Search results for: green network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6721

Search results for: green network

5491 Losing Benefits from Social Network Sites Usage: An Approach to Estimate the Relationship between Social Network Sites Usage and Social Capital

Authors: Maoxin Ye

Abstract:

This study examines the relationship between social network sites (SNS) usage and social capital. Because SNS usage can expand the users’ networks, and people who are connected in this networks may become resources to SNS users and lead them to advantage in some situation, it is important to estimate the relationship between SNS usage and ‘who’ is connected or what resources the SNS users can get. Additionally, ‘who’ can be divided in two aspects – people who possess high position and people who are different, hence, it is important to estimate the relationship between SNS usage and high position people and different people. This study adapts Lin’s definition of social capital and the measurement of position generator which tells us who was connected, and can be divided into the same two aspects as well. A national data of America (N = 2,255) collected by Pew Research Center is utilized to do a general regression analysis about SNS usage and social capital. The results indicate that SNS usage is negatively associated with each factor of social capital, and it suggests that, in fact, comparing with non-users, although SNS users can get more connections, the variety and resources of these connections are fewer. For this reason, we could lose benefits through SNS usage.

Keywords: social network sites, social capital, position generator, general regression

Procedia PDF Downloads 262
5490 Probabilistic Graphical Model for the Web

Authors: M. Nekri, A. Khelladi

Abstract:

The world wide web network is a network with a complex topology, the main properties of which are the distribution of degrees in power law, A low clustering coefficient and a weak average distance. Modeling the web as a graph allows locating the information in little time and consequently offering a help in the construction of the research engine. Here, we present a model based on the already existing probabilistic graphs with all the aforesaid characteristics. This work will consist in studying the web in order to know its structuring thus it will enable us to modelize it more easily and propose a possible algorithm for its exploration.

Keywords: clustering coefficient, preferential attachment, small world, web community

Procedia PDF Downloads 271
5489 Detection of Atrial Fibrillation Using Wearables via Attentional Two-Stream Heterogeneous Networks

Authors: Huawei Bai, Jianguo Yao, Fellow, IEEE

Abstract:

Atrial fibrillation (AF) is the most common form of heart arrhythmia and is closely associated with mortality and morbidity in heart failure, stroke, and coronary artery disease. The development of single spot optical sensors enables widespread photoplethysmography (PPG) screening, especially for AF, since it represents a more convenient and noninvasive approach. To our knowledge, most existing studies based on public and unbalanced datasets can barely handle the multiple noises sources in the real world and, also, lack interpretability. In this paper, we construct a large- scale PPG dataset using measurements collected from PPG wrist- watch devices worn by volunteers and propose an attention-based two-stream heterogeneous neural network (TSHNN). The first stream is a hybrid neural network consisting of a three-layer one-dimensional convolutional neural network (1D-CNN) and two-layer attention- based bidirectional long short-term memory (Bi-LSTM) network to learn representations from temporally sampled signals. The second stream extracts latent representations from the PPG time-frequency spectrogram using a five-layer CNN. The outputs from both streams are fed into a fusion layer for the outcome. Visualization of the attention weights learned demonstrates the effectiveness of the attention mechanism against noise. The experimental results show that the TSHNN outperforms all the competitive baseline approaches and with 98.09% accuracy, achieves state-of-the-art performance.

Keywords: PPG wearables, atrial fibrillation, feature fusion, attention mechanism, hyber network

Procedia PDF Downloads 120
5488 Optimization of Assay Parameters of L-Glutaminase from Bacillus cereus MTCC1305 Using Artificial Neural Network

Authors: P. Singh, R. M. Banik

Abstract:

Artificial neural network (ANN) was employed to optimize assay parameters viz., time, temperature, pH of reaction mixture, enzyme volume and substrate concentration of L-glutaminase from Bacillus cereus MTCC 1305. ANN model showed high value of coefficient of determination (0.9999), low value of root mean square error (0.6697) and low value of absolute average deviation. A multilayer perceptron neural network trained with an error back-propagation algorithm was incorporated for developing a predictive model and its topology was obtained as 5-3-1 after applying Levenberg Marquardt (LM) training algorithm. The predicted activity of L-glutaminase was obtained as 633.7349 U/l by considering optimum assay parameters, viz., pH of reaction mixture (7.5), reaction time (20 minutes), incubation temperature (35˚C), substrate concentration (40mM), and enzyme volume (0.5ml). The predicted data was verified by running experiment at simulated optimum assay condition and activity was obtained as 634.00 U/l. The application of ANN model for optimization of assay conditions improved the activity of L-glutaminase by 1.499 fold.

