain cases, if the infill is not included in the seismic design of frame structures, the result can be lower design safety. However, since the different configuration of the infill through the building’s height can be made, it is possible that contribution of such infill to the overall bearing capacity can be lower and seismic forces on the building can be increased due to greater stiffness of the structure. So far, many experimental and numerical researches on the behavior of infilled frames under horizontal static forces and earthquake have been performed. In this paper, several masonry-infilled concrete and steel frames under horizontal static forces and earthquake are analysed. The experimental results by shake-table and numerical results are compared in terms of the bearing capacity of bare and infilled frames. Herein, the stiffness of frames and infill were varied, with different position of the infill and different types of openings. Cases with positive and negative effects of the infill to the bearing capacity of the frames were considered. Finally, main conclusions and recommendations for practical application and design of masonry-infilled concrete and steel frames are given.

Keywords: bearing capacity, infilled frame, numerical model, shake table

Procedia PDF Downloads 443
7850 Effect of Heat Treatment on Columnar Grain Growth and Goss Texture on Surface in Grain-Oriented Electrical Steels

Authors: Jungkyun Na, Jaesang Lee, Yang Mo Koo

Abstract:

In this study to find a replacement for expensive secondary recrystallization in GO electrical steel production, effect of heat treatment on the formation of columnar grain and Goss texture is investigated. The composition of the sample is Fe-2.0Si-0.2C. This process involves repeating of cold rolling and decarburization as a replacement for secondary recrystallization. By cold-rolling shear band is made and Goss grain grows from shear band by decarburization. By doing another cold rolling, some Goss texture is newly formed from the shear band, and some Goss texture is retained in microbands. To determine whether additional heat treatment with H2 atmosphere is needed on decarburization process for growth of Goss texture, comparing between decarburization and heat treatment with H2 atmosphere is performed. Also, to find optimum condition for heat treatment, heat treatment with various time and temperature is performed. It was found that increase in the number of cold rolling and heat treatment increases Goss texture. Both high Goss texture and good columnar structure is achieved at 900℃, and this temperature is within a+r phase region. Heat treatment at a temperature higher than a+r phase region caused carbon diffusion and this made layer with Goss grain decrease.

Keywords: electrical steel, Goss texture, columnar structure, normal grain growth

Procedia PDF Downloads 203
7849 In the Study of Co₂ Capacity Performance of Different Frothing Agents through Process Simulation

Authors: Muhammad Idrees, Masroor Abro, Sikandar Almani

Abstract:

Presently, the increasing CO₂ concentration in the atmosphere has been taken as one of the major challenges faced by the modern world. The average CO₂ in the atmosphere reached the highest value of 414.72 ppm in 2021, as reported in a conference of the parties (COP26). This study focuses on (i) the comparative study of MEA, NaOH, Acetic acid, and Na₂CO₃ in terms of their CO₂ capture performance, (ii) the significance of adding various frothing agents achieving improved absorption capacity of Na₂CO₃ and (iii) the overall economic evaluation of process with the help of Aspen Plus. The results obtained suggest that the addition of frothing agents significantly increased the absorption rate of dilute sodium carbonate such that from 45% to 99.9%. The effect of temperature, pressure and flow rate of liquid and flue gas streams on CO₂ absorption capacity was also investigated. It was found that the absorption capacity of Na₂CO₃ decreased with increasing temperature of the liquid stream and decreasing flow rate of the liquid stream and pressure of the gas stream.

Keywords: CO₂, absorbents, frothing agents, process simulation

Procedia PDF Downloads 59
7848 Understanding Social Networks in Community's Coping Capacity with Floods: A Case Study of a Community in Cambodia

Authors: Ourn Vimoil, Kallaya Suntornvongsagul

Abstract:

Cambodia is considered as one of the most disaster prone countries in South East Asia, and most of natural disasters are related to floods. Cambodia, a developing country, faces significant impacts from floods, such as environmental, social, and economic losses. Using data accessed from focus group discussions and field surveys with villagers in Ba Baong commune, prey Veng province, Cambodia, the research would like to examine roles of social networks in raising community’s coping capacity with floods. The findings indicate that social capital play crucial roles in three stages of floods, namely preparedness, response, and recovery to overcome the crisis. People shared their information and resources, and extent their assistances to one another in order to adapt to floods. The study contribute to policy makers, national and international agencies working on this issue to pay attention on social networks as one factors to accelerate flood coping capacity at community level.

Keywords: social network, community, coping capacity, flood, Cambodia

Procedia PDF Downloads 345