Search results for: laser forming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1451

Search results for: laser forming

221 Effect of Dietary Organic Zinc Supplementation on Immunocompetance and Reproductive Performance in Rats

Authors: D. Nagalakshmi, S. Parashuramulu K. Sadasiva Rao, G. Aruna, L. Vikram

Abstract:

The zinc (Zn) is the second most abundant trace element in mammals and birds, forming structural component of over 300 enzymes, playing an important role in anti-oxidant defense, immune response and reproduction. Organic trace minerals are more readily absorbed from the digestive tract and more biologically available compared with its inorganic salt. Thus, the present study was undertaken on 60 adult female Sprague Dawley rats (275±2.04 g) for experimental duration of 12 weeks to investigate the effect of dietary Zn supplementation from various organic sources on immunity, reproduction, oxidative defense mechanism and blood biochemical profile. The rats were randomly allotted to 30 replicates (2 per replicate) which were in turn randomly allotted to 5 dietary treatments varying in Zn source i.e., one inorganic source (Zn carbonate) and 4 organic sources (Zn-proteinate, Zn-propionate, Zn-amino acid complex and Zn-methionine) so as to supply NRC recommended Zn concentration (12 ppm Zn). Supplementation of organic Zn had no effect on various haematological and serum biochemical constituents compared to inorganic Zn fed rats. The TBARS and protein carbonyls concentration in liver indicative of oxidative stress was comparable between various organic and inorganic groups. The glutathione reductase activity in haemolysate (P<0.05) and reduced glutathione concentration in liver (P<0.01) was higher when fed organic Zn and RBC catalase activity was higher (P<0.01) on Zn methionine compared to other organic sources tested and the inorganic source. The humoral immune response assessed as antibody titres against sheep RBC was higher (P<0.05) when fed organic sources of zinc compared to inorganic source. The cell mediated immune response expressed as delayed type hypersensitivity reaction was higher (P<0.05) in rats fed Zn propionate with no effect of other organic Zn sources. The serum progesterone concentration was higher (P<0.05) in rats fed organic Zn sources compared to inorganic zinc. The data on ovarian folliculogenesis indicated that organic Zn supplementation increased (P<0.05) the number of graafian follicles and corpus luteum with no effect on primary, secondary and tertiary follicle number. The study indicated that rats fed organic sources of Zn had higher antioxidant enzyme activities, immune response and serum progesterone concentration with higher number of mature follicles. Though the effect of feeding various organic sources were comparable, rats fed zinc methionine had higher antioxidant activity and cell mediated immune response was higher in rats on Zn propionate.

Keywords: organic zinc, immune, rats, reproductive

Procedia PDF Downloads 272
220 Epiphytic Growth on Filamentous Bacteria Found in Activated Sludge: A Morphological Approach

Authors: Thobela Conco, Sheena Kumari, Thor Stenstrom, Simona Rosetti, Valter Tandoi, Faizal Bux

Abstract:

Filamentous bacteria are well documented as causative agents of bulking and foaming in the biological wastewater treatment process. These filamentous bacteria are however closely associated with other non-filamentous organism forming a micro-niche. Among these specific epiphytic bacteria attach to filaments in the consortium of organisms that make up the floc. Neither the eco-physiological role of the epiphytes nor the nature of the interaction between the epiphytic bacteria and the filament hosts they colonize is well understood and in need of in-depth investigations. The focus of this presentation is on the interaction between the epiphytic bacteria and the filament host. Samples from the activated sludge treatment have been repeatedly collected from several wastewater treatment plants in KwaZulu Natal. Extensive investigations have been performed with SEM and TEM electron microscopy, Polarized Light Microscopy with Congo red staining, and Thioflavin T staining to document the interaction. SEM was used to document the morphology of both the filament host and their epiphytes counterparts with the focus on the interface/point of contact between the two, while the main focus of the TEM investigations with the higher magnification aimed to document the ultra-structure features of two organisms relating to the interaction. The interaction of the perpendicular attachment partly seems to be governed by the physiological status of the filaments. The attachment further seems to trigger a response in the filaments with distinct internal visible structures at the attachment sites. It is postulated that these structures most likely are amyloid fibrils. Amyloid fibrils may play an overarching role in different types of attachments and has earlier been noted to play a significant role in biofilm formation in activated sludge. They also play a medical role in degenerative diseases such as Alzheimer’s and Diabetes. Further studies aims to define the eco-physiological role of amyloid fibrils in filamentous bacteria, based on their observed presence at interaction sites in this study. This will also relate to additional findings where selectivity within the species of epiphytes attaching to the selected filaments has been noted. The practical implications of the research findings is still to be determined, but the ecophysiological interaction between two closely associated species or groups may have significant impact in the future understanding of wastewater treatment processes and broaden existing knowledge on population dynamics.

Keywords: activated sludge, amyloid proteins, epiphytic bacteria, filamentous bacteria

Procedia PDF Downloads 416
219 A Method against Obsolescence of Three-Dimensional Archaeological Collection. Two Cases of Study from Qubbet El-Hawa Necropolis, Aswan, Egypt

Authors: L. Serrano-Lara, J.M Alba-Gómez

Abstract:

Qubbet el–Hawa Project has been documented archaeological artifacts as 3d models by laser scanning technique since 2015. Currently, research has obtained the right methodology to develop a high accuracy photographic texture for each geometrical 3D model. Furthermore, the right methodology to attach the complete digital surrogate into a 3DPDF document has been obtained; it is used as a catalogue worksheet that brings archaeological data and, at the same time, allows us to obtain precise measurements, volume calculations and cross-section mapping of each scanned artifact. This validated archaeological documentation is the first step for dissemination, application as Qubbet el-Hawa Virtual Museum, and, moreover, multi-sensory experience through 3D print archaeological artifacts. Material culture from four funerary complexes constructed in West Aswan has become physical replicas opening the archaeological research process itself and offering creative possibilities on museology or educational projects. This paper shares a method of acquiring texture for scanning´s output product in order to achieve a 3DPDF archaeological cataloguing, and, on the other hand, to allow the colorfully 3D printing of singular archaeological artifacts. The proposed method has undergone two concrete cases, a polychrome wooden ushabti, and, a cartonnage mask belonging to a lady, bought recovered on intact tomb QH34aa. Both 3D model results have been implemented on three main applications, archaeological 3D catalogue, public dissemination activities, and the 3D artifact model in a bachelor education program. Due to those three already mentioned applications, productive interaction among spectator and three-dimensional artifact have been increased; moreover, functionality as archaeological documentation has been consolidated. Finding the right methodology to assign a specific color to each vector on the geometric 3D model, we had been achieved two essential archaeological applications. Firstly, 3DPDF as a display document for an archaeological catalogue, secondly, the possibility to obtain a colored 3d printed object to be displayed in public exhibitions. Obsolescences 3D models have become updated archaeological documentation of QH43aa tomb cultural material. Therefore, Qubbet el-Hawa Project has been actualized the educational potential of its results thanks to a multi-sensory experience that arose from 3d scanned´s archaeological artifacts.

Keywords: 3D printed, 3D scanner, Middle Kingdom, Qubbet el-Hawa necropolis, virtual archaeology

Procedia PDF Downloads 127
218 The Effect of Employees' Positive Attitude and Smile and Its Impact on the Quality of Service in the Hospitality Service

Authors: Mariam Kutateladze

Abstract:

In the twenty-first century, in the customer service settings for hospitality institution’s employee management and their well-being have become a core issue since it is linked to the customers' increased demand for high-quality service. Employees' positive attitude to customers plays an essential role in the serving process; for this reason, in the hospitality institutions service with a smile is a job requirement. This research is devoted to the issues of employee management systems improvement and its effect of the genuine smile as a positive attitude expressed by the employees to the customer. Different researchers work about the effect of the genuine smile, which is analyzed in the present paper. Based on it, the link between satisfied employees from service climate and their genuine smile is determined. An investigation in local resort hotels which are located in the regions of Georgia is conducted. In the methodology of the paper, we have used linkage research, which stated that employee satisfaction in a working place depends on the existing service climate in an organization. We have prepared questioners according to eight dimensions of good service climate by linkage research, and extra questions about the effect of the smile on customers were added. Questionnaires were distributed among employees, and the results have shown that dissatisfaction from organizations’ service climate led to employees' false smile toward customers. Demanding positive emotions from frustrated employees was the mistake of the hotel management. The false smile was easily recognized by the customers, and the frustrated employee with a false smile could not provide high-quality service. The findings of the paper will help managers to realize the importance of forming the positive service climate within the institutions since it is linked to employees' well-being who are the creators of high-quality service. The conclusion drawn from this study indicates there are core issues those managers need to take into account when planning their organizations’ profit. Managers should know their employees very well, their feelings and attitudes toward work before asking them expressing a smile since forced smile does not have a good result and quite often has bad outcomes; therefore, first of all, managers should investigate service climate in the organization. Managers should take into consideration employees’ opinions about the service climate in the organization, motivate their employees, and respect their ideas. Also, they should satisfy employees' basic needs and stress more value on extrinsic goals such as competence, relatedness, and autonomy. Managers should create a positive working environment, positive service climate, which will lead to employee satisfaction and genuine feelings, as well as improve the working environment since negative working climate will cause customers disappointment because of low-quality service provided by the unsatisfied employees.