Keywords: Bacillus cereus, L-glutaminase, assay parameters, artificial neural network

Procedia PDF Downloads 428
5487 Design and Optimization of Open Loop Supply Chain Distribution Network Using Hybrid K-Means Cluster Based Heuristic Algorithm

Authors: P. Suresh, K. Gunasekaran, R. Thanigaivelan

Abstract:

Radio frequency identification (RFID) technology has been attracting considerable attention with the expectation of improved supply chain visibility for consumer goods, apparel, and pharmaceutical manufacturers, as well as retailers and government procurement agencies. It is also expected to improve the consumer shopping experience by making it more likely that the products they want to purchase are available. Recent announcements from some key retailers have brought interest in RFID to the forefront. A modified K- Means Cluster based Heuristic approach, Hybrid Genetic Algorithm (GA) - Simulated Annealing (SA) approach, Hybrid K-Means Cluster based Heuristic-GA and Hybrid K-Means Cluster based Heuristic-GA-SA for Open Loop Supply Chain Network problem are proposed. The study incorporated uniform crossover operator and combined crossover operator in GAs for solving open loop supply chain distribution network problem. The algorithms are tested on 50 randomly generated data set and compared with each other. The results of the numerical experiments show that the Hybrid K-means cluster based heuristic-GA-SA, when tested on 50 randomly generated data set, shows superior performance to the other methods for solving the open loop supply chain distribution network problem.

Keywords: RFID, supply chain distribution network, open loop supply chain, genetic algorithm, simulated annealing

Procedia PDF Downloads 164
5486 On the Network Packet Loss Tolerance of SVM Based Activity Recognition

Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir

Abstract:

In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.

Keywords: activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss

Procedia PDF Downloads 475
5485 Analysis of Green Wood Preservation Chemicals

Authors: Aitor Barbero-López, Soumaya Chibily, Gerhard Scheepers, Thomas Grahn, Martti Venäläinen, Antti Haapala

Abstract:

Wood decay is addressed continuously within the wood industry through use and development of wood preservatives. The increasing awareness on the negative effects of many chemicals towards the environment is causing political restrictions in their use and creating more urgent need for research on green alternatives. This paper discusses some of the possible natural extracts for wood preserving applications and compares the analytical methods available for testing their behavior and efficiency against decay fungi. The results indicate that natural extracts have interesting chemical constituents that delay fungal growth but vary in efficiency depending on the chemical concentration and substrate used. Results also suggest that presence and redistribution of preservatives in wood during exposure trials can be assessed by spectral imaging methods although standardized methods are not available. This study concludes that, in addition to the many standard methods available, there is a need to develop new faster methods for screening potential preservative formulation while maintaining the comparability and relevance of results.

Keywords: analytics, methods, preservatives, wood decay

Procedia PDF Downloads 230
5484 Distribution Network Optimization by Optimal Placement of Photovoltaic-Based Distributed Generation: A Case Study of the Nigerian Power System

Authors: Edafe Lucky Okotie, Emmanuel Osawaru Omosigho

Abstract:

This paper examines the impacts of the introduction of distributed energy generation (DEG) technology into the Nigerian power system as an alternative means of energy generation at distribution ends using Otovwodo 15 MVA, 33/11kV injection substation as a case study. The overall idea is to increase the generated energy in the system, improve the voltage profile and reduce system losses. A photovoltaic-based distributed energy generator (PV-DEG) was considered and was optimally placed in the network using Genetic Algorithm (GA) in Mat. Lab/Simulink environment. The results of simulation obtained shows that the dynamic performance of the network was optimized with DEG-grid integration.

Keywords: distributed energy generation (DEG), genetic algorithm (GA), power quality, total load demand, voltage profile

Procedia PDF Downloads 82
5483 Simulation Approach for a Comparison of Linked Cluster Algorithm and Clusterhead Size Algorithm in Ad Hoc Networks

Authors: Ameen Jameel Alawneh

Abstract:

A Mobile ad-hoc network (MANET) is a collection of wireless mobile hosts that dynamically form a temporary network without the aid of a system administrator. It has neither fixed infrastructure nor wireless ad hoc sessions. It inherently reaches several nodes with a single transmission, and each node functions as both a host and a router. The network maybe represented as a set of clusters each managed by clusterhead. The cluster size is not fixed and it depends on the movement of nodes. We proposed a clusterhead size algorithm (CHSize). This clustering algorithm can be used by several routing algorithms for ad hoc networks. An elected clusterhead is assigned for communication with all other clusters. Analysis and simulation of the algorithm has been implemented using GloMoSim networks simulator, MATLAB and MAPL11 proved that the proposed algorithm achieves the goals.

