Search results for: protein-protein interaction networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6614

Search results for: protein-protein interaction networks

5384 Requirement Engineering for Intrusion Detection Systems in Wireless Sensor Networks

Authors: Afnan Al-Romi, Iman Al-Momani

Abstract:

The urge of applying the Software Engineering (SE) processes is both of vital importance and a key feature in critical, complex large-scale systems, for example, safety systems, security service systems, and network systems. Inevitably, associated with this are risks, such as system vulnerabilities and security threats. The probability of those risks increases in unsecured environments, such as wireless networks in general and in Wireless Sensor Networks (WSNs) in particular. WSN is a self-organizing network of sensor nodes connected by wireless links. WSNs consist of hundreds to thousands of low-power, low-cost, multi-function sensor nodes that are small in size and communicate over short-ranges. The distribution of sensor nodes in an open environment that could be unattended in addition to the resource constraints in terms of processing, storage and power, make such networks in stringent limitations such as lifetime (i.e. period of operation) and security. The importance of WSN applications that could be found in many militaries and civilian aspects has drawn the attention of many researchers to consider its security. To address this important issue and overcome one of the main challenges of WSNs, security solution systems have been developed by researchers. Those solutions are software-based network Intrusion Detection Systems (IDSs). However, it has been witnessed, that those developed IDSs are neither secure enough nor accurate to detect all malicious behaviours of attacks. Thus, the problem is the lack of coverage of all malicious behaviours in proposed IDSs, leading to unpleasant results, such as delays in the detection process, low detection accuracy, or even worse, leading to detection failure, as illustrated in the previous studies. Also, another problem is energy consumption in WSNs caused by IDS. So, in other words, not all requirements are implemented then traced. Moreover, neither all requirements are identified nor satisfied, as for some requirements have been compromised. The drawbacks in the current IDS are due to not following structured software development processes by researches and developers when developing IDS. Consequently, they resulted in inadequate requirement management, process, validation, and verification of requirements quality. Unfortunately, WSN and SE research communities have been mostly impermeable to each other. Integrating SE and WSNs is a real subject that will be expanded as technology evolves and spreads in industrial applications. Therefore, this paper will study the importance of Requirement Engineering when developing IDSs. Also, it will study a set of existed IDSs and illustrate the absence of Requirement Engineering and its effect. Then conclusions are drawn in regard of applying requirement engineering to systems to deliver the required functionalities, with respect to operational constraints, within an acceptable level of performance, accuracy and reliability.

Keywords: software engineering, requirement engineering, Intrusion Detection System, IDS, Wireless Sensor Networks, WSN

Procedia PDF Downloads 322
5383 Interaction of GCN5L1 with WHAMM and KIF5B Regulates Autolysosome Tubulation

Authors: Allen Seylani

Abstract:

Lysosome-dependent autophagy is a nutrient-deprivation-induced evolutionarily conserved intracellular recycling program that sequestrates intracellular cargo into autophagosomes (AP), which then fuse with lysosomes to form autolysosomes (ALs) for cargo digestion. To restore free lysosomes, autophagic lysosome reformation (ALR) is initiated by extrusion of tubular structures from autolysosomes at the final stage of autophagy, in a process called lysosomal tubulation (LT). This project aimed to investigate the molecular mechanism of GCN5L1 in LT and the following lysosomal signaling. GCN5L1 belongs to the BORC multiprotein complexes and is involved in controlling lysosomal trafficking; however, the effect of GCN5L1 on lysosome tubulation remains largely unknown. Genetic ablation of GCN5L1 in the mouse primary hepatocytes showed dramatically increased autolysosomes (ALs), decreased lysosome regeneration and absence of lysosomal tubulation. This phenotype suggests the possibility of disruption in lysosome tubulation, which results in the disturbance of the overall lysosome homeostasis. The formation of tubulars from ALs requires kinesin motor protein KIF5B. Immunoprecipitation was employed and confirmed the interaction of GCN5L1 with the ARL8B-KIF5B complex, which recruited KIF5B to ALs. At the same time, GCN5L1 interacted with WHAMM, which promotes the actin nucleation factor, which brings actin cytoskeleton to ALs and initiates LT. Furthermore, impaired LT in GCN5L1 deficient hepatocytes was restored by overexpression of GCN5L1, and this rescue effect was attenuated by knockdown of KIF5B. Additionally, lysosomal mTORC1 activity was upregulated in GCN5L1-/- hepatocytes, while inhibition of mTORC1 abrogated the GCN5L1 mediated rescue of LT in knockout hepatocytes. Altogether these findings revealed a novel mechanism of ALR, in which a simultaneous interaction of GCN5L1 with KIF5B and WHAMM is required for LT and downstream mTORC1 signaling.

Keywords: autophagy, autolysosome, GCN5L1, lysosome

Procedia PDF Downloads 155
5382 The School Threshold's Identity as a Place for Interaction: Research Project with the Participation of Elementary-School Children

Authors: Natalia Bazaiou

Abstract:

The school entrance is one of the most important places in the everyday lives of children. As an intersection between school and public realm of the city, it is characterized by gradations of porous and rigid boundaries. Depending on its function, it can serve as a threshold or as a boundary. Additionally, it is a spatial condition that facilitates a dialogue between the school and the city and draws content from both. School thresholds are important in supporting the role of the school as an important node in the city and a bridge between children's various everyday life dynamics by demonstrating prominent usage and meaning as a place that is open to the community as well as to possibilities and physical interaction. In this research, we examine the role of the "realm of the in-between" between school and city through the architecture workshops for children at Hill Memorial School in Athens, in which we explore children's perceptions, wishes, and ideas related to their familiar everyday places of transition from school to city and vice versa. Also discussed in the presentation are the writings of Herman Hertzberger, Aldo Van Eyck, Jaap Bakema and others.