Keywords: employee management, hotel, quality of service, service climate

Procedia PDF Downloads 99
217 Transformative Measures in Chemical and Petrochemical Industry Through Agile Principles and Industry 4.0 Technologies

Authors: Bahman Ghorashi

Abstract:

The immense awareness of the global climate change has compelled traditional fossil fuel companies to develop strategies to reduce their carbon footprint and simultaneously consider the production of various sources of clean energy in order to mitigate the environmental impact of their operations. Similarly, supply chain issues, the scarcity of certain raw materials, energy costs as well as market needs, and changing consumer expectations have forced the traditional chemical industry to reexamine their time-honored modes of operation. This study examines how such transformative change might occur through the applications of agile principles as well as industry 4.0 technologies. Clearly, such a transformation is complex, costly, and requires a total commitment on the part of the top leadership and the entire management structure. Factors that need to be considered include organizational speed of change, a restructuring that would lend itself toward collaboration and the selling of solutions to customers’ problems, rather than just products, integrating ‘along’ as well as ‘across’ value chains, mastering change and uncertainty as well as a recognition of the importance of concept-to-cash time, i.e., the velocity of introducing new products to market, and the leveraging of people and information. At the same time, parallel to implementing such major shifts in the ethos, and the fabric of the organization, the change leaders should remain mindful of the companies’ DNA while incorporating the necessary DNA defying shifts. Furthermore, such strategic maneuvers should inevitably incorporate the managing of the upstream and downstream operations, harnessing future opportunities, preparing and training the workforce, implementing faster decision making and quick adaptation to change, managing accelerated response times, as well as forming autonomous and cross-functional teams. Moreover, the leaders should establish the balance between high-value solutions versus high-margin products, fully implement digitization of operations and, when appropriate, incorporate the latest relevant technologies, such as: AI, IIoT, ML, and immersive technologies. This study presents a summary of the agile principles and the relevant technologies and draws lessons from some of the best practices that are already implemented within the chemical industry in order to establish a roadmap to agility. Finally, the critical role of educational institutions in preparing the future workforce for Industry 4.0 is addressed.

Keywords: agile principles, immersive technologies, industry 4.0, workforce preparation

Procedia PDF Downloads 94
216 Particle Gradient Generation in a Microchannel Using a Single IDT

Authors: Florian Kiebert, Hagen Schmidt

Abstract:

Standing surface acoustic waves (sSAWs) have already been used to manipulate particles in a microfluidic channel made of polydimethylsiloxan (PDMS). Usually two identical facing interdigital transducers (IDTs) are exploited to form an sSAW. Further, it has been reported that an sSAW can be generated by a single IDT using a superstrate resonating cavity or a PDMS post. Nevertheless, both setups utilising a traveling surface acoustic wave (tSAW) to create an sSAW for particle manipulation are costly. We present a simplified setup with a tSAW and a PDMS channel to form an sSAW. The incident tSAW is reflected at the rear PDMS channel wall and superimposed with the reflected tSAW. This superpositioned waves generates an sSAW but only at regions where the distance to the rear channel wall is smaller as the attenuation length of the tSAW minus the channel width. Therefore in a channel of 500µm width a tSAW with a wavelength λ = 120 µm causes a sSAW over the whole channel, whereas a tSAW with λ = 60 µm only forms an sSAW next to the rear wall of the channel, taken into account the attenuation length of a tSAW in water. Hence, it is possible to concentrate and trap particles in a defined region of the channel by adjusting the relation between the channel width and tSAW wavelength. Moreover, it is possible to generate a particle gradient over the channel width by picking the right ratio between channel wall and wavelength. The particles are moved towards the rear wall by the acoustic streaming force (ASF) and the acoustic radiation force (ARF) caused by the tSAW generated bulk acoustic wave (BAW). At regions in the channel were the sSAW is dominating the ARF focuses the particles in the pressure nodes formed by the sSAW caused BAW. On the one side the ARF generated by the sSAW traps the particle at the center of the tSAW beam, i. e. of the IDT aperture. On the other side, the ASF leads to two vortices, one on the left and on the right side of the focus region, deflecting the particles out of it. Through variation of the applied power it is possible to vary the number of particles trapped in the focus points, because near to the rear wall the amplitude of the reflected tSAW is higher and, therefore, the ARF of the sSAW is stronger. So in the vicinity of the rear wall the concentration of particles is higher but decreases with increasing distance to the wall, forming a gradient of particles. The particle gradient depends on the applied power as well as on the flow rate. Thus by variation of these two parameters it is possible to change the particle gradient. Furthermore, we show that the particle gradient can be modified by changing the relation between the channel width and tSAW wavelength. Concluding a single IDT generates an sSAW in a PDMS microchannel enables particle gradient generation in a well-defined microfluidic flow system utilising the ARF and ASF of a tSAW and an sSAW.

Keywords: ARF, ASF, particle manipulation, sSAW, tSAW

Procedia PDF Downloads 317
215 Optical Assessment of Marginal Sealing Performance around Restorations Using Swept-Source Optical Coherence Tomography

Authors: Rima Zakzouk, Yasushi Shimada, Yasunori Sumi, Junji Tagami

Abstract:

Background and purpose: The resin composite has become the main material for the restorations of caries in recent years due to aesthetic characteristics, especially with the development of the adhesive techniques. The quality of adhesion to tooth structures is depending on an exchange process between inorganic tooth material and synthetic resin and a micromechanical retention promoted by resin infiltration in partially demineralized dentin. Optical coherence tomography (OCT) is a noninvasive diagnostic method for obtaining cross-sectional images that produce high-resolution of the biological tissue at the micron scale. The aim of this study was to evaluate the gap formation at adhesive/tooth interface of two-step self-etch adhesives that are preceded with or without phosphoric acid pre-etching in different regions of teeth using SS-OCT. Materials and methods: Round tapered cavities (2×2 mm) were prepared in cervical part of bovine incisors teeth and divided into 2 groups (n=10): first group self-etch adhesive (Clearfil SE Bond) was applied for SE group and second group treated with acid etching before applying the self-etch adhesive for PA group. Subsequently, both groups were restored with Estelite Flow Quick Flowable Composite Resin and observed under OCT. Following 5000 thermal cycles, the same section was obtained again for each cavity using OCT at 1310-nm wavelength. Scanning was repeated after two months to monitor the gap progress. Then the gap length was measured using image analysis software, and the statistics analysis were done between both groups using SPSS software. After that, the cavities were sectioned and observed under Confocal Laser Scanning Microscope (CLSM) to confirm the result of OCT. Results: Gaps formed at the bottom of the cavity was longer than the gap formed at the margin and dento-enamel junction in both groups. On the other hand, pre-etching treatment led to damage the DEJ regions creating longer gap. After 2 months the results showed almost progress in the gap length significantly at the bottom regions in both groups. In conclusions, phosphoric acid etching treatment did not reduce the gap lrngth in most regions of the cavity. Significance: The bottom region of tooth was more exposed to gap formation than margin and DEJ regions, The DEJ damaged with phosphoric acid treatment.

Keywords: optical coherence tomography, self-etch adhesives, bottom, dento enamel junction

Procedia PDF Downloads 206
214 Development of Structural Deterioration Models for Flexible Pavement Using Traffic Speed Deflectometer Data

Authors: Sittampalam Manoharan, Gary Chai, Sanaul Chowdhury, Andrew Golding

Abstract:

The primary objective of this paper is to present a simplified approach to develop the structural deterioration model using traffic speed deflectometer data for flexible pavements. Maintaining assets to meet functional performance is not economical or sustainable in the long terms, and it would end up needing much more investments for road agencies and extra costs for road users. Performance models have to be included for structural and functional predicting capabilities, in order to assess the needs, and the time frame of those needs. As such structural modelling plays a vital role in the prediction of pavement performance. A structural condition is important for the prediction of remaining life and overall health of a road network and also major influence on the valuation of road pavement. Therefore, the structural deterioration model is a critical input into pavement management system for predicting pavement rehabilitation needs accurately. The Traffic Speed Deflectometer (TSD) is a vehicle-mounted Doppler laser system that is capable of continuously measuring the structural bearing capacity of a pavement whilst moving at traffic speeds. The device’s high accuracy, high speed, and continuous deflection profiles are useful for network-level applications such as predicting road rehabilitations needs and remaining structural service life. The methodology adopted in this model by utilizing time series TSD maximum deflection (D0) data in conjunction with rutting, rutting progression, pavement age, subgrade strength and equivalent standard axle (ESA) data. Then, regression analyses were undertaken to establish a correlation equation of structural deterioration as a function of rutting, pavement age, seal age and equivalent standard axle (ESA). This study developed a simple structural deterioration model which will enable to incorporate available TSD structural data in pavement management system for developing network-level pavement investment strategies. Therefore, the available funding can be used effectively to minimize the whole –of- life cost of the road asset and also improve pavement performance. This study will contribute to narrowing the knowledge gap in structural data usage in network level investment analysis and provide a simple methodology to use structural data effectively in investment decision-making process for road agencies to manage aging road assets.