Keywords: simulation, MANET, Ad-hoc, cluster head size, linked cluster algorithm, loss and dropped packets

Procedia PDF Downloads 390
5482 Keyframe Extraction Using Face Quality Assessment and Convolution Neural Network

Authors: Rahma Abed, Sahbi Bahroun, Ezzeddine Zagrouba

Abstract:

Due to the huge amount of data in videos, extracting the relevant frames became a necessity and an essential step prior to performing face recognition. In this context, we propose a method for extracting keyframes from videos based on face quality and deep learning for a face recognition task. This method has two steps. We start by generating face quality scores for each face image based on the use of three face feature extractors, including Gabor, LBP, and HOG. The second step consists in training a Deep Convolutional Neural Network in a supervised manner in order to select the frames that have the best face quality. The obtained results show the effectiveness of the proposed method compared to the methods of the state of the art.

Keywords: keyframe extraction, face quality assessment, face in video recognition, convolution neural network

Procedia PDF Downloads 229
5481 An Integer Nonlinear Program Proposal for Intermodal Transportation Service Network Design

Authors: Laaziz El Hassan

Abstract:

The Service Network Design Problem (SNDP) is a tactical issue in freight transportation firms. The existing formulations of the problem for intermodal rail-road transportation were not always adapted to the intermodality in terms of full asset utilization and modal shift reinforcement. The objective of the article is to propose a model having a more compliant formulation with intermodality, including constraints highlighting the imperatives of asset management, reinforcing modal shift from road to rail and reducing, by the way, road mode CO2 emissions. The model is a fixed charged, path based integer nonlinear program. Its objective is to minimize services total cost while ensuring full assets utilization to satisfy freight demand forecast. The model's main feature is that it gives as output both the train sizes and the services frequencies for a planning period. We solved the program using a commercial solver and discussed the numerical results.

Keywords: intermodal transport network, service network design, model, nonlinear integer program, path-based, service frequencies, modal shift

Procedia PDF Downloads 118
5480 A Post-Occupancy Evaluation of LEED-Certified Residential Communities Using Structural Equation Modeling

Authors: Mohsen Goodarzi, George Berghorn

Abstract:

Despite the rapid growth in the number of green building and community development projects, the long-term performance of these projects has not yet been sufficiently evaluated from the users’ points of view. This is partially due to the lack of post-occupancy evaluation tools available for this type of project. In this study, a post-construction evaluation model is developed to evaluate the relationship between the perceived performance and satisfaction of residents in LEED-certified residential buildings and communities. To develop this evaluation model, a primary five-factor model was developed based on the existing models and residential satisfaction theories. Each factor of the model included several measures that were adopted from LEED certification systems such as LEED-BD+C New Construction, LEED-BD+C Multifamily Midrise, LEED-ND, as well as the UC Berkeley’s Center for the Built Environment survey tool. The model included four predictor variables (factors), including perceived building performance (8 measures), perceived infrastructure performance (9 measures), perceived neighborhood design (6 measures), and perceived economic performance (4 measures), and one dependent variable (factor), which was residential satisfaction (6 measures). An online survey was then conducted to collect the data from the residents of LEED-certified residential communities (n=192) and the validity of the model was tested through Confirmatory Factor Analysis (CFA). After modifying the CFA model, 26 measures, out of the initial 33 measures, were retained to enter into a Structural Equation Model (SEM) and to find the relationships between the perceived buildings performance, infrastructure performance, neighborhood design, economic performance and residential Satisfaction. The results of the SEM showed that the perceived building performance was the most influential factor in determining residential satisfaction in LEED-certified communities, followed by the perceived neighborhood design. On the other hand, perceived infrastructure performance and perceived economic performance did not show any significant relationship with residential satisfaction in these communities. This study can benefit green building researchers by providing a model for the evaluation of the long-term performance of these projects. It can also provide opportunities for green building practitioners to determine priorities for future residential development projects.

Keywords: green building, residential satisfaction, perceived performance, confirmatory factor analysis, structural equation modeling

Procedia PDF Downloads 238
5479 Computational Identification of Signalling Pathways in Protein Interaction Networks

Authors: Angela U. Makolo, Temitayo A. Olagunju

Abstract:

The knowledge of signaling pathways is central to understanding the biological mechanisms of organisms since it has been identified that in eukaryotic organisms, the number of signaling pathways determines the number of ways the organism will react to external stimuli. Signaling pathways are studied using protein interaction networks constructed from protein-protein interaction data obtained using high throughput experimental procedures. However, these high throughput methods are known to produce very high rates of false positive and negative interactions. In order to construct a useful protein interaction network from this noisy data, computational methods are applied to validate the protein-protein interactions. In this study, a computational technique to identify signaling pathways from a protein interaction network constructed using validated protein-protein interaction data was designed. A weighted interaction graph of the Saccharomyces cerevisiae (Baker’s Yeast) organism using the proteins as the nodes and interactions between them as edges was constructed. The weights were obtained using Bayesian probabilistic network to estimate the posterior probability of interaction between two proteins given the gene expression measurement as biological evidence. Only interactions above a threshold were accepted for the network model. A pathway was formalized as a simple path in the interaction network from a starting protein and an ending protein of interest. We were able to identify some pathway segments, one of which is a segment of the pathway that signals the start of the process of meiosis in S. cerevisiae.

