Search results for: grid sensor networks
3653 Modal Analysis of a Cantilever Beam Using an Inexpensive Smartphone Camera: Motion Magnification Technique
Authors: Hasan Hassoun, Jaafar Hallal, Denis Duhamel, Mohammad Hammoud, Ali Hage Diab
Abstract:
This paper aims to prove the accuracy of an inexpensive smartphone camera as a non-contact vibration sensor to recover the vibration modes of a vibrating structure such as a cantilever beam. A video of a vibrating beam is filmed using a smartphone camera and then processed by the motion magnification technique. Based on this method, the first two natural frequencies and their associated mode shapes are estimated experimentally and compared to the analytical ones. Results show a relative error of less than 4% between the experimental and analytical approaches for the first two natural frequencies of the beam. Also, for the first two-mode shapes, a Modal Assurance Criterion (MAC) value of above 0.9 between the two approaches is obtained. This slight error between the different techniques ensures the viability of a cheap smartphone camera as a non-contact vibration sensor, particularly for structures vibrating at relatively low natural frequencies.Keywords: modal analysis, motion magnification, smartphone camera, structural vibration, vibration modes
Procedia PDF Downloads 1483652 Interorganizational Relationships in the Brazilian Milk Production Chain
Authors: Marcelo T. Okano, Oduvaldo Vendrametto, Osmildo S. Santos, Marcelo E. Fernandes, Heide Landi
Abstract:
The literature on the interorganizational relationship between companies and organizations has increased in recent years, but there are still doubts about the various settings. The interorganizational networks are important in economic life, the fact facilitate the complex interdependence between transactional and cooperative organizations. A need identified in the literature is the lack of indicators to measure and identify the types of existing networks. The objective of this research is to examine the interorganizational relationships of two milk chains through indicators proposed by the theories of the four authors, characterizing them as network or not and what the benefits obtained by the chain organization. To achieve the objective of this work was carried out a survey of milk producers in two regions of the state of São Paulo. To collect the information needed for the analysis, exploratory research, qualitative nature was used. The research instrument of this work consists of a roadmap of semistructured interviews with open questions. Some of the answers were directed by the interviewer in the form of performance notes aimed at detecting the degree of importance, according to the perception of intensity to that regard. The results showed that interorganizational relationships are small and largely limited to the sale of milk or dairy cooperatives. These relationships relate only to trade relations between the owner and purchaser of milk. But when the producers are organized in associations or networks, interorganizational relationships and increase benefits for all participants in the network. The various visits and interviews in several dairy farms in the regions of São Pau-lo (indicated that the inter-relationships are small and largely limited to the sale of milk to cooperatives or dairy. These relationships refer only to trade relations between the owner and the purchaser of milk. But when the producers are organized in associations or networks, interorganizational relationships increase and bring benefits to all participants in the network.Keywords: interorganizational networks, dairy chain, interorganizational system, São Pau-lo
Procedia PDF Downloads 5803651 Peak Frequencies in the Collective Membrane Potential of a Hindmarsh-Rose Small-World Neural Network
Authors: Sun Zhe, Ruggero Micheletto
Abstract:
As discussed extensively in many studies, noise in neural networks have an important role in the functioning and time evolution of the system. The mechanism by which noise induce stochastic resonance enhancing and influencing certain operations is not clarified nor is the mechanism of information storage and coding. With the present research we want to study the role of noise, especially focusing on the frequency peaks in a three variable Hindmarsh−Rose Small−World network. We investigated the behaviour of the network to external noises. We demonstrate that a variation of signal to noise ratio of about 10 dB induces an increase in membrane potential signal of about 15%, averaged over the whole network. We also considered the integral of the whole membrane potential as a paradigm of internal noise, the one generated by the brain network. We showed that this internal noise is attenuated with the size of the network or with the number of random connections. By means of Fourier analysis we found that it has distinct peaks of frequencies, moreover, we showed that increasing the size of the network introducing more neurons, reduced the maximum frequencies generated by the network, whereas the increase in the number of random connections (determined by the small-world probability p) led to a trend toward higher frequencies. This study may give clues on how networks utilize noise to alter the collective behaviour of the system in their operations.Keywords: neural networks, stochastic processes, small-world networks, discrete Fourier analysis
Procedia PDF Downloads 2913650 Seamless Mobility in Heterogeneous Mobile Networks
Authors: Mohab Magdy Mostafa Mohamed
Abstract:
The objective of this paper is to introduce a vertical handover (VHO) algorithm between wireless LANs (WLANs) and LTE mobile networks. The proposed algorithm is based on the fuzzy control theory and takes into consideration power level, subscriber velocity, and target cell load instead of only power level in traditional algorithms. Simulation results show that network performance in terms of number of handovers and handover occurrence distance is improved.Keywords: vertical handover, fuzzy control theory, power level, speed, target cell load
Procedia PDF Downloads 3523649 Review of Vertical Axis Wind Turbine
Authors: Amare Worku, Harikrishnan Muralidharan
Abstract:
The research for more environmentally friendly sources of energy is a result of growing environmental awareness. In this aspect, wind energy is a very good option and there are two different wind turbines, horizontal axis wind turbine (HAWT) and vertical axis turbine (VAWT). For locations outside of integrated grid networks, vertical axis wind turbines (VAWT) present a feasible solution. However, those turbines have several drawbacks related to various setups, VAWT has a very low efficiency when compared with HAWT, but they work under different conditions and installation areas. This paper reviewed numerous measurements taken to improve the efficiency of VAWT configurations, either directly or indirectly related to the performance efficiency of the turbine. Additionally, the comparison and advantages of HAWT and VAWT turbines and also the findings of the design methodologies used for the VAWT design have been reviewed together with efficiency enhancement revision. Most of the newly modified designs are based on the turbine blade structure modification but need other studies on behalf other than electromechanical modification. Some of the techniques, like continuous variation of pitch angle control and swept area control, are not the most effective since VAWT is Omni-directional, and so wind direction is not a problem like HAWT. Hybrid system technology has become one of the most important and efficient methods to enhance the efficiency of VAWT. Besides hybridization, the contra-rotating method is also good if the installation area is big enough in an urban area.Keywords: wind turbine, horizontal axis wind turbine, vertical axis wind turbine, hybridization
Procedia PDF Downloads 1023648 Rumour Containment Using Monitor Placement and Truth Propagation
Authors: Amrah Maryam
Abstract:
The emergence of online social networks (OSNs) has transformed the way we pursue and share information. On the one hand, OSNs provide great ease for the spreading of positive information while, on the other hand, they may also become a channel for the spreading of malicious rumors and misinformation throughout the social network. Thus, to assure the trustworthiness of OSNs to its users, it is of vital importance to detect the misinformation propagation in the network by placing network monitors. In this paper, we aim to place monitors near the suspected nodes with the intent to limit the diffusion of misinformation in the social network, and then we also detect the most significant nodes in the network for propagating true information in order to minimize the effect of already diffused misinformation. Thus, we initiate two heuristic monitor placement using articulation points and truth propagation using eigenvector centrality. Furthermore, to provide real-time workings of the system, we integrate both the monitor placement and truth propagation entities as well. To signify the effectiveness of the approaches, we have carried out the experiment and evaluation of Stanford datasets of online social networks.Keywords: online social networks, monitor placement, independent cascade model, spread of misinformation
Procedia PDF Downloads 1613647 Using Pump as Turbine in Drinking Water Networks to Monitor and Control Water Processes Remotely
Authors: Sara Bahariderakhshan, Morteza Ahmadifar
Abstract:
Leakage is one of the most important problems that water distribution networks face which first reason is high-pressure existence. There are many approaches to control this excess pressure, which using pressure reducing valves (PRVs) or reducing pipe diameter are ones. In the other hand, Pumps are using electricity or fossil fuels to supply needed pressure in distribution networks but excess pressure are made in some branches due to topology problems and water networks’ variables therefore using pressure valves will be inevitable. Although using PRVs is inevitable but it leads to waste electricity or fuels used by pumps because PRVs just waste excess hydraulic pressure to lower it. Pumps working in reverse or Pumps as Turbine (called PaT in this article) are easily available and also effective sources of reducing the equipment cost in small hydropower plants. Urban areas of developing countries are facing increasing in area and maybe water scarcity in near future. These cities need wider water networks which make it hard to predict, control and have a better operation in the urban water cycle. Using more energy and, therefore, more pollution, slower repairing services, more user dissatisfaction and more leakage are these networks’ serious problems. Therefore, more effective systems are needed to monitor and act in these complicated networks than what is used now. In this article a new approach is proposed and evaluated: Using PAT to produce enough energy for remote valves and sensors in the water network. These sensors can be used to determine the discharge, pressure, water quality and other important network characteristics. With the help of remote valves pipeline discharge can be controlled so Instead of wasting excess hydraulic pressure which may be destructive in some cases, obtaining extra pressure from pipeline and producing clean electricity used by remote instruments is this articles’ goal. Furthermore due to increasing the area of the network there is unwanted high pressure in some critical points which is not destructive but lowering the pressure results to longer lifetime for pipeline networks without users’ dissatisfaction. This strategy proposed in this article, leads to use PaT widely for pressure containment and producing energy needed for remote valves and sensors like what happens in supervisory control and data acquisition (SCADA) systems which make it easy for us to monitor, receive data from urban water cycle and make any needed changes in discharge and pressure of pipelines easily and remotely. This is a clean project of energy production without significant environmental impacts and can be used in urban drinking water networks, without any problem for consumers which leads to a stable and dynamic network which lowers leakage and pollution.Keywords: new energies, pump as turbine, drinking water, distribution network, remote control equipments
Procedia PDF Downloads 4633646 Power Quality Improvement Using UPQC Integrated with Distributed Generation Network
Authors: B. Gopal, Pannala Krishna Murthy, G. N. Sreenivas
Abstract:
The increasing demand of electric power is giving an emphasis on the need for the maximum utilization of renewable energy sources. On the other hand maintaining power quality to satisfaction of utility is an essential requirement. In this paper the design aspects of a Unified Power Quality Conditioner integrated with photovoltaic system in a distributed generation is presented. The proposed system consist of series inverter, shunt inverter are connected back to back on the dc side and share a common dc-link capacitor with Distributed Generation through a boost converter. The primary task of UPQC is to minimize grid voltage and load current disturbances along with reactive and harmonic power compensation. In addition to primary tasks of UPQC, other functionalities such as compensation of voltage interruption and active power transfer to the load and grid in both islanding and interconnected mode have been addressed. The simulation model is design in MATLAB/ Simulation environment and the results are in good agreement with the published work.Keywords: distributed generation (DG), interconnected mode, islanding mode, maximum power point tracking (mppt), power quality (PQ), unified power quality conditioner (UPQC), photovoltaic array (PV)
Procedia PDF Downloads 5073645 Comparison between LQR and ANN Active Anti-Roll Control of a Single Unit Heavy Vehicle
Authors: Babesse Saad, Ameddah Djemeleddine
Abstract:
In this paper, a learning algorithm using neuronal networks to improve the roll stability and prevent the rollover in a single unit heavy vehicle is proposed. First, LQR control to keep balanced normalized rollovers, between front and rear axles, below the unity, then a data collected from this controller is used as a training basis of a neuronal regulator. The ANN controller is thereafter applied for the nonlinear side force model, and gives satisfactory results than the LQR one.Keywords: rollover, single unit heavy vehicle, neural networks, nonlinear side force
Procedia PDF Downloads 4743644 Downscaling Daily Temperature with Neuroevolutionary Algorithm
Authors: Min Shi
Abstract:
State of the art research with Artificial Neural Networks for the downscaling of General Circulation Models (GCMs) mainly uses back-propagation algorithm as a training approach. This paper introduces another training approach of ANNs, Evolutionary Algorithm. The combined algorithm names neuroevolutionary (NE) algorithm. We investigate and evaluate the use of the NE algorithms in statistical downscaling by generating temperature estimates at interior points given information from a lattice of surrounding locations. The results of our experiments indicate that NE algorithms can be efficient alternative downscaling methods for daily temperatures.Keywords: temperature, downscaling, artificial neural networks, evolutionary algorithms
Procedia PDF Downloads 3493643 Hierarchical Operation Strategies for Grid Connected Building Microgrid with Energy Storage and Photovoltatic Source
Authors: Seon-Ho Yoon, Jin-Young Choi, Dong-Jun Won
Abstract:
This paper presents hierarchical operation strategies which are minimizing operation error between day ahead operation plan and real time operation. Operating power systems between centralized and decentralized approaches can be represented as hierarchical control scheme, featured as primary control, secondary control and tertiary control. Primary control is known as local control, featuring fast response. Secondary control is referred to as microgrid Energy Management System (EMS). Tertiary control is responsible of coordinating the operations of multi-microgrids. In this paper, we formulated 3 stage microgrid operation strategies which are similar to hierarchical control scheme. First stage is to set a day ahead scheduled output power of Battery Energy Storage System (BESS) which is only controllable source in microgrid and it is optimized to minimize cost of exchanged power with main grid using Particle Swarm Optimization (PSO) method. Second stage is to control the active and reactive power of BESS to be operated in day ahead scheduled plan in case that State of Charge (SOC) error occurs between real time and scheduled plan. The third is rescheduling the system when the predicted error is over the limited value. The first stage can be compared with the secondary control in that it adjusts the active power. The second stage is comparable to the primary control in that it controls the error in local manner. The third stage is compared with the secondary control in that it manages power balancing. The proposed strategies will be applied to one of the buildings in Electronics and Telecommunication Research Institute (ETRI). The building microgrid is composed of Photovoltaic (PV) generation, BESS and load and it will be interconnected with the main grid. Main purpose of that is minimizing operation cost and to be operated in scheduled plan. Simulation results support validation of proposed strategies.Keywords: Battery Energy Storage System (BESS), Energy Management System (EMS), Microgrid (MG), Particle Swarm Optimization (PSO)
Procedia PDF Downloads 2483642 Computational Identification of Signalling Pathways in Protein Interaction Networks
Authors: Angela U. Makolo, Temitayo A. Olagunju
Abstract:
The knowledge of signaling pathways is central to understanding the biological mechanisms of organisms since it has been identified that in eukaryotic organisms, the number of signaling pathways determines the number of ways the organism will react to external stimuli. Signaling pathways are studied using protein interaction networks constructed from protein-protein interaction data obtained using high throughput experimental procedures. However, these high throughput methods are known to produce very high rates of false positive and negative interactions. In order to construct a useful protein interaction network from this noisy data, computational methods are applied to validate the protein-protein interactions. In this study, a computational technique to identify signaling pathways from a protein interaction network constructed using validated protein-protein interaction data was designed. A weighted interaction graph of the Saccharomyces cerevisiae (Baker’s Yeast) organism using the proteins as the nodes and interactions between them as edges was constructed. The weights were obtained using Bayesian probabilistic network to estimate the posterior probability of interaction between two proteins given the gene expression measurement as biological evidence. Only interactions above a threshold were accepted for the network model. A pathway was formalized as a simple path in the interaction network from a starting protein and an ending protein of interest. We were able to identify some pathway segments, one of which is a segment of the pathway that signals the start of the process of meiosis in S. cerevisiae.Keywords: Bayesian networks, protein interaction networks, Saccharomyces cerevisiae, signalling pathways
Procedia PDF Downloads 5433641 In-Flight Radiometric Performances Analysis of an Airborne Optical Payload
Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yaokai Liu, Xinhong Wang, Yongsheng Zhou
Abstract:
Performances analysis of remote sensing sensor is required to pursue a range of scientific research and application objectives. Laboratory analysis of any remote sensing instrument is essential, but not sufficient to establish a valid inflight one. In this study, with the aid of the in situ measurements and corresponding image of three-gray scale permanent artificial target, the in-flight radiometric performances analyses (in-flight radiometric calibration, dynamic range and response linearity, signal-noise-ratio (SNR), radiometric resolution) of self-developed short-wave infrared (SWIR) camera are performed. To acquire the inflight calibration coefficients of the SWIR camera, the at-sensor radiances (Li) for the artificial targets are firstly simulated with in situ measurements (atmosphere parameter and spectral reflectance of the target) and viewing geometries using MODTRAN model. With these radiances and the corresponding digital numbers (DN) in the image, a straight line with a formulation of L = G × DN + B is fitted by a minimization regression method, and the fitted coefficients, G and B, are inflight calibration coefficients. And then the high point (LH) and the low point (LL) of dynamic range can be described as LH= (G × DNH + B) and LL= B, respectively, where DNH is equal to 2n − 1 (n is the quantization number of the payload). Meanwhile, the sensor’s response linearity (δ) is described as the correlation coefficient of the regressed line. The results show that the calibration coefficients (G and B) are 0.0083 W·sr−1m−2µm−1 and −3.5 W·sr−1m−2µm−1; the low point of dynamic range is −3.5 W·sr−1m−2µm−1 and the high point is 30.5 W·sr−1m−2µm−1; the response linearity is approximately 99%. Furthermore, a SNR normalization method is used to assess the sensor’s SNR, and the normalized SNR is about 59.6 when the mean value of radiance is equal to 11.0 W·sr−1m−2µm−1; subsequently, the radiometric resolution is calculated about 0.1845 W•sr-1m-2μm-1. Moreover, in order to validate the result, a comparison of the measured radiance with a radiative-transfer-code-predicted over four portable artificial targets with reflectance of 20%, 30%, 40%, 50% respectively, is performed. It is noted that relative error for the calibration is within 6.6%.Keywords: calibration and validation site, SWIR camera, in-flight radiometric calibration, dynamic range, response linearity
Procedia PDF Downloads 2703640 Using Pump as Turbine in Urban Water Networks to Control, Monitor, and Simulate Water Processes Remotely
Authors: Morteza Ahmadifar, Sarah Bahari Derakhshan
Abstract:
Leakage is one of the most important problems that water distribution networks face which first reason is high-pressure existence. There are many approaches to control this excess pressure, which using pressure reducing valves (PRVs) or reducing pipe diameter are ones. On the other hand, Pumps are using electricity or fossil fuels to supply needed pressure in distribution networks but excess pressure are made in some branches due to topology problems and water networks’ variables, therefore using pressure valves will be inevitable. Although using PRVs is inevitable but it leads to waste electricity or fuels used by pumps because PRVs just waste excess hydraulic pressure to lower it. Pumps working in reverse or Pumps as Turbine (called PAT in this article) are easily available and also effective sources of reducing the equipment cost in small hydropower plants. Urban areas of developing countries are facing increasing in area and maybe water scarcity in near future. These cities need wider water networks which make it hard to predict, control and have a better operation in the urban water cycle. Using more energy and therefore more pollution, slower repairing services, more user dissatisfaction and more leakage are these networks’ serious problems. Therefore, more effective systems are needed to monitor and act in these complicated networks than what is used now. In this article a new approach is proposed and evaluated: Using PAT to produce enough energy for remote valves and sensors in the water network. These sensors can be used to determine the discharge, pressure, water quality and other important network characteristics. With the help of remote valves pipeline discharge can be controlled so Instead of wasting excess hydraulic pressure which may be destructive in some cases, obtaining extra pressure from pipeline and producing clean electricity used by remote instruments is this articles’ goal. Furthermore, due to increasing the area of network there is unwanted high pressure in some critical points which is not destructive but lowering the pressure results to longer lifetime for pipeline networks without users’ dissatisfaction. This strategy proposed in this article, leads to use PAT widely for pressure containment and producing energy needed for remote valves and sensors like what happens in supervisory control and data acquisition (SCADA) systems which make it easy for us to monitor, receive data from urban water cycle and make any needed changes in discharge and pressure of pipelines easily and remotely. This is a clean project of energy production without significant environmental impacts and can be used in urban drinking water networks, without any problem for consumers which leads to a stable and dynamic network which lowers leakage and pollution.Keywords: clean energies, pump as turbine, remote control, urban water distribution network
Procedia PDF Downloads 3933639 Convolutional Neural Networks Architecture Analysis for Image Captioning
Authors: Jun Seung Woo, Shin Dong Ho
Abstract:
The Image Captioning models with Attention technology have developed significantly compared to previous models, but it is still unsatisfactory in recognizing images. We perform an extensive search over seven interesting Convolutional Neural Networks(CNN) architectures to analyze the behavior of different models for image captioning. We compared seven different CNN Architectures, according to batch size, using on public benchmarks: MS-COCO datasets. In our experimental results, DenseNet and InceptionV3 got about 14% loss and about 160sec training time per epoch. It was the most satisfactory result among the seven CNN architectures after training 50 epochs on GPU.Keywords: deep learning, image captioning, CNN architectures, densenet, inceptionV3
Procedia PDF Downloads 1323638 Maximum Power Point Tracking for Small Scale Wind Turbine Using Multilayer Perceptron Neural Network Implementation without Mechanical Sensor
Authors: Piyangkun Kukutapan, Siridech Boonsang
Abstract:
The article proposes maximum power point tracking without mechanical sensor using Multilayer Perceptron Neural Network (MLPNN). The aim of article is to reduce the cost and complexity but still retain efficiency. The experimental is that duty cycle is generated maximum power, if it has suitable qualification. The measured data from DC generator, voltage (V), current (I), power (P), turnover rate of power (dP), and turnover rate of voltage (dV) are used as input for MLPNN model. The output of this model is duty cycle for driving the converter. The experiment implemented using Arduino Uno board. This diagram is compared to MPPT using MLPNN and P&O control (Perturbation and Observation control). The experimental results show that the proposed MLPNN based approach is more efficiency than P&O algorithm for this application.Keywords: maximum power point tracking, multilayer perceptron netural network, optimal duty cycle, DC generator
Procedia PDF Downloads 3253637 Nine-Level Shunt Active Power Filter Associated with a Photovoltaic Array Coupled to the Electrical Distribution Network
Authors: Zahzouh Zoubir, Bouzaouit Azzeddine, Gahgah Mounir
Abstract:
The use of more and more electronic power switches with a nonlinear behavior generates non-sinusoidal currents in distribution networks, which causes damage to domestic and industrial equipment. The multi-level shunt power active filter is subsequently shown to be an adequate solution to the problem raised. Nevertheless, the difficulty of adjusting the active filter DC supply voltage requires another technology to ensure it. In this article, a photovoltaic generator is associated with the DC bus power terminals of the active filter. The proposed system consists of a field of solar panels, three multi-level voltage inverters connected to the power grid and a non-linear load consisting of a six-diode rectifier bridge supplying a resistive-inductive load. Current control techniques of active and reactive power are used to compensate for both harmonic currents and reactive power as well as to inject active solar power into the distribution network. An algorithm of the search method of the maximum power point of type Perturb and observe is applied. Simulation results of the system proposed under the MATLAB/Simulink environment shows that the performance of control commands that reassure the solar power injection in the network, harmonic current compensation and power factor correction.Keywords: Actif power filter, MPPT, pertub&observe algorithm, PV array, PWM-control
Procedia PDF Downloads 3383636 Mesoporous Carbon Ceramic SiO2/C Prepared by Sol-Gel Method and Modified with Cobalt Phthalocyanine and Used as an Electrochemical Sensor for Nitrite
Authors: Abdur Rahim, Lauro Tatsuo Kubota, Yoshitaka Gushikem
Abstract:
Carbon ceramic mesoporous SiO2/50wt%C (SBET= 170 m2g-1), where C is graphite, was prepared by the sol gel method. Scanning electron microscopy images and the respective element mapping showed that, within the magnification used, no phase segregation was detectable. It presented the electric conductivities of 0.49 S cm-1. This material was used to support cobalt phthalocyanine, prepared in situ, to assure a homogeneous dispersion of the electro active complex in the pores of the matrix. The surface density of cobalt phthalocyanine, on the matrix surfaces was 0.015 mol cm-2. Pressed disk, made with SiO2/50wt%C/CoPc, was used to fabricate an electrode and tested as sensors for nitrite determination by electro chemical technique. A linear response range between 0.039 and 0.42 mmol l−1,and correlation coefficient r=0.9996 was obtained. The electrode was chemically very stable and presented very high sensitivity for this analyte, with a limit of detection, LOD = 1.087 x 10-6 mol L-1.Keywords: SiO2/C/CoPc, sol-gel method, electrochemical sensor, nitrite oxidation, carbon ceramic material, cobalt phthalocyanine
Procedia PDF Downloads 3173635 Comparison between Hardy-Cross Method and Water Software to Solve a Pipe Networking Design Problem for a Small Town
Authors: Ahmed Emad Ahmed, Zeyad Ahmed Hussein, Mohamed Salama Afifi, Ahmed Mohammed Eid
Abstract:
Water has a great importance in life. In order to deliver water from resources to the users, many procedures should be taken by the water engineers. One of the main procedures to deliver water to the community is by designing pressurizer pipe networks for water. The main aim of this work is to calculate the water demand of a small town and then design a simple water network to distribute water resources among the town with the smallest losses. Literature has been mentioned to cover the main point related to water distribution. Moreover, the methodology has introduced two approaches to solve the research problem, one by the iterative method of Hardy-cross and the other by water software Pipe Flow. The results have introduced two main designs to satisfy the same research requirements. Finally, the researchers have concluded that the use of water software provides more abilities and options for water engineers.Keywords: looping pipe networks, hardy cross networks accuracy, relative error of hardy cross method
Procedia PDF Downloads 1653634 Sensitive Electrochemical Sensor for Simultaneous Detection of Endocrine Disruptors, Bisphenol A and 4- Nitrophenol Using La₂Cu₂O₅ Modified Glassy Carbon Electrode
Authors: S. B. Mayil Vealan, C. Sekar
Abstract:
Bisphenol A (BIS A) and 4 Nitrophenol (4N) are the most prevalent environmental endocrine-disrupting chemicals which mimic hormones and have a direct relationship to the development and growth of animal and human reproductive systems. Moreover, intensive exposure to the compound is related to prostate and breast cancer, infertility, obesity, and diabetes. Hence, accurate and reliable determination techniques are crucial for preventing human exposure to these harmful chemicals. Lanthanum Copper Oxide (La₂Cu₂O₅) nanoparticles were synthesized and investigated through various techniques such as scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. Cyclic voltammetry and square wave voltammetry techniques are employed to evaluate the electrochemical behavior of as-synthesized samples toward the electrochemical detection of Bisphenol A and 4-Nitrophenol. Under the optimal conditions, the oxidation current increased linearly with increasing the concentration of BIS A and 4-N in the range of 0.01 to 600 μM with a detection limit of 2.44 nM and 3.8 nM. These are the lowest limits of detection and the widest linear ranges in the literature for this determination. The method was applied to the simultaneous determination of BIS A and 4-N in real samples (food packing materials and river water) with excellent recovery values ranging from 95% to 99%. Better stability, sensitivity, selectivity and reproducibility, fast response, and ease of preparation made the sensor well-suitable for the simultaneous determination of bisphenol and 4 Nitrophenol. To the best of our knowledge, this is the first report in which La₂Cu₂O₅ nano particles were used as efficient electron mediators for the fabrication of endocrine disruptor (BIS A and 4N) chemical sensors.Keywords: endocrine disruptors, electrochemical sensor, Food contacting materials, lanthanum cuprates, nanomaterials