Keywords: adjusted structural number (SNP), maximum deflection (D0), equant standard axle (ESA), traffic speed deflectometer (TSD)

Procedia PDF Downloads 138
213 Gene Expression and Staining Agents: Exploring the Factors That Influence the Electrophoretic Properties of Fluorescent Proteins

Authors: Elif Tugce Aksun Tumerkan, Chris Lowe, Hannah Krupa

Abstract:

Fluorescent proteins are self-sufficient in forming chromophores with a visible wavelength from 3 amino acids sequence within their own polypeptide structure. This chromophore – a molecule that absorbs a photon of light and exhibits an energy transition equal to the energy of the absorbed photon. Fluorescent proteins (FPs) consisted of a chain of 238 amino acid residues and composed of 11 beta strands shaped in a cylinder surrounding an alpha helix structure. A better understanding of the system of the chromospheres and the increasing advance in protein engineering in recent years, the properties of FPs offers the potential for new applications. They have used sensors and probes in molecular biology and cell-based research that giving a chance to observe these FPs tagged cell localization, structural variation and movement. For clarifying functional uses of fluorescent proteins, electrophoretic properties of these proteins are one of the most important parameters. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis is used for determining electrophoretic properties commonly. While there are many techniques are used for determining the functionality of protein-based research, SDS-PAGE analysis can only provide a molecular level assessment of the proteolytic fragments. Before SDS-PAGE analysis, fluorescent proteins need to successfully purified. Due to directly purification of the target, FPs is difficult from the animal, gene expression is commonly used which must be done by transformation with the plasmid. Furthermore, used gel within electrophoresis and staining agents properties have a key role. In this review, the different factors that have the impact on the electrophoretic properties of fluorescent proteins explored. Fluorescent protein separation and purification are the essential steps before electrophoresis that should be done very carefully. For protein purification, gene expression process and following steps have a significant function. For successful gene expression, the properties of selected bacteria for expression, used plasmid are essential. Each bacteria has own characteristics which are very sensitive to gene expression, also used procedure is the important factor for fluorescent protein expression. Another important factors are gel formula and used staining agents. Gel formula has an effect on the specific proteins mobilization and staining with correct agents is a key step for visualization of electrophoretic bands of protein. Visuality of proteins can be changed depending on staining reagents. Apparently, this review has emphasized that gene expression and purification have a stronger effect than electrophoresis protocol and staining agents.

Keywords: cell biology, gene expression, staining agents, SDS-page

Procedia PDF Downloads 173
212 Learning with Music: The Effects of Musical Tension on Long-Term Declarative Memory Formation

Authors: Nawras Kurzom, Avi Mendelsohn

Abstract:

The effects of background music on learning and memory are inconsistent, partly due to the intrinsic complexity and variety of music and partly to individual differences in music perception and preference. A prominent musical feature that is known to elicit strong emotional responses is musical tension. Musical tension can be brought about by building anticipation of rhythm, harmony, melody, and dynamics. Delaying the resolution of dominant-to-tonic chord progressions, as well as using dissonant harmonics, can elicit feelings of tension, which can, in turn, affect memory formation of concomitant information. The aim of the presented studies was to explore how forming declarative memory is influenced by musical tension, brought about within continuous music as well as in the form of isolated chords with varying degrees of dissonance/consonance. The effects of musical tension on long-term memory of declarative information were studied in two ways: 1) by evoking tension within continuous music pieces by delaying the release of harmonic progressions from dominant to tonic chords, and 2) by using isolated single complex chords with various degrees of dissonance/roughness. Musical tension was validated through subjective reports of tension, as well as physiological measurements of skin conductance response (SCR) and pupil dilation responses to the chords. In addition, music information retrieval (MIR) was used to quantify musical properties associated with tension and its release. Each experiment included an encoding phase, wherein individuals studied stimuli (words or images) with different musical conditions. Memory for the studied stimuli was tested 24 hours later via recognition tasks. In three separate experiments, we found positive relationships between tension perception and physiological measurements of SCR and pupil dilation. As for memory performance, we found that background music, in general, led to superior memory performance as compared to silence. We detected a trade-off effect between tension perception and memory, such that individuals who perceived musical tension as such displayed reduced memory performance for images encoded during musical tension, whereas tense music benefited memory for those who were less sensitive to the perception of musical tension. Musical tension exerts complex interactions with perception, emotional responses, and cognitive performance on individuals with and without musical training. Delineating the conditions and mechanisms that underlie the interactions between musical tension and memory can benefit our understanding of musical perception at large and the diverse effects that music has on ongoing processing of declarative information.

Keywords: musical tension, declarative memory, learning and memory, musical perception

Procedia PDF Downloads 82
211 Suture Biomaterials Development from Natural Fibers: Muga Silk (Antheraea assama) and Ramie (Boehmeria nivea)

Authors: Raghuram Kandimalla, Sanjeeb Kalita, Bhaswati Choudhury, Jibon Kotoky

Abstract:

The quest for developing an ideal suture material prompted our interest to develop a novel suture with advantageous characteristics to market available ones. We developed novel suture biomaterial from muga silk (Antheraea assama) and ramie (Boehmeria nivea) plant fiber. Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR) and thermo gravimetric analysis (TGA) results revealed the physicochemical properties of the fibers which supports the suitability of fibers for suture fabrication. Tensile properties of the prepared sutures were comparable with market available sutures and it found to be biocompatible towards human erythrocytes and nontoxic to mammalian cells. The prepared sutures completely healed the superficial deep wound incisions within seven days in adult male wister rats leaving no rash and scar. Histopathology studies supports the wound healing ability of sutures, as rapid synthesis of collagen, connective tissue and other skin adnexal structures were observed within seven days of surgery. Further muga suture surface modified by exposing the suture to oxygen plasma which resulted in formation of nanotopography on suture surface. Broad spectrum antibiotic amoxicillin was functionalized on the suture surface to prepare an advanced antimicrobial muga suture. Surface hydrophilicity induced by oxygen plasma results in an increase in drug-impregnation efficiency of modified muga suture by 16.7%. In vitro drug release profiles showed continuous and prolonged release of amoxicillin from suture up to 336 hours. The advanced muga suture proves to be effective against growth inhibition of Staphylococcus aureus and Escherichia coli, whereas normal muga suture offers no antibacterial activity against both types of bacteria. In vivo histopathology studies and colony-forming unit count data revealed accelerated wound healing activity of advanced suture over normal one through rapid synthesis and proliferation of collagen, hair follicle and connective tissues.

Keywords: sutures, biomaterials, silk, Ramie

Procedia PDF Downloads 296
210 Mechanical Characterization and CNC Rotary Ultrasonic Grinding of Crystal Glass

Authors: Ricardo Torcato, Helder Morais

Abstract:

The manufacture of crystal glass parts is based on obtaining the rough geometry by blowing and/or injection, generally followed by a set of manual finishing operations using cutting and grinding tools. The forming techniques used do not allow the obtainment, with repeatability, of parts with complex shapes and the finishing operations use intensive specialized labor resulting in high cycle times and production costs. This work aims to explore the digital manufacture of crystal glass parts by investigating new subtractive techniques for the automated, flexible finishing of these parts. Finishing operations are essential to respond to customer demands in terms of crystal feel and shine. It is intended to investigate the applicability of different computerized finishing technologies, namely milling and grinding in a CNC machining center with or without ultrasonic assistance, to crystal processing. Research in the field of grinding hard and brittle materials, despite not being extensive, has increased in recent years, and scientific knowledge about the machinability of crystal glass is still very limited. However, it can be said that the unique properties of glass, such as high hardness and very low toughness, make any glass machining technology a very challenging process. This work will measure the performance improvement brought about by the use of ultrasound compared to conventional crystal grinding. This presentation is focused on the mechanical characterization and analysis of the cutting forces in CNC machining of superior crystal glass (Pb ≥ 30%). For the mechanical characterization, the Vickers hardness test provides an estimate of the material hardness (Hv) and the fracture toughness based on cracks that appear in the indentation. Mechanical impulse excitation test estimates the Young’s Modulus, shear modulus and Poisson ratio of the material. For the cutting forces, it a dynamometer was used to measure the forces in the face grinding process. The tests were made based on the Taguchi method to correlate the input parameters (feed rate, tool rotation speed and depth of cut) with the output parameters (surface roughness and cutting forces) to optimize the process (better roughness using the cutting forces that do not compromise the material structure and the tool life) using ANOVA. This study was conducted for conventional grinding and for the ultrasonic grinding process with the same cutting tools. It was possible to determine the optimum cutting parameters for minimum cutting forces and for minimum surface roughness in both grinding processes. Ultrasonic-assisted grinding provides a better surface roughness than conventional grinding.