Keywords: Bayesian networks, protein interaction networks, Saccharomyces cerevisiae, signalling pathways

Procedia PDF Downloads 540
5478 Determinants of the Users Intention of Social-Local-Mobile Applications

Authors: Chia-Chen Chen, Mu-Yen Chen

Abstract:

In recent years, with the vigorous growth of hardware and software technologies of smart mobile devices coupling with the rapid increase of social network influence, mobile commerce also presents the commercial operation mode of the future mainstream. For the time being, SoLoMo has become one of the very popular commercial models, its full name and meaning mainly refer to that users can obtain three key service types through smart mobile devices (Mobile) and omnipresent network services, and then link to the social (Social) web site platform to obtain the information exchange, again collocating with position and situational awareness technology to get the service suitable for the location (Local), through anytime, anywhere and any personal use of different mobile devices to provide the service concept of seamless integration style, and more deriving infinite opportunities of the future. The study tries to explore the use intention of users with SoLoMo mobile application formula, proposing research model to integrate TAM, ISSM, IDT and network externality, and with questionnaires to collect data and analyze results to verify the hypothesis, results show that perceived ease-of-use (PEOU), perceived usefulness (PU), and network externality have significant impact on the use intention with SoLoMo mobile application formula, and the information quality, relative advantages and observability have impacts on the perceived usefulness, and further affecting the use intention.

Keywords: SoLoMo (social, local, and mobile), technology acceptance model, innovation diffusion theory, network externality

Procedia PDF Downloads 528
5477 Impacts on Marine Ecosystems Using a Multilayer Network Approach

Authors: Nelson F. F. Ebecken, Gilberto C. Pereira, Lucio P. de Andrade

Abstract:

Bays, estuaries and coastal ecosystems are some of the most used and threatened natural systems globally. Its deterioration is due to intense and increasing human activities. This paper aims to monitor the socio-ecological in Brazil, model and simulate it through a multilayer network representing a DPSIR structure (Drivers, Pressures, States-Impacts-Responses) considering the concept of Management based on Ecosystems to support decision-making under the National/State/Municipal Coastal Management policy. This approach considers several interferences and can represent a significant advance in several scientific aspects. The main objective of this paper is the coupling of three different types of complex networks, the first being an ecological network, the second a social network, and the third a network of economic activities, in order to model the marine ecosystem. Multilayer networks comprise two or more "layers", which may represent different types of interactions, different communities, different points in time, and so on. The dependency between layers results from processes that affect the various layers. For example, the dispersion of individuals between two patches affects the network structure of both samples. A multilayer network consists of (i) a set of physical nodes representing entities (e.g., species, people, companies); (ii) a set of layers, which may include multiple layering aspects (e.g., time dependency and multiple types of relationships); (iii) a set of state nodes, each of which corresponds to the manifestation of a given physical node in a layer-specific; and (iv) a set of edges (weighted or not) to connect the state nodes among themselves. The edge set includes the intralayer edges familiar and interlayer ones, which connect state nodes between layers. The applied methodology in an existent case uses the Flow cytometry process and the modeling of ecological relationships (trophic and non-trophic) following fuzzy theory concepts and graph visualization. The identification of subnetworks in the fuzzy graphs is carried out using a specific computational method. This methodology allows considering the influence of different factors and helps their contributions to the decision-making process.

Keywords: marine ecosystems, complex systems, multilayer network, ecosystems management

Procedia PDF Downloads 112
5476 Analyzing the Shearing-Layer Concept Applied to Urban Green System

Authors: S. Pushkar, O. Verbitsky

Abstract:

Currently, green rating systems are mainly utilized for correctly sizing mechanical and electrical systems, which have short lifetime expectancies. In these systems, passive solar and bio-climatic architecture, which have long lifetime expectancies, are neglected. Urban rating systems consider buildings and services in addition to neighborhoods and public transportation as integral parts of the built environment. The main goal of this study was to develop a more consistent point allocation system for urban building standards by using six different lifetime shearing layers: Site, Structure, Skin, Services, Space, and Stuff, each reflecting distinct environmental damages. This shearing-layer concept was applied to internationally well-known rating systems: Leadership in Energy and Environmental Design (LEED) for Neighborhood Development, BRE Environmental Assessment Method (BREEAM) for Communities, and Comprehensive Assessment System for Building Environmental Efficiency (CASBEE) for Urban Development. The results showed that LEED for Neighborhood Development and BREEAM for Communities focused on long-lifetime-expectancy building designs, whereas CASBEE for Urban Development gave equal importance to the Building and Service Layers. Moreover, although this rating system was applied using a building-scale assessment, “Urban Area + Buildings” focuses on a short-lifetime-expectancy system design, neglecting to improve the architectural design by considering bio-climatic and passive solar aspects.