Keywords: threshold, city, play, identity, cinematic tools, children, school architecture

Procedia PDF Downloads 81
5381 Adversarial Attacks and Defenses on Deep Neural Networks

Authors: Jonathan Sohn

Abstract:

Deep neural networks (DNNs) have shown state-of-the-art performance for many applications, including computer vision, natural language processing, and speech recognition. Recently, adversarial attacks have been studied in the context of deep neural networks, which aim to alter the results of deep neural networks by modifying the inputs slightly. For example, an adversarial attack on a DNN used for object detection can cause the DNN to miss certain objects. As a result, the reliability of DNNs is undermined by their lack of robustness against adversarial attacks, raising concerns about their use in safety-critical applications such as autonomous driving. In this paper, we focus on studying the adversarial attacks and defenses on DNNs for image classification. There are two types of adversarial attacks studied which are fast gradient sign method (FGSM) attack and projected gradient descent (PGD) attack. A DNN forms decision boundaries that separate the input images into different categories. The adversarial attack slightly alters the image to move over the decision boundary, causing the DNN to misclassify the image. FGSM attack obtains the gradient with respect to the image and updates the image once based on the gradients to cross the decision boundary. PGD attack, instead of taking one big step, repeatedly modifies the input image with multiple small steps. There is also another type of attack called the target attack. This adversarial attack is designed to make the machine classify an image to a class chosen by the attacker. We can defend against adversarial attacks by incorporating adversarial examples in training. Specifically, instead of training the neural network with clean examples, we can explicitly let the neural network learn from the adversarial examples. In our experiments, the digit recognition accuracy on the MNIST dataset drops from 97.81% to 39.50% and 34.01% when the DNN is attacked by FGSM and PGD attacks, respectively. If we utilize FGSM training as a defense method, the classification accuracy greatly improves from 39.50% to 92.31% for FGSM attacks and from 34.01% to 75.63% for PGD attacks. To further improve the classification accuracy under adversarial attacks, we can also use a stronger PGD training method. PGD training improves the accuracy by 2.7% under FGSM attacks and 18.4% under PGD attacks over FGSM training. It is worth mentioning that both FGSM and PGD training do not affect the accuracy of clean images. In summary, we find that PGD attacks can greatly degrade the performance of DNNs, and PGD training is a very effective way to defend against such attacks. PGD attacks and defence are overall significantly more effective than FGSM methods.

Keywords: deep neural network, adversarial attack, adversarial defense, adversarial machine learning

Procedia PDF Downloads 195
5380 Analyze of Nanoscale Materials and Devices for Future Communication and Telecom Networks in the Gas Refinery

Authors: Mohamad Bagher Heidari, Hefzollah Mohammadian

Abstract:

New discoveries in materials on the nanometer-length scale are expected to play an important role in addressing ongoing and future challenges in the field of communication. Devices and systems for ultra-high speed short and long range communication links, portable and power efficient computing devices, high-density memory and logics, ultra-fast interconnects, and autonomous and robust energy scavenging devices for accessing ambient intelligence and needed information will critically depend on the success of next-generation emerging nonmaterials and devices. This article presents some exciting recent developments in nonmaterials that have the potential to play a critical role in the development and transformation of future intelligent communication and telecom networks in the gas refinery. The industry is benefiting from nanotechnology advances with numerous applications including those in smarter sensors, logic elements, computer chips, memory storage devices, optoelectronics.

Keywords: nonmaterial, intelligent communication, nanoscale, nanophotonic, telecom

Procedia PDF Downloads 333
5379 The Preparation and Training of Expert Studio Reviewers

Authors: Diane M. Bender

Abstract:

In design education, professional education is delivered in a studio, where students learn and understand their discipline. This learning methodology culminates in a final review, where students present their work before instructors and invited reviewers, known as jurors. These jurors are recognized experts who add a wide diversity of opinions in their feedback to students. This feedback can be provided in multiple formats, mainly a verbal critique of the work. To better understand how these expert reviewers prepare for a studio review, a survey was distributed to reviewers at a multi-disciplinary design school within the United States. Five design disciplines are involved in this case study: architecture, graphic design, industrial design, interior design, and landscape architecture. Respondents (n=122) provided information about if and how they received training on how to critique and participate in a final review. Common forms of training included mentorship, modeled behavior from other designers/past professors, workshops on critique from the instructing faculty prior to the crit session, and by being a practicing design professional. Respondents also gave feedback about how much the instructor provided course materials prior to the review in order to better prepare for student interaction. Finally, respondents indicated if they had interaction, and in what format, with students prior to the final review. Typical responses included participation in studio desk crits, a midterm jury member, meetings with students, and email or social media correspondence. While the focus of this study is the studio review, the findings are equally applicable to other disciplines. Suggestions will be provided on how to improve the preparation of guests in the learning process and how their interaction can positively influence student engagement.