Keywords: CNC machining, crystal glass, cutting forces, hardness

Procedia PDF Downloads 139
209 Cyclocoelids (Trematoda: Echinostomata) from Gadwall Mareca strepera in the South of the Russian Far East

Authors: Konstantin S. Vainutis, Mark E. Andreev, Anastasia N. Voronova, Mikhail Yu. Shchelkanov

Abstract:

Introduction: The trematodes from the family Cyclocoelidae (cyclocoelids) belong to the superfamily Echinostomatoidea infecting air sacs and trachea of wild birds. At present, the family Cyclocoelidae comprises nine valid genera in three subfamilies: Cyclocoelinae (type taxon), Haematotrephinae, and Typhlocoelinae. To our best knowledge, in this study, molecular genetic methods were used for the first time for studying cyclocoelids from the Russian Far East. Here we provide the data on the morphology and phylogeny of cyclocoelids from gadwall from the Russian Far East. The morphological and genetic data obtained for cyclocoelids indicated the necessity to revise the previously proposed classification within the family Cyclocoelidae. Objectives: The first objective was performing the morphological study of cyclocoelids found in M. strepera from the Russian Far East. The second objective is to reconstruct the phylogenetic relationships of the studied trematodes with other cyclocoelids using the 28S gene. Material and methods: During the field studies in the Khasansky district of the Primorsky region, 21 cyclocoelids were recovered from the air sacs of a single gadwall Mareca strepera. Seven samples of cyclocoelids were overstained in alum carmine, dehydrated in a graded ethanol series, cleared in clove oil, and mounted in Canada balsam. Genomic DNA was extracted from four cyclocoelids using the alkaline lysis method HotShot. The 28S rDNA fragment was amplified using the forward primer Digl2 and the reverse primer 1500R. Results: According to morphological features (ovary intratesticular, forming a triangle with the testes), the studied worms belong to the subfamily Cyclocoelinae Stossich, 1902. In particular, the highest morphological similarity was observed in relation to the trematodes of the genus Cyclocoelum Brandes, 1892 – genital pores are pharyngeal. However, the genetic analysis has shown significant discrepancies between the trematodes studied regarding the genus Cyclocoelum. On the phylogenetic tree, these trematodes took the sister position in relation to the genus Morishitium (previously considered in the subfamily Szidatitrematinae). Conclusion: Based on the results of the morphological and genetic studies, cyclocoelids isolated from Mareca strepera are suggested to be described in the previously unknown genus and differentiated from the type genus Cyclocoelum of the type subfamily Cyclocoelinae. Considering the available molecular data, including described cyclocoelids, the family Cyclocoelidae comprises ten valid genera in the three subfamilies mentioned above.

Keywords: new species, trematoda, phylogeny, cyclocoelidae

Procedia PDF Downloads 827
208 Exploring the Potential of Bio-Inspired Lattice Structures for Dynamic Applications in Design

Authors: Axel Thallemer, Aleksandar Kostadinov, Abel Fam, Alex Teo

Abstract:

For centuries, the forming processes in nature served as a source of inspiration for both architects and designers. It seems as most human artifacts are based on ideas which stem from the observation of the biological world and its principles of growth. As a fact, in the cultural history of Homo faber, materials have been mostly used in their solid state: From hand axe to computer mouse, the principle of employing matter has not changed ever since the first creation. In the scope of history only recently and by the help of additive-generative fabrication processes through Computer Aided Design (CAD), designers were enabled to deconstruct solid artifacts into an outer skin and an internal lattice structure. The intention behind this approach is to create a new topology which reduces resources and integrates functions into an additively manufactured component. However, looking at the currently employed lattice structures, it is very clear that those lattice structure geometries have not been thoroughly designed, but rather taken out of basic-geometry libraries which are usually provided by the CAD. In the here presented study, a group of 20 industrial design students created new and unique lattice structures using natural paragons as their models. The selected natural models comprise both the animate and inanimate world, with examples ranging from the spiraling of narwhal tusks, off-shooting of mangrove roots, minimal surfaces of soap bubbles, up to the rhythmical arrangement of molecular geometry, like in the case of SiOC (Carbon-Rich Silicon Oxicarbide). This ideation process leads to a design of a geometric cell, which served as a basic module for the lattice structure, whereby the cell was created in visual analogy to its respective natural model. The spatial lattices were fabricated additively in mostly [X]3 by [Y]3 by [Z]3 units’ volumes using selective powder bed melting in polyamide with (z-axis) 50 mm and 100 µm resolution and subdued to mechanical testing of their elastic zone in a biomedical laboratory. The results demonstrate that additively manufactured lattice structures can acquire different properties when they are designed in analogy to natural models. Several of the lattices displayed the ability to store and return kinetic energy, while others revealed a structural failure which can be exploited for purposes where a controlled collapse of a structure is required. This discovery allows for various new applications of functional lattice structures within industrially created objects.

Keywords: bio-inspired, biomimetic, lattice structures, additive manufacturing

Procedia PDF Downloads 133
207 Quality and Shelf life of UHT Milk Produced in Tripoli, Libya

Authors: Faozia A. S. Abuhtana, Yahia S. Abujnah, Said O. Gnann

Abstract:

Ultra High Temperature (UHT) processed milk is widely distributed and preferred in numerous countries all over the world due its relatively high quality and long shelf life. Because of the notable high consumption rate of UHT in Libya in addition to negligible studies related to such product on the local level, this study was designed to assess the shelf life of locally produced as well as imported reconstituted sterilized whole milk samples marketed in Tripoli, Libya . Four locally produced vs. three imported brands were used in this study. All samples were stored at room temperature (25± 2C ) for 8 month long period, and subjected to physical, chemical, microbiological and sensory tests. These tests included : measurement of pH, specific gravity, percent acidity, and determination of fat, protein and melamine content. Microbiological tests included total aerobic count, total psychotropic bacteria, total spore forming bacteria and total coliform counts. Results indicated no detection of microbial growth of any type during the study period, in addition to no detection of melamine in all samples. On the other hand, a gradual decline in pH accompanied with gradual increase in % acidity of both locally produced and imported samples was observed. Such changes in both pH and % acidity reached their lowest and highest values respectively during the 24th week of storage. For instance pH values were (6.40, 6.55, 6.55, 6.15) and (6.30, 6.50, 6.20) for local and imported brands respectively. On the other hand, % acidity reached (0.185, 0181, 0170, 0183) and (0180, 0.180, 0.171) at the 24th week for local and imported brands respectively. Similar pattern of decline was also observed in specific gravity, fat and protein content in some local and imported samples especially at later stages of the study. In both cases, some of the recorded pH values, % acidity, sp. gravity and fat content were in violation of the accepted limits set by Libyan standard no. 356 for sterilized milk. Such changes in pH, % acidity and other UHT sterilized milk constituents during storage were coincided with a gradual decrease in the degree of acceptance of the stored milk samples of both types as shown by sensory scores recorded by the panelists. In either case degree of acceptance was significantly low at late stages of storage and most milk samples became relatively unacceptable after the 18th and 20th week for both untrained and trained panelists respectively.