Keywords: green rating system, urban community, sustainable design, standardization, shearing-layer concept, passive solar architecture

Procedia PDF Downloads 579
5475 Modeling Binomial Dependent Distribution of the Values: Synthesis Tables of Probabilities of Errors of the First and Second Kind of Biometrics-Neural Network Authentication System

Authors: B. S.Akhmetov, S. T. Akhmetova, D. N. Nadeyev, V. Yu. Yegorov, V. V. Smogoonov

Abstract:

Estimated probabilities of errors of the first and second kind for nonideal biometrics-neural transducers 256 outputs, the construction of nomograms based error probability of 'own' and 'alien' from the mathematical expectation and standard deviation of the normalized measures Hamming.

Keywords: modeling, errors, probability, biometrics, neural network, authentication

Procedia PDF Downloads 481
5474 Adopting Cloud-Based Techniques to Reduce Energy Consumption: Toward a Greener Cloud

Authors: Sandesh Achar

Abstract:

The cloud computing industry has set new goals for better service delivery and deployment, so anyone can access services such as computation, application, and storage anytime. Cloud computing promises new possibilities for approaching sustainable solutions to deploy and advance their services in this distributed environment. This work explores energy-efficient approaches and how cloud-based architecture can reduce energy consumption levels amongst enterprises leveraging cloud computing services. Adopting cloud-based networking, database, and server machines provide a comprehensive means of achieving the potential gains in energy efficiency that cloud computing offers. In energy-efficient cloud computing, virtualization is one aspect that can integrate several technologies to achieve consolidation and better resource utilization. Moreover, the Green Cloud Architecture for cloud data centers is discussed in terms of cost, performance, and energy consumption, and appropriate solutions for various application areas are provided.

Keywords: greener cloud, cloud computing, energy efficiency, energy consumption, metadata tags, green cloud advisor

Procedia PDF Downloads 84
5473 Quality of Service of Transportation Networks: A Hybrid Measurement of Travel Time and Reliability

Authors: Chin-Chia Jane

Abstract:

In a transportation network, travel time refers to the transmission time from source node to destination node, whereas reliability refers to the probability of a successful connection from source node to destination node. With an increasing emphasis on quality of service (QoS), both performance indexes are significant in the design and analysis of transportation systems. In this work, we extend the well-known flow network model for transportation networks so that travel time and reliability are integrated into the QoS measurement simultaneously. In the extended model, in addition to the general arc capacities, each intermediate node has a time weight which is the travel time for per unit of commodity going through the node. Meanwhile, arcs and nodes are treated as binary random variables that switch between operation and failure with associated probabilities. For pre-specified travel time limitation and demand requirement, the QoS of a transportation network is the probability that source can successfully transport the demand requirement to destination while the total transmission time is under the travel time limitation. This work is pioneering, since existing literatures that evaluate travel time reliability via a single optimization path, the proposed QoS focuses the performance of the whole network system. To compute the QoS of transportation networks, we first transfer the extended network model into an equivalent min-cost max-flow network model. In the transferred network, each arc has a new travel time weight which takes value 0. Each intermediate node is replaced by two nodes u and v, and an arc directed from u to v. The newly generated nodes u and v are perfect nodes. The new direct arc has three weights: travel time, capacity, and operation probability. Then the universal set of state vectors is recursively decomposed into disjoint subsets of reliable, unreliable, and stochastic vectors until no stochastic vector is left. The decomposition is made possible by applying existing efficient min-cost max-flow algorithm. Because the reliable subsets are disjoint, QoS can be obtained directly by summing the probabilities of these reliable subsets. Computational experiments are conducted on a benchmark network which has 11 nodes and 21 arcs. Five travel time limitations and five demand requirements are set to compute the QoS value. To make a comparison, we test the exhaustive complete enumeration method. Computational results reveal the proposed algorithm is much more efficient than the complete enumeration method. In this work, a transportation network is analyzed by an extended flow network model where each arc has a fixed capacity, each intermediate node has a time weight, and both arcs and nodes are independent binary random variables. The quality of service of the transportation network is an integration of customer demands, travel time, and the probability of connection. We present a decomposition algorithm to compute the QoS efficiently. Computational experiments conducted on a prototype network show that the proposed algorithm is superior to existing complete enumeration methods.