Keywords: critique, design, education, evaluation, juror

Procedia PDF Downloads 82
5378 Online Postgraduate Students’ Perceptions and Experiences With Student to Student Interactions: A Case for Kamuzu University of Health Sciences in Malawi

Authors: Frazer McDonald Ng'oma

Abstract:

Online Learning in Malawi has only immersed in recent years due to the need to increase access to higher education, the need to accommodate upgrading students who wish to study on a part time basis while still continuing their work, and the COVID-19 pandemic, which forced the closure of schools resulting in academic institutions seeking alternative modes of teaching and Learning to ensure continued teaching and Learning. Realizing that this mode of Learning is becoming a norm, institutions of higher Learning have started pioneering online post-graduate programs from which they can draw lessons before fully implementing it in undergraduate programs. Online learning pedagogy has not been fully grasped and institutions are still experimenting with this mode of Learning until online Learning guiding policies are created and its standards improved. This single case descriptive qualitative research study sought to investigate online postgraduate students’ perceptions and experiences with Student to student interactive pedagogy in their programs. The results of the study are to inform institutions and educators how to structure their programs to ensure that their students get the full satisfaction. 25 Masters students in 3 recently introduced online programs at Kamuzu University of Health Sciences (KUHES), were engaged; 19 were interviewed and 6 responded to questionnaires. The findings from the students were presented and categorized in themes and subthemes that emerged from the qualitative data that was collected and analysed following Colaizzi’s framework for data analysis that resulted in themes formulation. Findings revealed that Student to student interactions occurred in the online programme during live sessions, on class Whatsapp group, in discussion boards as well as on emails. Majority of the students (n=18) felt the level of students’ interaction initiated by the institution was too much, referring to mandatory interactions activities like commenting in discussion boards and attending to live sessons. Some participants (n=7) were satisfied with the level of interaction and also pointed out that they would be fine with more program-initiated student–to–student interactions. These participants attributed having been out of school for some time as a reason for needing peer interactions citing that it is already difficult to get back to a traditional on-campus school after some time, let alone an online class where there is no physical interaction with other students. In general, majority of the participants (n=18) did not value Student to student interaction in online Learning. The students suggested that having intensive student-to-student interaction in postgraduate online studies does not need to be a high priority for the institution and they further recommended that if a lecturer decides to incorporate student-to-student activities into a class, they should be optional.

Keywords: online learning, interactions, student interactions, post graduate students

Procedia PDF Downloads 71
5377 In situ Polymerization and Properties of Biobased Polyurethane/Epoxy Interpenetrating Network Nanocomposites

Authors: Aiswarea Mathew, Smita Mohanty, Jr., S. K. Nayak

Abstract:

Polyurethane networks based on castor oil (CO) as a renewable resource polyol were synthesized. Polyurethane/epoxy resin interpenetrating network nanocomposites containing modified montmorillonite organoclay (C30B-PU/EP nanocomposites) were prepared by an in situ intercalation method. The conventional spectroscopic characterization of the synthesized samples using FT-IR confirms the existence of the proposed castor oil based PU structure and also showed that strong interactions existed between C30B and EP/PU matrix. The dispersion degree of C30B in EP/PU matrix was characterized by X-Ray diffraction (XRD) method. Scanning electronic microscopy analysis showed that the interpenetrating process of PU and EP increases the exfoliation degree of C30B, and it improves the compatibility and the phase structure of polyurethane/epoxy resin interpenetrating polymer networks (PU/EP IPNs). The thermal stability improves compared to the polyurethane when the PU/EP IPN is formed. Mechanical properties including the Young’s modulus and tensile strength reflected marked improvement with addition of C30B.

Keywords: castor oil, epoxy, montmorillonite, polyurethane

Procedia PDF Downloads 400
5376 The Temporal Dimension of Narratives: A Construct of Qualitative Time

Authors: Ani Thomas

Abstract:

Every narrative is a temporal construct. Every narrative creates a qualitative experience of time for the viewer. The paper argues for the concept of a qualified time that emerges from the interaction between the narrative and the audience. The paper also challenges the conventional understanding of narrative time as either story time, real time or discourse time. Looking at narratives through the medium of Cinema, the study examines how narratives create and manipulate duration or durée, the qualitative experience of time as theorized by Henri Bergson. The paper further analyzes how Cinema and, by extension, narratives are nothing but Durée and the filmmaker, the artist of durée, who shape and manipulate the perception and emotions of the viewer through the manipulation and construction of durée. The paper draws on cinematic works to look at the techniques to demonstrate how filmmakers use, for example, editing, sound, compositional and production narratives etc., to create various modes of durée that challenge, amplify or unsettle the viewer’s sense of time. Bringing together the Viewer’s durée and exploring its interaction with the narrative construct, the paper explores the emergence of the new qualitative time, the narrative durée, that defines the audience experience.