Keywords: UHT milk, shelf life, quality, gravity, bacteria

Procedia PDF Downloads 320
206 The Connection Between the Semiotic Theatrical System and the Aesthetic Perception

Authors: Păcurar Diana Istina

Abstract:

The indissoluble link between aesthetics and semiotics, the harmonization and semiotic understanding of the interactions between the viewer and the object being looked at, are the basis of the practical demonstration of the importance of aesthetic perception within the theater performance. The design of a theater performance includes several structures, some considered from the beginning, art forms (i.e., the text), others being represented by simple, common objects (e.g., scenographic elements), which, if reunited, can trigger a certain aesthetic perception. The audience is delivered, by the team involved in the performance, a series of auditory and visual signs with which they interact. It is necessary to explain some notions about the physiological support of the transformation of different types of stimuli at the level of the cerebral hemispheres. The cortex considered the superior integration center of extransecal and entanged stimuli, permanently processes the information received, but even if it is delivered at a constant rate, the generated response is individualized and is conditioned by a number of factors. Each changing situation represents a new opportunity for the viewer to cope with, developing feelings of different intensities that influence the generation of meanings and, therefore, the management of interactions. In this sense, aesthetic perception depends on the detection of the “correctness” of signs, the forms of which are associated with an aesthetic property. Fairness and aesthetic properties can have positive or negative values. Evaluating the emotions that generate judgment and implicitly aesthetic perception, whether we refer to visual emotions or auditory emotions, involves the integration of three areas of interest: Valence, arousal and context control. In this context, superior human cognitive processes, memory, interpretation, learning, attribution of meanings, etc., help trigger the mechanism of anticipation and, no less important, the identification of error. This ability to locate a short circuit produced in a series of successive events is fundamental in the process of forming an aesthetic perception. Our main purpose in this research is to investigate the possible conditions under which aesthetic perception and its minimum content are generated by all these structures and, in particular, by interactions with forms that are not commonly considered aesthetic forms. In order to demonstrate the quantitative and qualitative importance of the categories of signs used to construct a code for reading a certain message, but also to emphasize the importance of the order of using these indices, we have structured a mathematical analysis that has at its core the analysis of the percentage of signs used in a theater performance.

Keywords: semiology, aesthetics, theatre semiotics, theatre performance, structure, aesthetic perception

Procedia PDF Downloads 71
205 Study of Mechanical Properties of Large Scale Flexible Silicon Solar Modules on the Various Substrates

Authors: M. Maleczek, Leszek Bogdan, Kazimierz Drabczyk, Agnieszka Iwan

Abstract:

Crystalline silicon (Si) solar cells are the main product in the market among the various photovoltaic technologies concerning such advantages as: material richness, high carrier mobilities, broad spectral absorption range and established technology. However, photovoltaic technology on the stiff substrates are heavier, more fragile and less cost-effective than devices on the flexible substrates to be applied in special applications. The main goal of our work was to incorporate silicon solar cells into various fabric, without any change of the electrical and mechanical parameters of devices. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management. In our work, the polyamide or polyester fabrics were used as a flexible substrate in the created devices. Applied fabrics differ in tensile and tear strength. All investigated polyamide fabrics are resistant to weathering and UV, while polyester ones is resistant to ozone, water and ageing. The examined fabrics are tight at 100 cm water per 2 hours. In our work, commercial silicon solar cells with the size 156 × 156 mm were cut into nine parts (called single solar cells) by diamond saw and laser. Gap and edge after cutting of solar cells were checked by transmission electron microscope (TEM) to study morphology and quality of the prepared single solar cells. Modules with the size of 160 × 70 cm (containing about 80 single solar cells) were created and investigated by electrical and mechanical methods. Weight of constructed module is about 1.9 kg. Three types of solar cell architectures such as: -fabric/EVA/Si solar cell/EVA/film for lamination, -backsheet PET/EVA/Si solar cell/EVA/film for lamination, -fabric/EVA/Si solar cell/EVA/tempered glass, were investigated taking into consideration type of fabric and lamination process together with the size of solar cells. In investigated devices EVA, it is ethylene-vinyl acetate, while PET - polyethylene terephthalate. Depend on the lamination process and compatibility of textile with solar cell an efficiency of investigated flexible silicon solar cells was in the range of 9.44-16.64 %. Multi folding and unfolding of flexible module has no impact on its efficiency as was detected by Instron equipment. Power (P) of constructed solar module is 30 W, while voltage about 36 V. Finally, solar panel contains five modules with the polyamide fabric and tempered glass will be produced commercially for different applications (dual use).

Keywords: flexible devices, mechanical properties, silicon solar cells, textiles

Procedia PDF Downloads 161
204 Integrating Computer-Aided Manufacturing and Computer-Aided Design for Streamlined Carpentry Production in Ghana

Authors: Benson Tette, Thomas Mensah

Abstract:

As a developing country, Ghana has a high potential to harness the economic value of every industry. Two of the industries that produce below capacity are handicrafts (for instance, carpentry) and information technology (i.e., computer science). To boost production and maintain competitiveness, the carpentry sector in Ghana needs more effective manufacturing procedures that are also more affordable. This issue can be resolved using computer-aided manufacturing (CAM) technology, which automates the fabrication process and decreases the amount of time and labor needed to make wood goods. Yet, the integration of CAM in carpentry-related production is rarely explored. To streamline the manufacturing process, this research investigates the equipment and technology that are currently used in the Ghanaian carpentry sector for automated fabrication. The research looks at the various CAM technologies, such as Computer Numerical Control routers, laser cutters, and plasma cutters, that are accessible to Ghanaian carpenters yet unexplored. We also investigate their potential to enhance the production process. To achieve the objective, 150 carpenters, 15 software engineers, and 10 policymakers were interviewed using structured questionnaires. The responses provided by the 175 respondents were processed to eliminate outliers and omissions were corrected using multiple imputations techniques. The processed responses were analyzed through thematic analysis. The findings showed that adaptation and integration of CAD software with CAM technologies would speed up the design-to-manufacturing process for carpenters. It must be noted that achieving such results entails first; examining the capabilities of current CAD software, then determining what new functions and resources are required to improve the software's suitability for carpentry tasks. Responses from both carpenters and computer scientists showed that it is highly practical and achievable to streamline the design-to-manufacturing process through processes such as modifying and combining CAD software with CAM technology. Making the carpentry-software integration program more useful for carpentry projects would necessitate investigating the capabilities of the current CAD software and identifying additional features in the Ghanaian ecosystem and tools that are required. In conclusion, the Ghanaian carpentry sector has a chance to increase productivity and competitiveness through the integration of CAM technology with CAD software. Carpentry companies may lower labor costs and boost production capacity by automating the fabrication process, giving them a competitive advantage. This study offers implementation-ready and representative recommendations for successful implementation as well as important insights into the equipment and technologies available for automated fabrication in the Ghanaian carpentry sector.

Keywords: carpentry, computer-aided manufacturing (CAM), Ghana, information technology(IT)

Procedia PDF Downloads 73
203 Preliminary Study of the Hydrothermal Polymetallic Ore Deposit at the Karancs Mountain, North-East Hungary

Authors: Eszter Kulcsar, Agnes Takacs, Gabriella B. Kiss, Peter Prakfalvi

Abstract:

The Karancs Mountain is part of the Miocene Inner Carpathian Volcanic Belt and is located in N-NE Hungary, along the Hungarian-Slovakian border. The 14 Ma old andesitic-dacitic units are surrounded by Oligocene sedimentary units (sandstone, siltstone). The host rocks of the mineralisation are siliceous and/or argillaceous volcanic units, quartz veins, hydrothermal breccia, and strongly silicified vuggy rocks, found in the various altered volcanic units. The hydrothermal breccia consists of highly silicified vuggy quartz clasts in quartz matrix. The hydrothermal alteration of the host units shows structural control at the deeper levels. The main ore minerals are galena, pyrite, marcasite, sphalerite, hematite, magnetite, arsenopyrite, anglesite and argentite The mineralisation was first mentioned in 1944 and the first exploration took place between 1961 and 1962 in the area. The first ore geological studies were performed between 1984-1985. The exploration programme was limited only to surface sampling; no drilling programme was performed. Petrographical and preliminary fluid inclusion studies were performed on calcite samples from a galena-bearing vein. Despite the early discovery of the mineralisation, no detailed description is available, thus its size, characteristics, and origin have remained unknown. The aim of this study is to examine the mineralisation, describe the characteristics in detail and to test the possible gold content of the various quartz veins and breccias. Finally, we also investigate the potential relation of the hydrothermal mineralisation to the surrounding similar mineralisations with similar ages (e.g. W-Mátra Mountains in Hungary, Banska Bystrica, Banska Stiavnica in Slovakia) in order to place the mineralisation within the volcanic-hydrothermal evolution of the Miocene Inner Carpathian Belt. As first steps, the study includes field mapping, traditional petrological and ore microscopy; X-ray diffraction analysis; SEM-EDS and EMPA studies on ore minerals, to obtain mineral chemical information. Fluid inclusion petrography and microthermometry and micro-Raman-spectroscopy studies are also planned on quartz-hosted inclusions to investigate the physical and chemical properties of the ore-forming fluid.