Keywords: quality of service, reliability, transportation network, travel time

Procedia PDF Downloads 220
5472 Signal Restoration Using Neural Network Based Equalizer for Nonlinear channels

Authors: Z. Zerdoumi, D. Benatia, , D. Chicouche

Abstract:

This paper investigates the application of artificial neural network to the problem of nonlinear channel equalization. The difficulties caused by channel distortions such as inter symbol interference (ISI) and nonlinearity can overcome by nonlinear equalizers employing neural networks. It has been shown that multilayer perceptron based equalizer outperform significantly linear equalizers. We present a multilayer perceptron based equalizer with decision feedback (MLP-DFE) trained with the back propagation algorithm. The capacity of the MLP-DFE to deal with nonlinear channels is evaluated. From simulation results it can be noted that the MLP based DFE improves significantly the restored signal quality, the steady state mean square error (MSE), and minimum Bit Error Rate (BER), when comparing with its conventional counterpart.

Keywords: Artificial Neural Network, signal restoration, Nonlinear Channel equalization, equalization

Procedia PDF Downloads 495
5471 Analysis and Study of Phytoplankton and the Environmental Characteristics of Tarkwa Bay, Lagos, South-Western, Nigeria

Authors: Bukola Dawodu, Charles Onyema

Abstract:

The phytoplankton and environmental characteristics of Tarkwa Bay, Lagos in South-western Nigeria were investigated from January to June 2012. Environmental characteristics within the Bay were largely determined by floodwater inflow in the wet months (April – June) and increased tidal marine conditions in the dry months (January – March). Similarly, rainfall distribution and possibly tidal seawater inflow were the key factors that govern the variation in phytoplankton distribution, species diversity, chlorophyll a concentration and environmental characteristics of the bay. Values for physico-chemical parameters were indicative of high levels of fluctuations inwards from the East mole towards Tarkwa Bay (e.g. T.S.S > 11mg/L, T.D.S > 33541.0mg/L, D.O. < 5.4). Chlorophyll A values did not show any discernable pattern and correlated negatively with total dissolved solids and total suspended solids (r = -0.27 and -0.04) as both were inconsistent throughout the study period. Four phytoplankton divisions were observed throughout the sampling period with the Bacillariophyta (diatoms) being the dominant group followed by Dinophyta (dinoflagellates), Cyanophyta (the blue-green algae) and Chlorophyta (the green algae). A total of twenty-one species from nine genera were recorded during the period of study. Diatoms formed the most abundant group making fifteen species from five genera. The centric forms dominated over the pennates in the diatom group with Skeletonema sp. Chaetoceros spp. and Coscinodiscus spp. being the dominant centric diatoms while Navicula spp. was the more dominant pennate form. The Dinoflagellates were represented by six species from one genus, the blue-green algae with five species from two genera while the green algae had one species from one genus. Comparatively, total biomass was more in the dry months (Jan. - Mar.) and decreased in the 'wet months' (Apr. – Jun.). Species diversity (S), Shannon Wiener index (Hs), Margalef Index (d) and Equitability Index (j) values were higher during the dry months while reduced value marked the wet months possibly as a result of dilution of rain effects. Outcomes of bio-indices variations were reflections of the degree of occurrence and abundance of species linked to seasons operating in the study site.

Keywords: coastal waters, phytoplankton, species abundance, ecosystems

Procedia PDF Downloads 189
5470 Cells Detection and Recognition in Bone Marrow Examination with Deep Learning Method

Authors: Shiyin He, Zheng Huang

Abstract:

In this paper, deep learning methods are applied in bio-medical field to detect and count different types of cells in an automatic way instead of manual work in medical practice, specifically in bone marrow examination. The process is mainly composed of two steps, detection and recognition. Mask-Region-Convolutional Neural Networks (Mask-RCNN) was used for detection and image segmentation to extract cells and then Convolutional Neural Networks (CNN), as well as Deep Residual Network (ResNet) was used to classify. Result of cell detection network shows high efficiency to meet application requirements. For the cell recognition network, two networks are compared and the final system is fully applicable.

Keywords: cell detection, cell recognition, deep learning, Mask-RCNN, ResNet

Procedia PDF Downloads 186
5469 A Constrained Neural Network Based Variable Neighborhood Search for the Multi-Objective Dynamic Flexible Job Shop Scheduling Problems

Authors: Aydin Teymourifar, Gurkan Ozturk, Ozan Bahadir

Abstract:

In this paper, a new neural network based variable neighborhood search is proposed for the multi-objective dynamic, flexible job shop scheduling problems. The neural network controls the problems' constraints to prevent infeasible solutions, while the Variable Neighborhood Search (VNS) applies moves, based on the critical block concept to improve the solutions. Two approaches are used for managing the constraints, in the first approach, infeasible solutions are modified according to the constraints, after the moves application, while in the second one, infeasible moves are prevented. Several neighborhood structures from the literature with some modifications, also new structures are used in the VNS. The suggested neighborhoods are more systematically defined and easy to implement. Comparison is done based on a multi-objective flexible job shop scheduling problem that is dynamic because of the jobs different release time and machines breakdowns. The results show that the presented method has better performance than the compared VNSs selected from the literature.