Procedia PDF Downloads 863633 Survey on Fiber Optic Deployment for Telecommunications Operators in Ghana: Coverage Gap, Recommendations and Research Directions
Authors: Francis Padi, Solomon Nunoo, John Kojo Annan
Abstract:
The paper "Survey on Fiber Optic Deployment for Telecommunications Operators in Ghana: Coverage Gap, Recommendations and Research Directions" presents a comprehensive survey on the deployment of fiber optic networks for telecommunications operators in Ghana. It addresses the challenges encountered by operators using microwave transmission systems for backhauling traffic and emphasizes the advantages of deploying fiber optic networks. The study delves into the coverage gap, provides recommendations, and outlines research directions to enhance the telecommunications infrastructure in Ghana. Additionally, it evaluates next-generation optical access technologies and architectures tailored to operators' needs. The paper also investigates current technological solutions and regulatory, technical, and economical dimensions related to sharing mobile telecommunication networks in emerging countries. Overall, this paper offers valuable insights into fiber optic network deployment for telecommunications operators in Ghana and suggests strategies to meet the increasing demand for data and mobile applications.Keywords: survey on fiber optic deployment, coverage gap, recommendations, research directions
Procedia PDF Downloads 213632 Quantum Graph Approach for Energy and Information Transfer through Networks of Cables
Authors: Mubarack Ahmed, Gabriele Gradoni, Stephen C. Creagh, Gregor Tanner
Abstract:
High-frequency cables commonly connect modern devices and sensors. Interestingly, the proportion of electric components is rising fast in an attempt to achieve lighter and greener devices. Modelling the propagation of signals through these cable networks in the presence of parameter uncertainty is a daunting task. In this work, we study the response of high-frequency cable networks using both Transmission Line and Quantum Graph (QG) theories. We have successfully compared the two theories in terms of reflection spectra using measurements on real, lossy cables. We have derived a generalisation of the vertex scattering matrix to include non-uniform networks – networks of cables with different characteristic impedances and propagation constants. The QG model implicitly takes into account the pseudo-chaotic behavior, at the vertices, of the propagating electric signal. We have successfully compared the asymptotic growth of eigenvalues of the Laplacian with the predictions of Weyl law. We investigate the nearest-neighbour level-spacing distribution of the resonances and compare our results with the predictions of Random Matrix Theory (RMT). To achieve this, we will compare our graphs with the generalisation of Wigner distribution for open systems. The problem of scattering from networks of cables can also provide an analogue model for wireless communication in highly reverberant environments. In this context, we provide a preliminary analysis of the statistics of communication capacity for communication across cable networks, whose eventual aim is to enable detailed laboratory testing of information transfer rates using software defined radio. We specialise this analysis in particular for the case of MIMO (Multiple-Input Multiple-Output) protocols. We have successfully validated our QG model with both TL model and laboratory measurements. The growth of Eigenvalues compares well with Weyl’s law and the level-spacing distribution agrees so well RMT predictions. The results we achieved in the MIMO application compares favourably with the prediction of a parallel on-going research (sponsored by NEMF21.)Keywords: eigenvalues, multiple-input multiple-output, quantum graph, random matrix theory, transmission line
Procedia PDF Downloads 1733631 Image Classification with Localization Using Convolutional Neural Networks
Authors: Bhuyain Mobarok Hossain
Abstract:
Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).Keywords: image classification, object detection, localization, particle filter
Procedia PDF Downloads 3053630 Peptide Aptasensor for Electrochemical Detection of Rheumatoid Arthritis
Authors: Shah Abbas
Abstract:
Rheumatoid arthritis is a systemic, inflammatory autoimmune disease, affecting an overall 1% of the global population. Despite being tremendous efforts by scientists, early diagnosis of RA still has not been achieved. In the current study, a Graphene oxide (GO) based electrochemical sensor has been developed for early diagnosis of RA through Cyclic voltammetry. Chitosan (CHI), a CPnatural polymer has also been incorporated along with GO in order to enhance the biocompatibility and functionalization potential of the biosensor. CCPs are known antigens for Anti Citrullinated Peptide Antibodies (ACPAs) which can be detected in serum even 14 years before the appearance of symptoms, thus they are believed to be an ideal target for the early diagnosis of RA. This study has yielded some promising results regarding the binding and detection of ACPAs through changes in the electrochemical properties of biosensing material. The cyclic voltammogram of this biosensor reflects the binding of ACPAs to the biosensor surface, due to its shifts observed in the current flow (cathodic current) as compared to the when no ACPAs bind as it is absent in RA negative patients.Keywords: rheumatoid arthritis, peptide sensor, graphene oxide, anti citrullinated peptide antibodies, cyclic voltammetry
Procedia PDF Downloads 1423629 Alternative Approach to the Machine Vision System Operating for Solving Industrial Control Issue
Authors: M. S. Nikitenko, S. A. Kizilov, D. Y. Khudonogov
Abstract:
The paper considers an approach to a machine vision operating system combined with using a grid of light markers. This approach is used to solve several scientific and technical problems, such as measuring the capability of an apron feeder delivering coal from a lining return port to a conveyor in the technology of mining high coal releasing to a conveyor and prototyping an autonomous vehicle obstacle detection system. Primary verification of a method of calculating bulk material volume using three-dimensional modeling and validation in laboratory conditions with relative errors calculation were carried out. A method of calculating the capability of an apron feeder based on a machine vision system and a simplifying technology of a three-dimensional modelled examined measuring area with machine vision was offered. The proposed method allows measuring the volume of rock mass moved by an apron feeder using machine vision. This approach solves the volume control issue of coal produced by a feeder while working off high coal by lava complexes with release to a conveyor with accuracy applied for practical application. The developed mathematical apparatus for measuring feeder productivity in kg/s uses only basic mathematical functions such as addition, subtraction, multiplication, and division. Thus, this fact simplifies software development, and this fact expands the variety of microcontrollers and microcomputers suitable for performing tasks of calculating feeder capability. A feature of an obstacle detection issue is to correct distortions of the laser grid, which simplifies their detection. The paper presents algorithms for video camera image processing and autonomous vehicle model control based on obstacle detection machine vision systems. A sample fragment of obstacle detection at the moment of distortion with the laser grid is demonstrated.Keywords: machine vision, machine vision operating system, light markers, measuring capability, obstacle detection system, autonomous transport
Procedia PDF Downloads 1143628 Preparation of β-Polyvinylidene Fluoride Film for Self-Charging Lithium-Ion Battery
Authors: Nursultan Turdakyn, Alisher Medeubayev, Didar Meiramov, Zhibek Bekezhankyzy, Desmond Adair, Gulnur Kalimuldina
Abstract:
In recent years the development of sustainable energy sources is getting extensive research interest due to the ever-growing demand for energy. As an alternative energy source to power small electronic devices, ambient energy harvesting from vibration or human body motion is considered a potential candidate. Despite the enormous progress in the field of battery research in terms of safety, lifecycle and energy density in about three decades, it has not reached the level to conveniently power wearable electronic devices such as smartwatches, bands, hearing aids, etc. For this reason, the development of self-charging power units with excellent flexibility and integrated energy harvesting and storage is crucial. Self-powering is a key idea that makes it possible for the system to operate sustainably, which is now getting more acceptance in many fields in the area of sensor networks, the internet of things (IoT) and implantable in-vivo medical devices. For solving this energy harvesting issue, the self-powering nanogenerators (NGS) were proposed and proved their high effectiveness. Usually, sustainable power is delivered through energy harvesting and storage devices by connecting them to the power management circuit; as for energy storage, the Li-ion battery (LIB) is one of the most effective technologies. Through the movement of Li ions under the driving of an externally applied voltage source, the electrochemical reactions generate the anode and cathode, storing the electrical energy as the chemical energy. In this paper, we present a simultaneous process of converting the mechanical energy into chemical energy in a way that NG and LIB are combined as an all-in-one power system. The electrospinning method was used as an initial step for the development of such a system with a β-PVDF separator. The obtained film showed promising voltage output at different stress frequencies. X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) analysis showed a high percentage of β phase of PVDF polymer material. Moreover, it was found that the addition of 1 wt.% of BTO (Barium Titanate) results in higher quality fibers. When comparing pure PVDF solution with 20 wt.% content and the one with BTO added the latter was more viscous. Hence, the sample was electrospun uniformly without any beads. Lastly, to test the sensor application of such film, a particular testing device has been developed. With this device, the force of a finger tap can be applied at different frequencies so that electrical signal generation is validated.Keywords: electrospinning, nanogenerators, piezoelectric PVDF, self-charging li-ion batteries
Procedia PDF Downloads 1623627 Smart Demand Response: A South African Pragmatic, Non-Destructive and Alternative Advanced Metering Infrastructure-Based Maximum Demand Reduction Methodology
Authors: Christo Nicholls
Abstract:
The National Electricity Grid (NEG) in South Africa has been under strain for the last five years. This overburden of the NEG led Eskom (the State-Owned Entity responsible for the NEG) to implement a blunt methodology to assist them in reducing the maximum demand (MD) on the NEG, when required, called Loadshedding. The challenge of this methodology is that not only does it lead to immense technical issues with the distribution network equipment, e.g., transformers, due to the frequent abrupt off and on switching, it also has a broader negative fiscal impact on the distributors, as their key consumers (commercial & industrial) are now grid defecting due to the lack of Electricity Security Provision (ESP). This paper provides a pragmatic alternative methodology utilizing specific functionalities embedded within direct-connect single and three-phase Advanced Meter Infrastructure (AMI) Solutions deployed within the distribution network, in conjunction with a Multi-Agent Systems Based AI implementation focused on Automated Negotiation Peer-2-Peer trading. The results of this research clearly illustrate, not only does methodology provide a factual percentage contribution towards the NEG MD at the point of consideration, it also allows the distributor to leverage the real-time MD data from key consumers to activate complex, yet impact-measurable Demand Response (DR) programs.Keywords: AI, AMI, demand response, multi-agent
Procedia PDF Downloads 1123626 A Multi Sensor Monochrome Video Fusion Using Image Quality Assessment
Authors: M. Prema Kumar, P. Rajesh Kumar
Abstract:
The increasing interest in image fusion (combining images of two or more modalities such as infrared and visible light radiation) has led to a need for accurate and reliable image assessment methods. This paper gives a novel approach of merging the information content from several videos taken from the same scene in order to rack up a combined video that contains the finest information coming from different source videos. This process is known as video fusion which helps in providing superior quality (The term quality, connote measurement on the particular application.) image than the source images. In this technique different sensors (whose redundant information can be reduced) are used for various cameras that are imperative for capturing the required images and also help in reducing. In this paper Image fusion technique based on multi-resolution singular value decomposition (MSVD) has been used. The image fusion by MSVD is almost similar to that of wavelets. The idea behind MSVD is to replace the FIR filters in wavelet transform with singular value decomposition (SVD). It is computationally very simple and is well suited for real time applications like in remote sensing and in astronomy.Keywords: multi sensor image fusion, MSVD, image processing, monochrome video
Procedia PDF Downloads 5723625 Fluorescence-Based Biosensor for Dopamine Detection Using Quantum Dots
Authors: Sylwia Krawiec, Joanna Cabaj, Karol Malecha
Abstract:
Nowadays, progress in the field of the analytical methods is of great interest for reliable biological research and medical diagnostics. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements. Chemical sensors have displaced the conventional analytical methods - sensors combine precision, sensitivity, fast response and the possibility of continuous-monitoring. Biosensor is a chemical sensor, which except of conventer also possess a biologically active material, which is the basis for the detection of specific chemicals in the sample. Each biosensor device mainly consists of two elements: a sensitive element, where is recognition of receptor-analyte, and a transducer element which receives the signal and converts it into a measurable signal. Through these two elements biosensors can be divided in two categories: due to the recognition element (e.g immunosensor) and due to the transducer (e.g optical sensor). Working of optical sensor is based on measurements of quantitative changes of parameters characterizing light radiation. The most often analyzed parameters include: amplitude (intensity), frequency or polarization. Changes in the optical properties one of the compound which reacts with biological material coated on the sensor is analyzed by a direct method, in an indirect method indicators are used, which changes the optical properties due to the transformation of the testing species. The most commonly used dyes in this method are: small molecules with an aromatic ring, like rhodamine, fluorescent proteins, for example green fluorescent protein (GFP), or nanoparticles such as quantum dots (QDs). Quantum dots have, in comparison with organic dyes, much better photoluminescent properties, better bioavailability and chemical inertness. These are semiconductor nanocrystals size of 2-10 nm. This very limited number of atoms and the ‘nano’-size gives QDs these highly fluorescent properties. Rapid and sensitive detection of dopamine is extremely important in modern medicine. Dopamine is very important neurotransmitter, which mainly occurs in the brain and central nervous system of mammals. Dopamine is responsible for the transmission information of moving through the nervous system and plays an important role in processes of learning or memory. Detection of dopamine is significant for diseases associated with the central nervous system such as Parkinson or schizophrenia. In developed optical biosensor for detection of dopamine, are used graphene quantum dots (GQDs). In such sensor dopamine molecules coats the GQD surface - in result occurs quenching of fluorescence due to Resonance Energy Transfer (FRET). Changes in fluorescence correspond to specific concentrations of the neurotransmitter in tested sample, so it is possible to accurately determine the concentration of dopamine in the sample.Keywords: biosensor, dopamine, fluorescence, quantum dots
Procedia PDF Downloads 3643624 Study of Morning-Glory Spillway Structure in Hydraulic Characteristics by CFD Model
Authors: Mostafa Zandi, Ramin Mansouri
Abstract:
Spillways are one of the most important hydraulic structures of dams that provide the stability of the dam and downstream areas at the time of flood. Morning-Glory spillway is one of the common spillways for discharging the overflow water behind dams, these kinds of spillways are constructed in dams with small reservoirs. In this research, the hydraulic flow characteristics of a morning-glory spillways are investigated with CFD model. Two dimensional unsteady RANS equations were solved numerically using Finite Volume Method. The PISO scheme was applied for the velocity-pressure coupling. The mostly used two-equation turbulence models, k- and k-, were chosen to model Reynolds shear stress term. The power law scheme was used for discretization of momentum, k , and equations. The VOF method (geometrically reconstruction algorithm) was adopted for interface simulation. The results show that the fine computational grid, the input speed condition for the flow input boundary, and the output pressure for the boundaries that are in contact with the air provide the best possible results. Also, the standard wall function is chosen for the effect of the wall function, and the turbulent model k -ε (Standard) has the most consistent results with experimental results. When the jet is getting closer to end of basin, the computational results increase with the numerical results of their differences. The lower profile of the water jet has less sensitivity to the hydraulic jet profile than the hydraulic jet profile. In the pressure test, it was also found that the results show that the numerical values of the pressure in the lower landing number differ greatly in experimental results. The characteristics of the complex flows over a Morning-Glory spillway were studied numerically using a RANS solver. Grid study showed that numerical results of a 57512-node grid had the best agreement with the experimental values. The desired downstream channel length was preferred to be 1.5 meter, and the standard k-ε turbulence model produced the best results in Morning-Glory spillway. The numerical free-surface profiles followed the theoretical equations very well.Keywords: morning-glory spillway, CFD model, hydraulic characteristics, wall function
Procedia PDF Downloads 77