Keywords: cinema, time, bergson, duree

Procedia PDF Downloads 148
5375 Wave Interaction with Defects in Pressurized Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry

Abstract:

A wave finite element (WFE) and finite element (FE) based computational method is presented by which the dispersion properties as well as the wave interaction coefficients for one-dimensional structural system can be predicted. The structural system is discretized as a system comprising a number of waveguides connected by a coupling joint. Uniform nodes are ensured at the interfaces of the coupling element with each waveguide. Then, equilibrium and continuity conditions are enforced at the interfaces. Wave propagation properties of each waveguide are calculated using the WFE method and the coupling element is modelled using the FE method. The scattering of waves through the coupling element, on which damage is modelled, is determined by coupling the FE and WFE models. Furthermore, the central aim is to evaluate the effect of pressurization on the wave dispersion and scattering characteristics of the prestressed structural system compared to that which is not prestressed. Numerical case studies are exhibited for two waveguides coupled through a coupling joint.

Keywords: Finite Element, Prestressed Structures, Wave Finite Element, Wave Propagation Properties, Wave Scattering Coefficients.

Procedia PDF Downloads 295
5374 Dynamical Characteristics of Interaction between Water Droplet and Aerosol Particle in Dedusting Technology

Authors: Ding Jue, Li Jiahua, Lei Zhidi, Weng Peifen, Li Xiaowei

Abstract:

With the rapid development of national modern industry, people begin to pay attention to environmental pollution and harm caused by industrial dust. Based on above, a numerical study on the dedusting technology of industrial environment was conducted. The dynamic models of multicomponent particles collision and coagulation, breakage and deposition are developed, and the interaction of water droplet and aerosol particle in 2-Dimension flow field was researched by Eulerian-Lagrangian method and Multi-Monte Carlo method. The effects of the droplet scale, movement speed of droplet and the flow field structure on scavenging efficiency were analyzed. The results show that under the certain condition, 30μm of droplet has the best scavenging efficiency. At the initial speed 1m/s of droplets, droplets and aerosol particles have more time to interact, so it has a better scavenging efficiency for the particle.

Keywords: water droplet, aerosol particle, collision and coagulation, multi-monte carlo method

Procedia PDF Downloads 307
5373 Frequency Distribution and Assertive Object Theory: An Exploration of the Late Bronze Age Italian Ceramic Landscape

Authors: Sara Fioretti

Abstract:

In the 2nd millennium BCE, maritime networks became essential to the Mediterranean lifestyle, creating an interconnected world. This phenomenon of interconnected cultures has often been misinterpreted as an “effect” of the Mycenaean “influence” without considering the complexity and role of regional and cross-cultural exchanges. This paper explores the socio-economic relationships, in both cross-cultural and potentially inter-regional settings, present within the archaeological repertoire of the southern Italian Late Bronze Age (LBA 1600 -1140 BCE). The emergence of economic relations within the connectivity of the regional settlements is explored through ceramic contexts found in the case studies Punta di Zambrone, Broglio di Trebisacce, and Nuraghe Antigori. This work-in-progress research is situated in the shifting theoretical views of the last ten years that discuss the Late Bronze Age’s connectivity through Social Networks, Entanglement, and Assertive Objects combined with a comparative statistical study of ceramic frequency distribution. Applying these theoretical frameworks with a quantitative approach demonstrates the specific regional economic relationships that shaped the cultural interactions of the Late Bronze Age. Through this intersection of theory and statistical analysis, the case studies establish a small percentage of pottery as imported, whilst assertive productions have a relatively higher quantity. Overall, the majority still adheres to regional Italian traditions. Therefore, we can dissect the rhizomatic relationships cultivated by the Italian coasts and Mycenaeans and their roles within their networks through the intersection of theoretical and statistical analysis. This research offers a new perspective on the connectivity of the Late Bronze Age relational structures.

Keywords: late bronze age, mediterranean archaeology, exchanges and trade, frequency distribution of ceramic assemblages

Procedia PDF Downloads 41
5372 Neural Network Approach For Clustering Host Community: Based on Perceptions Toward Tourism, Their Satisfaction Level and Demographic Attributes in Iran (Lahijan)

Authors: Nasibeh Mohammadpour, Ali Rajabzadeh, Adel Azar, Hamid Zargham Borujeni,

Abstract:

Generally, various industries development depends on their stakeholders and beneficiaries supports. One of the most important stakeholders in tourism industry ( which has become one of the most important lucrative and employment-generating activities at the international level these days) are host communities in tourist destination which are affected and effect on this industry development. Recognizing host community and its segmentations can be important to get their support for future decisions and policy making. In order to identify these segments, in this study, clustering of the residents has been done by using some tools that are designed to encounter human complexities and have ability to model and generalize complex systems without any needs for the initial clusters’ seeds like classic methods. Neural networks can help to meet these expectations. The research have been planned to design neural networks-based mathematical model for clustering the host community effectively according to multi criteria, and identifies differences among segments. In order to achieve this goal, the residents’ segmentation has been done by demographic characteristics, their attitude towards the tourism development, the level of satisfaction and the type of their support in this field. The applied method is self-organized neural networks and the results have compared with K-means. As the results show, the use of Self- Organized Map (SOM) method provides much better results by considering the Cophenetic correlation and between clusters variance coefficients. Based on these criteria, the host community is divided into five sections with unique and distinctive features, which are in the best condition (in comparison other modes) according to Cophenetic correlation coefficient of 0.8769 and between clusters variance of 0.1412.