Keywords: constrained optimization, neural network, variable neighborhood search, flexible job shop scheduling, dynamic multi-objective optimization

Procedia PDF Downloads 344
5468 Exploring the Intrinsic Ecology and Suitable Density of Historic Districts Through a Comparative Analysis of Ancient and Modern Ecological Smart Practices

Authors: HU Changjuan, Gong Cong, Long Hao

Abstract:

Although urban ecological policies and the public's aspiration for livable environments have expedited the pace of ecological revitalization, historic districts that have evolved through natural ecological processes often become obsolete and less habitable amid rapid urbanization. This raises a critical question about historic districts inherently incapable of being ecological and livable. The thriving concept of ‘intrinsic ecology,’ characterized by its ability to transform city-district systems into healthy ecosystems with diverse environments, stable functions, and rapid restoration capabilities, holds potential for guiding the integration of ancient and modern ecological wisdom while supporting the dynamic involvement of cultures. This study explores the intrinsic ecology of historic districts from three aspects: 1) Population Density: By comparing the population density before urban population expansion to the present day, determine the reasonable population density for historic districts. 2) Building Density: Using the ‘Space-mate’ tool for comparative analysis, form a spatial matrix to explore the intrinsic ecology of building density in Chinese historic districts. 3) Green Capacity Ratio: By using ecological districts as control samples, conduct dual comparative analyses (related comparison and upgraded comparison) to determine the intrinsic ecological advantages of the two-dimensional and three-dimensional green volume in historic districts. The study inform a density optimization strategy that supports cultural, social, natural, and economic ecology, contributing to the creation of eco-historic districts.

Keywords: eco-historic districts, intrinsic ecology, suitable density, green capacity ratio.

Procedia PDF Downloads 22
5467 Responding of Vertical Gardens and Green Facades in Urban Design to the Global Environmental Impacts and the Call for Greening in Urban Spaces

Authors: Esraa Mohamed Ezzat Ramadan Elkhaiary, Ayah Mohamed Ezzat Ramadan Elkhaiary, Ahmed Yehia Ismaiel

Abstract:

Vertical lawn is crucial for the development of the constructed surroundings’ sustainability. Their implementation is also ecologically and aesthetically ideal as a good enough architectural characteristic that enhancements facades. Furthermore, their exploitation ends in a power-conscious design that prevents densely populated city areas in Cairo from transforming right into a deteriorated natural environment. After collaborative studies and analysis, it concluded that installing the vertical garden will not simply enhance urban spaces and informal settlements’ homes aesthetically but also offer an excellent role version to the metropolis in how future buildings can be constructed with vertical gardens established. Most significantly, it will enhance the general public consciousness of the inexperienced functions of the vertical garden to the constructing customers and visitors.

Keywords: vertical gardens, green facades, urban rehabilitation, urban spaces

Procedia PDF Downloads 69
5466 Investigating the Trends in Tourism and Hospitality Industry in Nigeria at Centenary

Authors: Pius Agbebi Alaba

Abstract:

The study emphasized on the effects of contemporary and prospect trends on the development of Hospitality and Tourism in Nigeria. Specifically, the study examined globalization, safety and security, diversity, service, technology, demographic changes and price–value as contemporary trends while prospect trends such as green and Eco-lodgings, Development of mega hotels, Boutique hotels, Intelligent hotels with advanced technology using the guest’s virtual fingerprint in order to perform all the operations, increasing employee salaries in order retain the existing Staff, More emphasis on the internet and technology, Guests’ virtual and physical social network were equally examined. The methodology for the study involved review of existing related study, books, journal and internet. The findings emanated from the exercise showed clearly that the impact of both trends on the development of Hospitality and Tourism in Nigeria would bring about rapid positive transformation of her socio-economic, political and cultural environment. The implication of the study is that it will prepare both private and corporate individuals in hospitality and tourism business for the challenges inherent in both trends.