Keywords: epithermal, Karancs Mountain, Hungary, Miocene Inner Carpathian volcanic belt, polimetallic ore deposit

Procedia PDF Downloads 119
202 Assessment of Pedestrian Comfort in a Portuguese City Using Computational Fluid Dynamics Modelling and Wind Tunnel

Authors: Bruno Vicente, Sandra Rafael, Vera Rodrigues, Sandra Sorte, Sara Silva, Ana Isabel Miranda, Carlos Borrego

Abstract:

Wind comfort for pedestrians is an important condition in urban areas. In Portugal, a country with 900 km of coastline, the wind direction are predominantly from Nor-Northwest with an average speed of 2.3 m·s -1 (at 2 m height). As a result, a set of city authorities have been requesting studies of pedestrian wind comfort for new urban areas/buildings, as well as to mitigate wind discomfort issues related to existing structures. This work covers the efficiency evaluation of a set of measures to reduce the wind speed in an outdoor auditorium (open space) located in a coastal Portuguese urban area. These measures include the construction of barriers, placed at upstream and downstream of the auditorium, and the planting of trees, placed upstream of the auditorium. The auditorium is constructed in the form of a porch, aligned with North direction, driving the wind flow within the auditorium, promoting channelling effects and increasing its speed, causing discomfort in the users of this structure. To perform the wind comfort assessment, two approaches were used: i) a set of experiments using the wind tunnel (physical approach), with a representative mock-up of the study area; ii) application of the CFD (Computational Fluid Dynamics) model VADIS (numerical approach). Both approaches were used to simulate the baseline scenario and the scenarios considering a set of measures. The physical approach was conducted through a quantitative method, using hot-wire anemometer, and through a qualitative analysis (visualizations), using the laser technology and a fog machine. Both numerical and physical approaches were performed for three different velocities (2, 4 and 6 m·s-1 ) and two different directions (NorNorthwest and South), corresponding to the prevailing wind speed and direction of the study area. The numerical results show an effective reduction (with a maximum value of 80%) of the wind speed inside the auditorium, through the application of the proposed measures. A wind speed reduction in a range of 20% to 40% was obtained around the audience area, for a wind direction from Nor-Northwest. For southern winds, in the audience zone, the wind speed was reduced from 60% to 80%. Despite of that, for southern winds, the design of the barriers generated additional hot spots (high wind speed), namely, in the entrance to the auditorium. Thus, a changing in the location of the entrance would minimize these effects. The results obtained in the wind tunnel compared well with the numerical data, also revealing the high efficiency of the purposed measures (for both wind directions).

Keywords: urban microclimate, pedestrian comfort, numerical modelling, wind tunnel experiments

Procedia PDF Downloads 212
201 Finite Element Study of Coke Shape Deep Beam to Column Moment Connection Subjected to Cyclic Loading

Authors: Robel Wondimu Alemayehu, Sihwa Jung, Manwoo Park, Young K. Ju

Abstract:

Following the aftermath of the 1994 Northridge earthquake, intensive research on beam to column connections is conducted, leading to the current design basis. The current design codes require the use of either a prequalified connection or a connection that passes the requirements of large-scale cyclic qualification test prior to use in intermediate or special moment frames. The second alternative is expensive both in terms of money and time. On the other hand, the maximum beam depth in most of the prequalified connections is limited to 900mm due to the reduced rotation capacity of deeper beams. However, for long span beams the need to use deeper beams may arise. In this study, a beam to column connection detail suitable for deep beams is presented. The connection detail comprises of thicker-tapered beam flange adjacent to the beam to column connection. Within the thicker-tapered flange region, two reduced beam sections are provided with the objective of forming two plastic hinges within the tapered-thicker flange region. In addition, the length, width, and thickness of the tapered-thicker flange region are proportioned in such a way that a third plastic hinge forms at the end of the tapered-thicker flange region. As a result, the total rotation demand is distributed over three plastic zones. Making it suitable for deeper beams that have lower rotation capacity at one plastic hinge. The effectiveness of this connection detail is studied through finite element analysis. For the study, a beam that has a depth of 1200mm is used. Additionally, comparison with welded unreinforced flange-welded web (WUF-W) moment connection and reduced beam section moment connection is made. The results show that the rotation capacity of a WUF-W moment connection is increased from 2.0% to 2.2% by applying the proposed moment connection detail. Furthermore, the maximum moment capacity, energy dissipation capacity and stiffness of the WUF-W moment connection is increased up to 58%, 49%, and 32% respectively. In contrast, applying the reduced beam section detail to the same WUF-W moment connection reduced the rotation capacity from 2.0% to 1.50% plus the maximum moment capacity and stiffness of the connection is reduced by 22% and 6% respectively. The proposed connection develops three plastic hinge regions as intended and it shows improved performance compared to both WUF-W moment connection and reduced beam section moment connection. Moreover, the achieved rotation capacity satisfies the minimum required for use in intermediate moment frames.

Keywords: connections, finite element analysis, seismic design, steel intermediate moment frame

Procedia PDF Downloads 152
200 Building the Professional Readiness of Graduates from Day One: An Empirical Approach to Curriculum Continuous Improvement

Authors: Fiona Wahr, Sitalakshmi Venkatraman

Abstract:

Industry employers require new graduates to bring with them a range of knowledge, skills and abilities which mean these new employees can immediately make valuable work contributions. These will be a combination of discipline and professional knowledge, skills and abilities which give graduates the technical capabilities to solve practical problems whilst interacting with a range of stakeholders. Underpinning the development of these disciplines and professional knowledge, skills and abilities, are “enabling” knowledge, skills and abilities which assist students to engage in learning. These are academic and learning skills which are essential to common starting points for both the learning process of students entering the course as well as forming the foundation for the fully developed graduate knowledge, skills and abilities. This paper reports on a project created to introduce and strengthen these enabling skills into the first semester of a Bachelor of Information Technology degree in an Australian polytechnic. The project uses an action research approach in the context of ongoing continuous improvement for the course to enhance the overall learning experience, learning sequencing, graduate outcomes, and most importantly, in the first semester, student engagement and retention. The focus of this is implementing the new curriculum in first semester subjects of the course with the aim of developing the “enabling” learning skills, such as literacy, research and numeracy based knowledge, skills and abilities (KSAs). The approach used for the introduction and embedding of these KSAs, (as both enablers of learning and to underpin graduate attribute development), is presented. Building on previous publications which reported different aspects of this longitudinal study, this paper recaps on the rationale for the curriculum redevelopment and then presents the quantitative findings of entering students’ reading literacy and numeracy knowledge and skills degree as well as their perceived research ability. The paper presents the methodology and findings for this stage of the research. Overall, the cohort exhibits mixed KSA levels in these areas, with a relatively low aggregated score. In addition, the paper describes the considerations for adjusting the design and delivery of the new subjects with a targeted learning experience, in response to the feedback gained through continuous monitoring. Such a strategy is aimed at accommodating the changing learning needs of the students and serves to support them towards achieving the enabling learning goals starting from day one of their higher education studies.

Keywords: enabling skills, student retention, embedded learning support, continuous improvement

Procedia PDF Downloads 232
199 The Functions of Spatial Structure in Supporting Socialization in Urban Parks

Authors: Navid Nasrolah Mazandarani, Faezeh Mohammadi Tahrodi, Jr., Norshida Ujang, Richard Jan Pech

Abstract:

Human evolution has designed us to be dependent on social and natural settings, but designed of our modern cities often ignore this fact. It is evident that high-rise buildings dominate most metropolitan city centers. As a result urban parks are very limited and in many cases are not socially responsive to our social needs in these urban ‘jungles’. This paper emphasizes the functions of urban morphology in supporting socialization in Lake Garden, one of the main urban parks in Kuala Lumpur, Malaysia. It discusses two relevant theories; first the concept of users’ experience coined by Kevin Lynch (1960) which states that way-finding is related to the process of forming mental maps of environmental surroundings. Second, the concept of social activity coined by Jan Gehl (1987) which holds that urban public spaces can be more attractive when they provide welcoming places in which people can walk around and spend time. Until recently, research on socio-spatial behavior mainly focused on social ties, place attachment and human well-being; with less focus on the spatial dimension of social behavior. This paper examines the socio-spatial behavior within the spatial structure of the urban park by exploring the relationship between way-finding and social activity. The urban structures defined by the paths and nodes were analyzed as the fundamental topological structure of space to understand their effects on the social engagement pattern. The study uses a photo questionnaire survey to inspect the spatial dimension in relation to the social activities within paths and nodes. To understand the legibility of the park, spatial cognition was evaluated using sketch maps produced by 30 participants who visited the park. The results of the sketch mapping indicated that a spatial image has a strong interrelation with socio-spatial behavior. Moreover, an integrated spatial structure of the park generated integrated use and social activity. It was found that people recognized and remembered the spaces where they engaged in social activities. They could experience the park more thoroughly, when they found their way continuously through an integrated park structure. Therefore, the benefits of both perceptual and social dimensions of planning and design happened simultaneously. The findings can assist urban planners and designers to redevelop urban parks by considering the social quality design that contributes to clear mental images of these places.