Keywords: Artificial Nural Network, Clustering , Resident, SOM, Tourism

Procedia PDF Downloads 183
5371 High-Capacity Image Steganography using Wavelet-based Fusion on Deep Convolutional Neural Networks

Authors: Amal Khalifa, Nicolas Vana Santos

Abstract:

Steganography has been known for centuries as an efficient approach for covert communication. Due to its popularity and ease of access, image steganography has attracted researchers to find secure techniques for hiding information within an innocent looking cover image. In this research, we propose a novel deep-learning approach to digital image steganography. The proposed method, DeepWaveletFusion, uses convolutional neural networks (CNN) to hide a secret image into a cover image of the same size. Two CNNs are trained back-to-back to merge the Discrete Wavelet Transform (DWT) of both colored images and eventually be able to blindly extract the hidden image. Based on two different image similarity metrics, a weighted gain function is used to guide the learning process and maximize the quality of the retrieved secret image and yet maintaining acceptable imperceptibility. Experimental results verified the high recoverability of DeepWaveletFusion which outperformed similar deep-learning-based methods.

Keywords: deep learning, steganography, image, discrete wavelet transform, fusion

Procedia PDF Downloads 90
5370 3 Dimensions Finite Element Analysis of Tunnel-Pile Interaction Scenarios Using Abaqus Software

Authors: Haitham J. M. Odeh

Abstract:

This paper introduced an analysis of the effect of tunneling near pile foundations. Accomplished by three-dimensional finite element modeling. The numerical simulation is conducted using Abaqus finite element software. By examining different Tunnel-pile scenarios. The paper presents the tunnel induced pile responses, Such as pile settlement, pile internal forces, and the comments made on changing the vertical and transversal location of the tunnel related to the piles, the study contains two pile-supported structure cases, single and a group of piles. A comprehensive comparison between real case study results and numerical simulation is presented. The results of the analysis reveal the critical and safe location of tunnel construction and the positive effect of a group of piles existing instead of single piles. Also, demonstrates the changes in pile responses by changing the tunnel location.

Keywords: pile responses, single pile, group of piles, pile-tunnel interaction

Procedia PDF Downloads 142
5369 Design an Intelligent Fire Detection System Based on Neural Network and Particle Swarm Optimization

Authors: Majid Arvan, Peyman Beygi, Sina Rokhsati

Abstract:

In-time detection of fire in buildings is of great importance. Employing intelligent methods in data processing in fire detection systems leads to a significant reduction of fire damage at lowest cost. In this paper, the raw data obtained from the fire detection sensor networks in buildings is processed by using intelligent methods based on neural networks and the likelihood of fire happening is predicted. In order to enhance the quality of system, the noise in the sensor data is reduced by analyzing wavelets and applying SVD technique. Meanwhile, the proposed neural network is trained using particle swarm optimization (PSO). In the simulation work, the data is collected from sensor network inside the room and applied to the proposed network. Then the outputs are compared with conventional MLP network. The simulation results represent the superiority of the proposed method over the conventional one.

Keywords: intelligent fire detection, neural network, particle swarm optimization, fire sensor network

Procedia PDF Downloads 380
5368 Functional Connectivity Signatures of Polygenic Depression Risk in Youth

Authors: Louise Moles, Steve Riley, Sarah D. Lichenstein, Marzieh Babaeianjelodar, Robert Kohler, Annie Cheng, Corey Horien Abigail Greene, Wenjing Luo, Jonathan Ahern, Bohan Xu, Yize Zhao, Chun Chieh Fan, R. Todd Constable, Sarah W. Yip

Abstract:

Background: Risks for depression are myriad and include both genetic and brain-based factors. However, relationships between these systems are poorly understood, limiting understanding of disease etiology, particularly at the developmental level. Methods: We use a data-driven machine learning approach connectome-based predictive modeling (CPM) to identify functional connectivity signatures associated with polygenic risk scores for depression (DEP-PRS) among youth from the Adolescent Brain and Cognitive Development (ABCD) study across diverse brain states, i.e., during resting state, during affective working memory, during response inhibition, during reward processing. Results: Using 10-fold cross-validation with 100 iterations and permutation testing, CPM identified connectivity signatures of DEP-PRS across all examined brain states (rho’s=0.20-0.27, p’s<.001). Across brain states, DEP-PRS was positively predicted by increased connectivity between frontoparietal and salience networks, increased motor-sensory network connectivity, decreased salience to subcortical connectivity, and decreased subcortical to motor-sensory connectivity. Subsampling analyses demonstrated that model accuracies were robust across random subsamples of N’s=1,000, N’s=500, and N’s=250 but became unstable at N’s=100. Conclusions: These data, for the first time, identify neural networks of polygenic depression risk in a large sample of youth before the onset of significant clinical impairment. Identified networks may be considered potential treatment targets or vulnerability markers for depression risk.

Keywords: genetics, functional connectivity, pre-adolescents, depression

Procedia PDF Downloads 58
5367 Stroma-Providing Activity of Adipose Derived Mesenchymal Stromal Cells in Tissue-Related O2 Microenvironment

Authors: P. I. Bobyleva, E. R. Andreeva, I. V. Andrianova, E. V. Maslova, L. B. Buravkova

Abstract:

This work studied the ability of adipose tissue-derived mesenchymal stromal cells (MSCs) to form stroma for expansion of cord blood hematopoietic cells. We showed that 72-hour interaction of MSCs with cord blood mononuclear cells (MNCs) in vitro at atmospheric (20%) and low (5%) O2 conditions increased the expression of ICAM-1, HCAM (at the beginning of interaction) on MSCs. Viability of MSCs and MNCs were maintained at high level. Adhesion of MNCs to MSCs was faster at 20% O2. MSCs promoted the proliferation of adhered MNCs to form the suspension containing great number of hematopoietic colony-forming units, and this effect was more pronounced at 5% O2. Thus, adipose-derived MSCs supplied sufficient stromal support to cord blood MNCs both at 20% and 5% О2, providing their adhesion with further expansion of new generation of different hematopoietic lineages.