Keywords: hospitality and tourism, Nigeria's centenary, trends, implications

Procedia PDF Downloads 334
5465 Green Design Study of Prefabricated Community Control Measures in Response to Public Health Emergencies

Authors: Enjia Zhang

Abstract:

During the prevention and control of the COVID-19 pandemic, all communities in China were gated and under strict management, which was highly effective in preventing the spread of the epidemic from spreading. Based on the TRIZ theory, this paper intends to propose green design strategies of community control in response to public health emergencies and to optimize community control facilities according to the principle of minimum transformation. Through the questionnaire method, this paper investigates and summarizes the situation and problems of community control during the COVID-19 pandemic. Based on these problems, the TRIZ theory is introduced to figure out the problems and associates them with prefabricated facilities. Afterward, the innovation points and solutions of prefabricated community control measures are proposed by using the contradiction matrix. This paper summarizes the current situation of community control under public health emergencies and concludes the problems such as simple forms of temporary roadblocks, sudden increase of community traffic pressure, and difficulties to access public spaces. The importance of entrance and exit control in community control is emphasized. Therefore, the community control measures are supposed to focus on traffic control, and the external access control measures, including motor vehicles, non-motor vehicles, residents and non-residents access control, and internal public space access control measures, including public space control shared with the society or adjacent communities, are proposed in order to make the community keep the open characteristics and have the flexibility to deal with sudden public health emergencies in the future.

Keywords: green design, community control, prefabricated structure, public health emergency

Procedia PDF Downloads 129
5464 Multi-Criteria Decision Making Network Optimization for Green Supply Chains

Authors: Bandar A. Alkhayyal

Abstract:

Modern supply chains are typically linear, transforming virgin raw materials into products for end consumers, who then discard them after use to landfills or incinerators. Nowadays, there are major efforts underway to create a circular economy to reduce non-renewable resource use and waste. One important aspect of these efforts is the development of Green Supply Chain (GSC) systems which enables a reverse flow of used products from consumers back to manufacturers, where they can be refurbished or remanufactured, to both economic and environmental benefit. This paper develops novel multi-objective optimization models to inform GSC system design at multiple levels: (1) strategic planning of facility location and transportation logistics; (2) tactical planning of optimal pricing; and (3) policy planning to account for potential valuation of GSC emissions. First, physical linear programming was applied to evaluate GSC facility placement by determining the quantities of end-of-life products for transport from candidate collection centers to remanufacturing facilities while satisfying cost and capacity criteria. Second, disassembly and remanufacturing processes have received little attention in industrial engineering and process cost modeling literature. The increasing scale of remanufacturing operations, worth nearly $50 billion annually in the United States alone, have made GSC pricing an important subject of research. A non-linear physical programming model for optimization of pricing policy for remanufactured products that maximizes total profit and minimizes product recovery costs were examined and solved. Finally, a deterministic equilibrium model was used to determine the effects of internalizing a cost of GSC greenhouse gas (GHG) emissions into optimization models. Changes in optimal facility use, transportation logistics, and pricing/profit margins were all investigated against a variable cost of carbon, using case study system created based on actual data from sites in the Boston area. As carbon costs increase, the optimal GSC system undergoes several distinct shifts in topology as it seeks new cost-minimal configurations. A comprehensive study of quantitative evaluation and performance of the model has been done using orthogonal arrays. Results were compared to top-down estimates from economic input-output life cycle assessment (EIO-LCA) models, to contrast remanufacturing GHG emission quantities with those from original equipment manufacturing operations. Introducing a carbon cost of $40/t CO2e increases modeled remanufacturing costs by 2.7% but also increases original equipment costs by 2.3%. The assembled work advances the theoretical modeling of optimal GSC systems and presents a rare case study of remanufactured appliances.

Keywords: circular economy, extended producer responsibility, greenhouse gas emissions, industrial ecology, low carbon logistics, green supply chains

Procedia PDF Downloads 159
5463 Performance Estimation of Two Port Multiple-Input and Multiple-Output Antenna for Wireless Local Area Network Applications

Authors: Radha Tomar, Satish K. Jain, Manish Panchal, P. S. Rathore

Abstract:

In the presented work, inset fed microstrip patch antenna (IFMPA) based two port MIMO Antenna system has been proposed, which is suitable for wireless local area network (WLAN) applications. IFMPA has been designed, optimized for 2.4 GHz and applied for MIMO formation. The optimized parameters of the proposed IFMPA have been used for fabrication of antenna and two port MIMO in a laboratory. Fabrication of the designed MIMO antenna has been done and tested experimentally for performance parameters like Envelope Correlation Coefficient (ECC), Mean Effective Gain (MEG), Directive Gain (DG), Channel Capacity Loss (CCL), Multiplexing Efficiency (ME) etc and results are compared with simulated parameters extracted with simulated S parameters to validate the results. The simulated and experimentally measured plots and numerical values of these MIMO performance parameters resembles very much with each other. This shows the success of MIMO antenna design methodology.

Keywords: multiple-input and multiple-output, wireless local area network, vector network analyzer, envelope correlation coefficient

Procedia PDF Downloads 54
5462 Explainable Graph Attention Networks

Authors: David Pham, Yongfeng Zhang

Abstract:

Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.

Keywords: explainable AI, graph attention network, graph neural network, node classification

Procedia PDF Downloads 197