Keywords: spatial structure, social activities, sketch map, urban park, way-finding

Procedia PDF Downloads 292
198 The Essential but Uncertain Role of the Vietnamese Association of Cities of Vietnam in Promoting Community-Based Housing Upgrading

Authors: T. Nguyen, H. Rennie, S. Vallance, M. Mackay

Abstract:

Municipal Associations, also called Unions, Leagues or Federations of municipalities have been established worldwide to represent the interests and needs of urban governments in the face of increasing urban issues. In 2008, the Association of Cities of Vietnam (ACVN) joined the Asian Coalition of Community Action Program (ACCA program) and introduced the community-based upgrading approach to help Vietnamese cities to address urban upgrading issues. While this community-based upgrading approach has only been implemented in a small number of Vietnamese cities and its replication has faced certain challenges, it is worthy to explore insights on how the Association of cities of Vietnam played its role in implementing some reportedly successful projects. This paper responds to this inquiry and presents results extracted from the author’s PhD study that sets out with a general objective to critically examine how social capital dimensions (i.e., bonding, bridging and linking) were formed, mobilized and maintained in a local collective and community-based upgrading process. Methodologically, the study utilized the given general categorization of bonding, bridging and linking capitals to explore and confirm how social capital operated in the real context of a community-based upgrading process, particularly in the context of Vietnam. To do this, the study conducted two exploratory and qualitative case studies of housing projects in Friendship neighbourhood (Vinh city) and Binh Dong neighbourhood (Tan An city). This paper presents the findings of the Friendship neighbourhood case study, focusing on the role of the Vietnamese municipal association in forming, mobilizing and maintaining bonding, bridging and linking capital for a community-based upgrading process. The findings highlight the essential but uncertain role of ACVN - the organization that has a hybrid legitimacy status - in such a process. The results improve our understanding both practically and theoretically. Practically, the results offer insights into the performance of a municipal association operating in a transitioning socio-political context of Vietnam. Theoretically, the paper questions the necessity of categorizing social capital dimensions (i.e., bonding, bridging and linking) by suggesting a holistic approach of looking at social capital for urban governance issues within the Vietnamese context and perhaps elsewhere.

Keywords: bonding capital, bridging capital, municipal association, linking capital, social capital, housing upgrading

Procedia PDF Downloads 132
197 An Efficient Automated Radiation Measuring System for Plasma Monopole Antenna

Authors: Gurkirandeep Kaur, Rana Pratap Yadav

Abstract:

This experimental study is aimed to examine the radiation characteristics of different plasma structures of a surface wave-driven plasma antenna by an automated measuring system. In this study, a 30 cm long plasma column of argon gas with a diameter of 3 cm is excited by surface wave discharge mechanism operating at 13.56 MHz with RF power level up to 100 Watts and gas pressure between 0.01 to 0.05 mb. The study reveals that a single structured plasma monopole can be modified into an array of plasma antenna elements by forming multiple striations or plasma blobs inside the discharge tube by altering the values of plasma properties such as working pressure, operating frequency, input RF power, discharge tube dimensions, i.e., length, radius, and thickness. It is also reported that plasma length, electron density, and conductivity are functions of operating plasma parameters and controlled by changing working pressure and input power. To investigate the antenna radiation efficiency for the far-field region, an automation-based radiation measuring system has been fabricated and presented in detail. This developed automated system involves a combined setup of controller, dc servo motors, vector network analyzer, and computing device to evaluate the radiation intensity, directivity, gain and efficiency of plasma antenna. In this system, the controller is connected to multiple motors for moving aluminum shafts in both elevation and azimuthal plane whereas radiation from plasma monopole antenna is measured by a Vector Network Analyser (VNA) which is further wired up with the computing device to display radiations in polar plot forms. Here, the radiation characteristics of both continuous and array plasma monopole antenna have been studied for various working plasma parameters. The experimental results clearly indicate that the plasma antenna is as efficient as a metallic antenna. The radiation from plasma monopole antenna is significantly influenced by plasma properties which provides a wider range in radiation pattern where desired radiation parameters like beam-width, the direction of radiation, radiation intensity, antenna efficiency, etc. can be achieved in a single monopole. Due to its wide range of selectivity in radiation pattern; this can meet the demands of wider bandwidth to get high data speed in communication systems. Moreover, this developed system provides an efficient and cost-effective solution for measuring the radiation pattern in far-field zone for any kind of antenna system.

Keywords: antenna radiation characteristics, dynamically reconfigurable, plasma antenna, plasma column, plasma striations, surface wave

Procedia PDF Downloads 105
196 Facilitating Knowledge Transfer for New Product Development in Portfolio Entrepreneurship: A Case Study of a Sodium-Ion Battery Start-up in China

Authors: Guohong Wang, Hao Huang, Rui Xing, Liyan Tang, Yu Wang

Abstract:

Start-ups are consistently under pressure to overcome liabilities of newness and smallness. They must focus on assembling resource and engaging constant renewal and repeated entrepreneurial activities to survive and grow. As an important form of resource, knowledge is constantly vital to start-ups, which will help start-ups with developing new product in hence forming competitive advantage. However, significant knowledge is usually needed to be identified and exploited from external entities, which makes it difficult to achieve knowledge transfer; with limited resources, it can be quite challenging for start-ups balancing the exploration and exploitation of knowledge. The research on knowledge transfer has become a relatively well-developed domain by indicating that knowledge transfer can be achieved through plenty of patterns, yet it is still under-explored that what processes and organizational practices help start-ups facilitating knowledge transfer for new product in the context portfolio entrepreneurship. Resource orchestration theory emphasizes the initiative and active management of company or the manager to explain the fulfillment of resource utility, which will help understand the process of managing knowledge as a certain kind of resource in start-ups. Drawing on the resource orchestration theory, this research aims to explore how knowledge transfer can be facilitated through resource orchestration. A qualitative single-case study of a sodium-ion battery new venture was conducted. The case company is sampled deliberately from representative industrial agglomeration areas in Liaoning Province, China. It is found that distinctive resource orchestration sub-processes are leveraged to facilitate knowledge transfer: (i) resource structuring makes knowledge available across the portfolio; (ii) resource bundling makes combines internal and external knowledge to form new knowledge; and (iii) resource harmonizing balances specific knowledge configurations across the portfolio. Meanwhile, by purposefully reallocating knowledge configurations to new product development in a certain new venture (exploration) and gradually adjusting knowledge configurations to being applied to existing products across the portfolio (exploitation), resource orchestration processes as a whole make exploration and exploitation of knowledge balanced. This study contributes to the knowledge management literature through proposing a resource orchestration view and depicting how knowledge transfer can be facilitated through different resource orchestration processes and mechanisms. In addition, by revealing the balancing process of exploration and exploitation of knowledge, and laying stress on the significance of the idea of making exploration and exploitation of knowledge balanced in the context of portfolio entrepreneurship, this study also adds specific efforts to entrepreneurship and strategy management literature.

Keywords: exploration and exploitation, knowledge transfer, new product development, portfolio entrepreneur, resource orchestration

Procedia PDF Downloads 111
195 Effect of Carbide Precipitates in Tool Steel on Material Transfer: A Molecular Dynamics Study

Authors: Ahmed Tamer AlMotasem, Jens Bergström, Anders Gåård, Pavel Krakhmalev, Thijs Jan Holleboom

Abstract:

In sheet metal forming processes, accumulation and transfer of sheet material to tool surfaces, often referred to as galling, is the major cause of tool failure. Initiation of galling is assumed to occur due to local adhesive wear between two surfaces. Therefore, reducing adhesion between the tool and the work sheet has a great potential to improve the tool materials galling resistance. Experimental observations and theoretical studies show that the presence of primary micro-sized carbides and/or nitrides in alloyed steels may significantly improve galling resistance. Generally, decreased adhesion between the ceramic precipitates and the sheet material counter-surface are attributed as main reason to the latter observations. On the other hand, adhesion processes occur at an atomic scale and, hence, fundamental understanding of galling can be obtained via atomic scale simulations. In the present study, molecular dynamics simulations are used, with utilizing second nearest neighbor embedded atom method potential to investigate the influence of nano-sized cementite precipitates embedded in tool atoms. The main aim of the simulations is to gain new fundamental knowledge on galling initiation mechanisms. Two tool/work piece configurations, iron/iron and iron-cementite/iron, are studied under dry sliding conditions. We find that the average frictional force decreases whereas the normal force increases for the iron-cementite/iron system, in comparison to the iron/iron configuration. Moreover, the average friction coefficient between the tool/work-piece decreases by about 10 % for the iron-cementite/iron case. The increase of the normal force in the case of iron-cementite/iron system may be attributed to the high stiffness of cementite compared to bcc iron. In order to qualitatively explain the effect of cementite on adhesion, the adhesion force between self-mated iron/iron and cementite/iron surfaces has been determined and we found that iron/cementite surface exhibits lower adhesive force than that of iron-iron surface. The variation of adhesion force with temperature was investigated up to 600 K and we found that the adhesive force, generally, decreases with increasing temperature. Structural analyses show that plastic deformation is the main deformation mechanism of the work-piece, accompanied with dislocations generation.