Keywords: hematopoietic stem and progenitor cells, mesenchymal stromal cells, tissue-related oxygen, adipose tissue

Procedia PDF Downloads 418
5366 The Effects of Learning Engagement on Interpreting Performance among English Major Students

Authors: Jianhua Wang, Ying Zhou, Xi Zhang

Abstract:

To establish the influential mechanism of learning engagement on interpreter’s performance, the present study submitted a questionnaire to a sample of 927 English major students with 804 valid ones and used the structural equation model as the basis for empirical analysis and statistical inference on the sample data. In order to explore the mechanism for interpreting learning engagement on student interpreters’ performance, a path model of interpreting processes with three variables of ‘input-environment-output’ was constructed. The results showed that the effect of each ‘environment’ variable on interpreting ability was different from and greater than the ‘input’ variable, and learning engagement was the greatest influencing factor. At the same time, peer interaction on interpreting performance has significant influence. Results suggest that it is crucial to provide effective guidance for optimizing learning engagement and interpreting teaching research by both improving the environmental support and building the platform of peer interaction, beginning with learning engagement.

Keywords: learning engagement, interpreting performance, interpreter training, English major students

Procedia PDF Downloads 207
5365 Interactive Shadow Play Animation System

Authors: Bo Wan, Xiu Wen, Lingling An, Xiaoling Ding

Abstract:

The paper describes a Chinese shadow play animation system based on Kinect. Users, without any professional training, can personally manipulate the shadow characters to finish a shadow play performance by their body actions and get a shadow play video through giving the record command to our system if they want. In our system, Kinect is responsible for capturing human movement and voice commands data. Gesture recognition module is used to control the change of the shadow play scenes. After packaging the data from Kinect and the recognition result from gesture recognition module, VRPN transmits them to the server-side. At last, the server-side uses the information to control the motion of shadow characters and video recording. This system not only achieves human-computer interaction, but also realizes the interaction between people. It brings an entertaining experience to users and easy to operate for all ages. Even more important is that the application background of Chinese shadow play embodies the protection of the art of shadow play animation.

Keywords: hadow play animation, Kinect, gesture recognition, VRPN, HCI

Procedia PDF Downloads 401
5364 A Survey on Traditional Mac Layer Protocols in Cognitive Wireless Mesh Networks

Authors: Anusha M., V. Srikanth

Abstract:

Maximizing spectrum usage and numerous applications of the wireless communication networks have forced to a high interest of available spectrum. Cognitive Radio control its receiver and transmitter features exactly so that they can utilize the vacant approved spectrum without impacting the functionality of the principal licensed users. The Use of various channels assists to address interferences thereby improves the whole network efficiency. The MAC protocol in cognitive radio network explains the spectrum usage by interacting with multiple channels among the users. In this paper we studied about the architecture of cognitive wireless mesh network and traditional TDMA dependent MAC method to allocate channels dynamically. The majority of the MAC protocols suggested in the research are operated on Common-Control-Channel (CCC) to handle the services between Cognitive Radio secondary users. In this paper, an extensive study of Multi-Channel Multi-Radios or frequency range channel allotment and continually synchronized TDMA scheduling are shown in summarized way.

Keywords: TDMA, MAC, multi-channel, multi-radio, WMN’S, cognitive radios

Procedia PDF Downloads 561
5363 Artificial Neural Networks Face to Sudden Load Change for Shunt Active Power Filter

Authors: Dehini Rachid, Ferdi Brahim

Abstract:

The shunt active power filter (SAPF) is not destined only to improve the power factor, but also to compensate the unwanted harmonic currents produced by nonlinear loads. This paper presents a SAPF with identification and control method based on artificial neural network (ANN). To identify harmonics, many techniques are used, among them the conventional p-q theory and the relatively recent one the artificial neural network method. It is difficult to get satisfied identification and control characteristics by using a normal (ANN) due to the nonlinearity of the system (SAPF + fast nonlinear load variations). This work is an attempt to undertake a systematic study of the problem to equip the (SAPF) with the harmonics identification and DC link voltage control method based on (ANN). The latter has been applied to the (SAPF) with fast nonlinear load variations. The results of computer simulations and experiments are given, which can confirm the feasibility of the proposed active power filter.