Keywords: adhesion, cementite, galling, molecular dynamics

Procedia PDF Downloads 289
194 Development of Extruded Prawn Snack Using Prawn Flavor Powder from Prawn Head Waste

Authors: S. K. Sharma, P. Kumar, Pratibha Singh

Abstract:

Consumption of SNACK is growing its popularity every day in India and a broad range of these items are available in the market. The end user interest in ready-to-eat snack foods is constantly growing mainly due to their ease, ample accessibility, appearance, taste and texture. Food extrusion has been practiced for over fifty years. Its role was initially limited to mixing and forming cereal products. Although thermoplastic extrusion has been successful for starch products, extrusion of proteins has achieved only limited success. In this study, value-added extruded prawn product was prepared with prawn flavor powder and corn flour using a twin-screw extruder. Prawn flavor concentrates prepared from fresh prawn head (Solenocera indica). To prepare flavor concentrate prawn head washed with potable water and blended with 200ml 3% salt solution per 250gm head weight to make the slurry, which was further put in muslin cloth and boiled with salt and starch solution for 10 minutes, cooled to room temperature and filtered, starch added to the filtrate and made into powder in an electrically drier at 43-450c. The mixture was passed through the twin-screw extruder (co-rotating twin screw extruder - basic technology Pvt. Ltd., Kolkata) which was operated at a particular speed of rotation, die diameter, temperature, moisture, and fish powder concentration. Many trial runs were conducted to set up the process variables. The different extrudes produced after each trail were examined for the quality and characteristics. The effect of temperature, moisture, screw speed, protein, fat, ash and thiobarbituric acid (TBA) number and expansion ratio were studied. In all the four trials, moisture, temperature, speed and die diameter used was 20%, 100°C, 350 rpm and 4 mm, respectively. The ratio of prawn powder and cornstarch used in different trials ranged between 2:98 and 10:90. The storage characteristics of the final product were studied using three different types of packaging under nitrogen flushing, i.e. a- 12-pm polyester, 12-pm metalized polyester, 60-11m polyethylene (metalized polyester a), b- 12-11m metalized polyester, 37.5-11m polyethylene (metalized polyester b), c- 12-11m polyethylene, 9-11m aluminium foil, 37.5-11m polyethylene (aluminium foil). The organoleptic analysis was carried out on a 9-point hedonic scale. The study revealed that the fried product packed in aluminum foil under nitrogen flushing would remain acceptable for more than three months.

Keywords: extruded product, prawn flavor, twin-screw extruder, storage characteristics

Procedia PDF Downloads 126
193 Tribological Behaviour of the Degradation Process of Additive Manufactured Stainless Steel 316L

Authors: Yunhan Zhang, Xiaopeng Li, Zhongxiao Peng

Abstract:

Additive manufacturing (AM) possesses several key characteristics, including high design freedom, energy-efficient manufacturing process, reduced material waste, high resolution of finished products, and excellent performance of finished products. These advantages have garnered widespread attention and fueled rapid development in recent decades. AM has significantly broadened the spectrum of available materials in the manufacturing industry and is gradually replacing some traditionally manufactured parts. Similar to components produced via traditional methods, products manufactured through AM are susceptible to degradation caused by wear during their service life. Given the prevalence of 316L stainless steel (SS) parts and the limited research on the tribological behavior of 316L SS samples or products fabricated using AM technology, this study aims to investigate the degradation process and wear mechanisms of 316L SS disks fabricated using AM technology. The wear mechanisms and tribological performance of these AM-manufactured samples are compared with commercial 316L SS samples made using conventional methods. Additionally, methods to enhance the tribological performance of additive-manufactured SS samples are explored. Four disk samples with a diameter of 75 mm and a thickness of 10 mm are prepared. Two of them (Group A) are prepared from a purchased SS bar using a milling method. The other two disks (Group B), with the same dimensions, are made of Gas Atomized 316L Stainless Steel (size range: 15-45 µm) purchased from Carpenter Additive and produced using Laser Powder Bed Fusion (LPBF). Pin-on-disk tests are conducted on these disks, which have similar surface roughness and hardness levels. Multiple tests are carried out under various operating conditions, including varying loads and/or speeds, and the friction coefficients are measured during these tests. In addition, the evolution of the surface degradation processes is monitored by creating moulds of the wear tracks and quantitatively analyzing the surface morphologies of the mould images. This analysis involves quantifying the depth and width of the wear tracks and analyzing the wear debris generated during the wear processes. The wear mechanisms and wear performance of these two groups of SS samples are compared. The effects of load and speed on the friction coefficient and wear rate are investigated. The ultimate goal is to gain a better understanding of the surface degradation of additive-manufactured SS samples. This knowledge is crucial for enhancing their anti-wear performance and extending their service life.

Keywords: degradation process, additive manufacturing, stainless steel, surface features

Procedia PDF Downloads 54
192 Temperature Dependence of Photoluminescence Intensity of Europium Dinuclear Complex

Authors: Kwedi L. M. Nsah, Hisao Uchiki

Abstract:

Quantum computation is a new and exciting field making use of quantum mechanical phenomena. In classical computers, information is represented as bits, with values either 0 or 1, but a quantum computer uses quantum bits in an arbitrary superposition of 0 and 1, enabling it to reach beyond the limits predicted by classical information theory. lanthanide ion quantum computer is an organic crystal, having a lanthanide ion. Europium is a favored lanthanide, since it exhibits nuclear spin coherence times, and Eu(III) is photo-stable and has two stable isotopes. In a europium organic crystal, the key factor is the mutual dipole-dipole interaction between two europium atoms. Crystals of the complex were formed by making a 2 :1 reaction of Eu(fod)3 and bpm. The transparent white crystals formed showed brilliant red luminescence with a 405 nm laser. The photoluminescence spectroscopy was observed both at room and cryogenic temperatures (300-14 K). The luminescence spectrum of [Eu(fod)3(μ-bpm) Eu(fod)3] showed characteristic of Eu(III) emission transitions in the range 570–630 nm, due to the deactivation of 5D0 emissive state to 7Fj. For the application of dinuclear Eu3+ complex to q-bit device, attention was focused on 5D0 -7F0 transition, around 580 nm. The presence of 5D0 -7F0 transition at room temperature revealed that at least one europium symmetry had no inversion center. Since the line was unsplit by the crystal field effect, any multiplicity observed was due to a multiplicity of Eu3+ sites. For q-bit element, more narrow line width of 5D0 → 7F0 PL band in Eu3+ ion was preferable. Cryogenic temperatures (300 K – 14 K) was applicable to reduce inhomogeneous broadening and distinguish between ions. A CCD image sensor was used for low temperature Photoluminescence measurement, and a far better resolved luminescent spectrum was gotten by cooling the complex at 14 K. A red shift by 15 cm-1 in the 5D0 - 7F0 peak position was observed upon cooling, the line shifted towards lower wavenumber. An emission spectrum at the 5D0 - 7F0 transition region was obtained to verify the line width. At this temperature, a peak with magnitude three times that at room temperature was observed. The temperature change of the 5D0 state of Eu(fod)3(μ-bpm)Eu(fod)3 showed a strong dependence in the vicinity of 60 K to 100 K. Thermal quenching was observed at higher temperatures than 100 K, at which point it began to decrease slowly with increasing temperature. The temperature quenching effect of Eu3+ with increase temperature was caused by energy migration. 100 K was the appropriate temperature for the observation of the 5D0 - 7F0 emission peak. Europium dinuclear complex bridged by bpm was successfully prepared and monitored at cryogenic temperatures. At 100 K the Eu3+-dope complex has a good thermal stability and this temperature is appropriate for the observation of the 5D0 - 7F0 emission peak. Sintering the sample above 600o C could also be a method to consider but the Eu3+ ion can be reduced to Eu2+, reasons why cryogenic temperature measurement is preferably over other methods.

Keywords: Eu(fod)₃, europium dinuclear complex, europium ion, quantum bit, quantum computer, 2, 2-bipyrimidine

Procedia PDF Downloads 161