Keywords: artificial neural networks (ANN), p-q theory, harmonics, total harmonic distortion

Procedia PDF Downloads 386
5362 Optimizing Super Resolution Generative Adversarial Networks for Resource-Efficient Single-Image Super-Resolution via Knowledge Distillation and Weight Pruning

Authors: Hussain Sajid, Jung-Hun Shin, Kum-Won Cho

Abstract:

Image super-resolution is the most common computer vision problem with many important applications. Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory requirements of GAN-based SR (mainly generators) lead to performance degradation and increased energy consumption, making it difficult to implement it onto resource-constricted devices. To relieve such a problem, In this paper, we introduce an optimized and highly efficient architecture for SR-GAN (generator) model by utilizing model compression techniques such as Knowledge Distillation and pruning, which work together to reduce the storage requirement of the model also increase in their performance. Our method begins with distilling the knowledge from a large pre-trained model to a lightweight model using different loss functions. Then, iterative weight pruning is applied to the distilled model to remove less significant weights based on their magnitude, resulting in a sparser network. Knowledge Distillation reduces the model size by 40%; pruning then reduces it further by 18%. To accelerate the learning process, we employ the Horovod framework for distributed training on a cluster of 2 nodes, each with 8 GPUs, resulting in improved training performance and faster convergence. Experimental results on various benchmarks demonstrate that the proposed compressed model significantly outperforms state-of-the-art methods in terms of peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and image quality for x4 super-resolution tasks.

Keywords: single-image super-resolution, generative adversarial networks, knowledge distillation, pruning

Procedia PDF Downloads 96
5361 Myeloid Zinc Finger 1/Ets-Like Protein-1/Protein Kinase C Alpha Associated with Poor Prognosis in Patients with Hepatocellular Carcinoma

Authors: Jer-Yuh Liu, Je-Chiuan Ye, Jin-Ming Hwang

Abstract:

Protein kinase C alpha (PKCα) is a key signaling molecule in human cancer development. As a therapeutic strategy, targeting PKCα is difficult because the molecule is ubiquitously expressed in non-malignant cells. PKCα is regulated by the cooperative interaction of the transcription factors myeloid zinc finger 1 (MZF-1) and Ets-like protein-1 (Elk-1) in human cancer cells. By conducting tissue array analysis, herein, we determined the protein expression of MZF-1/Elk-1/PKCα in various cancers. The data show that the expression of MZF-1/Elk-1 is correlated with that of PKCα in hepatocellular carcinoma (HCC), but not in bladder and lung cancers. In addition, the PKCα down-regulation by shRNA Elk-1 was only observed in the HCC SK-Hep-1 cells. Blocking the interaction between MZF-1 and Elk-1 through the transfection of their binding domain MZF-160–72 decreased PKCα expression. This step ultimately depressed the epithelial-mesenchymal transition potential of the HCC cells. These findings could be used to develop an alternative therapeutic strategy for patients with the PKCα-derived HCC.

Keywords: protein kinase C alpha, myeloid zinc finger 1, ets-like protein-1, hepatocellular carcinoma

Procedia PDF Downloads 227
5360 Machine Learning Techniques in Bank Credit Analysis

Authors: Fernanda M. Assef, Maria Teresinha A. Steiner

Abstract:

The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.

Keywords: artificial neural networks (ANNs), classifier algorithms, credit risk assessment, logistic regression, machine Learning, support vector machines

Procedia PDF Downloads 103
5359 Ferromagnetic Potts Models with Multi Site Interaction

Authors: Nir Schreiber, Reuven Cohen, Simi Haber

Abstract:

The Potts model has been widely explored in the literature for the last few decades. While many analytical and numerical results concern with the traditional two site interaction model in various geometries and dimensions, little is yet known about models where more than two spins simultaneously interact. We consider a ferromagnetic four site interaction Potts model on the square lattice (FFPS), where the four spins reside in the corners of an elementary square. Each spin can take an integer value 1,2,...,q. We write the partition function as a sum over clusters consisting of monochromatic faces. When the number of faces becomes large, tracing out spin configurations is equivalent to enumerating large lattice animals. It is known that the asymptotic number of animals with k faces is governed by λᵏ, with λ ≈ 4.0626. Based on this observation, systems with q < 4 and q > 4 exhibit a second and first order phase transitions, respectively. The transition nature of the q = 4 case is borderline. For any q, a critical giant component (GC) is formed. In the finite order case, GC is simple, while it is fractal when the transition is continuous. Using simple equilibrium arguments, we obtain a (zero order) bound on the transition point. It is claimed that this bound should apply for other lattices as well. Next, taking into account higher order sites contributions, the critical bound becomes tighter. Moreover, for q > 4, if corrections due to contributions from small clusters are negligible in the thermodynamic limit, the improved bound should be exact. The improved bound is used to relate the critical point to the finite correlation length. Our analytical predictions are confirmed by an extensive numerical study of FFPS, using the Wang-Landau method. In particular, the q=4 marginal case is supported by a very ambiguous pseudo-critical finite size behavior.

Keywords: entropic sampling, lattice animals, phase transitions, Potts model

Procedia PDF Downloads 160
5358 Neural Networks Underlying the Generation of Neural Sequences in the HVC

Authors: Zeina Bou Diab, Arij Daou

Abstract:

The neural mechanisms of sequential behaviors are intensively studied, with songbirds a focus for learned vocal production. We are studying the premotor nucleus HVC at a nexus of multiple pathways contributing to song learning and production. The HVC consists of multiple classes of neuronal populations, each has its own cellular, electrophysiological and functional properties. During singing, a large subset of motor cortex analog-projecting HVCRA neurons emit a single 6-10 ms burst of spikes at the same time during each rendition of song, a large subset of basal ganglia-projecting HVCX neurons fire 1 to 4 bursts that are similarly time locked to vocalizations, while HVCINT neurons fire tonically at average high frequency throughout song with prominent modulations whose timing in relation to song remains unresolved. This opens the opportunity to define models relating explicit HVC circuitry to how these neurons work cooperatively to control learning and singing. We developed conductance-based Hodgkin-Huxley models for the three classes of HVC neurons (based on the ion channels previously identified from in vitro recordings) and connected them in several physiologically realistic networks (based on the known synaptic connectivity and specific glutaminergic and gabaergic pharmacology) via different architecture patterning scenarios with the aim to replicate the in vivo firing patterning behaviors. We are able, through these networks, to reproduce the in vivo behavior of each class of HVC neurons, as shown by the experimental recordings. The different network architectures developed highlight different mechanisms that might be contributing to the propagation of sequential neural activity (continuous or punctate) in the HVC and to the distinctive firing patterns that each class exhibits during singing. Examples of such possible mechanisms include: 1) post-inhibitory rebound in HVCX and their population patterns during singing, 2) different subclasses of HVCINT interacting via inhibitory-inhibitory loops, 3) mono-synaptic HVCX to HVCRA excitatory connectivity, and 4) structured many-to-one inhibitory synapses from interneurons to projection neurons, and others. Replication is only a preliminary step that must be followed by model prediction and testing.

Keywords: computational modeling, neural networks, temporal neural sequences, ionic currents, songbird

Procedia PDF Downloads 70
5357 A Framework for Strategy Development in Small Companies: A Case Study of a Telecommunication Firm

Authors: Maryam Goodarzi, Mahdieh Sheikhi, Mehdi Goodarzi

Abstract:

This study intends to offer an appropriate strategy development framework for a telecommunication firm (as a case study) which works on Information and Communication Technology (ICT) projects, development of telecommunication networks, and maintenance of local networks, according to its dominant condition. In this approach, first, the objectives were set and the mission was defined. Then, the capability was assessed by SWOT matrix. Using SPACE matrix, the strategy of the company was determined. The strategic direction is set and an appropriate and superior strategy was developed and offered employing QSPM matrix. The theoretical framework or conceptual model of the present study first involves 4 stages of framework development and then from stage 3 (assessing capability) onward, a strategic management model by Fred R. David. In this respect, the tools and methods offered in the framework are appropriate for all kinds of organizations, particularly small firms, and help strategists identify, evaluate, and select strategies.

Keywords: strategy formulation, firm mission, strategic direction, space diagram, quantitative strategic planning matrix, SWOT matrix

Procedia PDF Downloads 374
5356 Correction Factors for Soil-Structure Interaction Predicted by Simplified Models: Axisymmetric 3D Model versus Fully 3D Model

Authors: Fu Jia

Abstract:

The effects of soil-structure interaction (SSI) are often studied using axial-symmetric three-dimensional (3D) models to avoid the high computational cost of the more realistic, fully 3D models, which require 2-3 orders of magnitude more computer time and storage. This paper analyzes the error and presents correction factors for system frequency, system damping, and peak amplitude of structural response computed by axisymmetric models, embedded in uniform or layered half-space. The results are compared with those for fully 3D rectangular foundations of different aspect ratios. Correction factors are presented for a range of the model parameters, such as fixed-base frequency, structure mass, height and length-to-width ratio, foundation embedment, soil-layer stiffness and thickness. It is shown that the errors are larger for stiffer, taller and heavier structures, deeper foundations and deeper soil layer. For example, for a stiff structure like Millikan Library (NS response; length-to-width ratio 1), the error is 6.5% in system frequency, 49% in system damping and 180% in peak amplitude. Analysis of a case study shows that the NEHRP-2015 provisions for reduction of base shear force due to SSI effects may be unsafe for some structures and need revision. The presented correction factor diagrams can be used in practical design and other applications.

Keywords: 3D soil-structure interaction, correction factors for axisymmetric models, length-to-width ratio, NEHRP-2015 provisions for reduction of base shear force, rectangular embedded foundations, SSI system frequency, SSI system damping

Procedia PDF Downloads 266
5355 Over the Air Programming Method for Learning Wireless Sensor Networks

Authors: K. Sangeeth, P. Rekha, P. Preeja, P. Divya, R. Arya, R. Maneesha

Abstract:

Wireless sensor networks (WSN) are small or tiny devices that consists of different sensors to sense physical parameters like air pressure, temperature, vibrations, movement etc., process these data and sends it to the central data center to take decisions. The WSN domain, has wide range of applications such as monitoring and detecting natural hazards like landslides, forest fire, avalanche, flood monitoring and also in healthcare applications. With such different applications, it is being taught in undergraduate/post graduate level in many universities under department of computer science. But the cost and infrastructure required to purchase WSN nodes for having the students getting hands on expertise on these devices is expensive. This paper gives overview about the remote triggered lab that consists of more than 100 WSN nodes that helps the students to remotely login from anywhere in the world using the World Wide Web, configure the nodes and learn the WSN concepts in intuitive way. It proposes new way called over the air programming (OTAP) and its internals that program the 100 nodes simultaneously and view the results without the nodes being physical connected to the computer system, thereby allowing for sparse deployment.

Keywords: WSN, over the air programming, virtual lab, AT45DB

Procedia PDF Downloads 377