Search results for: cone beam computed tomography
913 Analyses of Reference Evapotranspiration in West of Iran under Climate Change
Authors: Saeed Jahanbakhsh Asl, Yaghob Dinpazhoh, Masoumeh Foroughi
Abstract:
Reference evapotranspiration (ET₀) is an important element in the water cycle that integrates atmospheric demands and surface conditions, and analysis of changes in ET₀ is of great significance for understanding climate change and its impacts on hydrology. As ET₀ is an integrated effect of climate variables, increases in air temperature should lead to increases in ET₀. ET₀ estimated by using the globally accepted Food and Agriculture Organization (FAO) Penman-Monteith (FAO-56 PM) method in 18 meteorological stations located in the West of Iran. The trends of ET₀ detected by using the Mann-Kendall (MK) test. The slopes of the trend lines were computed by using the Sen’s slope estimator. The results showed significant increasing as well as decreasing trends in the annual and monthly ET₀. However, ET₀ trends were increasing. In the monthly scale, the number of the increasing trends was more than the number of decreasing trends, in the majority of warm months of the year.Keywords: climate change, Mann–Kendall, Penman-Monteith method (FAO-56 PM), reference crop evapotranspiration
Procedia PDF Downloads 289912 Optimization of Tilt Angle for Solar Collectors: A Case Study for Bursa, Turkey
Authors: N. Arslanoglu
Abstract:
This paper deals with the optimum tilt angle for the solar collector in order to collect the maximum solar radiation. The optimum angle for tilted surfaces varying from 0◦ to 90◦ in steps of 1◦ was computed. In present study, a theoretical model is used to predict the global solar radiation on a tilted surface and to obtain the optimum tilt angle for a solar collector in Bursa, Turkey. Global solar energy radiation on the solar collector surface with an optimum tilt angle is calculated for specific periods. It is determined that the optimum slope angle varies between 0◦ (June) and 59◦ (December) throughout the year. In winter (December, January, and February) the tilt should be 55◦, in spring (March, April, and May) 19.6◦, in summer (June, July, and August) 5.6◦, and in autumn (September, October, and November) 44.3◦. The yearly average of this value was obtained to be 31.1◦ and this would be the optimum fixed slope throughout the year.Keywords: Bursa, global solar radiation, optimum tilt angle, tilted surface
Procedia PDF Downloads 260911 Computational Fluid Dynamics Model of Various Types of Rocket Engine Nozzles
Authors: Konrad Pietrykowski, Michal Bialy, Pawel Karpinski, Radoslaw Maczka
Abstract:
The nozzle is an element of the rocket engine in which the conversion of the potential energy of gases generated during combustion into the kinetic energy of the gas stream takes place. The design parameters of the nozzle have a decisive influence on the ballistic characteristics of the engine. Designing a nozzle assembly is, therefore, one of the most responsible stages in developing a rocket engine design. The paper presents the results of the simulation of three types of rocket propulsion nozzles. Calculations were made using CFD (Computational Fluid Dynamics) in ANSYS Fluent software. The next types of nozzles differ in shape. The analysis was made of a conical nozzle, a bell type nozzle with a conical supersonic part and a bell type nozzle. Calculation results are presented in the form of pressure, velocity and kinetic energy distributions of turbulence in the longitudinal section. The courses of these values along the nozzles are also presented. The results show that the cone nozzle generates strong turbulence in the critical section. Which negatively affect the flow of the working medium. In the case of a bell nozzle, the transformation of the wall caused the elimination of flow disturbances in the critical section. This reduces the probability of waves forming before or after the trailing edge. The most sophisticated construction is the bell type nozzle. It allows you to maximize performance without adding extra weight. The bell type nozzle can be used as a starter and auxiliary engine nozzle due to its advantages. The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).Keywords: computational fluid dynamics, nozzle, rocket engine, supersonic flow
Procedia PDF Downloads 158910 Parametric Study for Obtaining the Structural Response of Segmental Tunnels in Soft Soil by Using No-Linear Numerical Models
Authors: Arturo Galván, Jatziri Y. Moreno-Martínez, Israel Enrique Herrera Díaz, José Ramón Gasca Tirado
Abstract:
In recent years, one of the methods most used for the construction of tunnels in soft soil is the shield-driven tunneling. The advantage of this construction technique is that it allows excavating the tunnel while at the same time a primary lining is placed, which consists of precast segments. There are joints between segments, also called longitudinal joints, and joints between rings (called as circumferential joints). This is the reason because of this type of constructions cannot be considered as a continuous structure. The effect of these joints influences in the rigidity of the segmental lining and therefore in its structural response. A parametric study was performed to take into account the effect of different parameters in the structural response of typical segmental tunnels built in soft soil by using non-linear numerical models based on Finite Element Method by means of the software package ANSYS v. 11.0. In the first part of this study, two types of numerical models were performed. In the first one, the segments were modeled by using beam elements based on Timoshenko beam theory whilst the segment joints were modeled by using inelastic rotational springs considering the constitutive moment-rotation relation proposed by Gladwell. In this way, the mechanical behavior of longitudinal joints was simulated. On the other hand for simulating the mechanical behavior of circumferential joints elastic springs were considered. As well as, the stability given by the soil was modeled by means of elastic-linear springs. In the second type of models, the segments were modeled by means of three-dimensional solid elements and the joints with contact elements. In these models, the zone of the joints is modeled as a discontinuous (increasing the computational effort) therefore a discrete model is obtained. With these contact elements the mechanical behavior of joints is simulated considering that when the joint is closed, there is transmission of compressive and shear stresses but not of tensile stresses and when the joint is opened, there is no transmission of stresses. This type of models can detect changes in the geometry because of the relative movement of the elements that form the joints. A comparison between the numerical results with two types of models was carried out. In this way, the hypothesis considered in the simplified models were validated. In addition, the numerical models were calibrated with (Lab-based) experimental results obtained from the literature of a typical tunnel built in Europe. In the second part of this work, a parametric study was performed by using the simplified models due to less used computational effort compared to complex models. In the parametric study, the effect of material properties, the geometry of the tunnel, the arrangement of the longitudinal joints and the coupling of the rings were studied. Finally, it was concluded that the mechanical behavior of segment and ring joints and the arrangement of the segment joints affect the global behavior of the lining. As well as, the effect of the coupling between rings modifies the structural capacity of the lining.Keywords: numerical models, parametric study, segmental tunnels, structural response
Procedia PDF Downloads 229909 A New Aggregation Operator for Trapezoidal Fuzzy Numbers Based On the Geometric Means of the Left and Right Line Slopes
Authors: Manju Pandey, Nilay Khare, S. C. Shrivastava
Abstract:
This paper is the final in a series, which has defined two new classes of aggregation operators for triangular and trapezoidal fuzzy numbers based on the geometrical characteristics of their fuzzy membership functions. In the present paper, a new aggregation operator for trapezoidal fuzzy numbers has been defined. The new operator is based on the geometric mean of the membership lines to the left and right of the maximum possibility interval. The operator is defined and the analytical relationships have been derived. Computation of the aggregate is demonstrated with a numerical example. Corresponding arithmetic and geometric aggregates as well as results from the recent work of the authors on TrFN aggregates have also been computed.Keywords: LR fuzzy number, interval fuzzy number, triangular fuzzy number, trapezoidal fuzzy number, apex angle, left apex angle, right apex angle, aggregation operator, arithmetic and geometric mean
Procedia PDF Downloads 472908 A Context-Sensitive Algorithm for Media Similarity Search
Authors: Guang-Ho Cha
Abstract:
This paper presents a context-sensitive media similarity search algorithm. One of the central problems regarding media search is the semantic gap between the low-level features computed automatically from media data and the human interpretation of them. This is because the notion of similarity is usually based on high-level abstraction but the low-level features do not sometimes reflect the human perception. Many media search algorithms have used the Minkowski metric to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information given by images in a collection. Our search algorithm tackles this problem by employing a similarity measure and a ranking strategy that reflect the nonlinearity of human perception and contextual information in a dataset. Similarity search in an image database based on this contextual information shows encouraging experimental results.Keywords: context-sensitive search, image search, similarity ranking, similarity search
Procedia PDF Downloads 365907 Waveguiding in an InAs Quantum Dots Nanomaterial for Scintillation Applications
Authors: Katherine Dropiewski, Michael Yakimov, Vadim Tokranov, Allan Minns, Pavel Murat, Serge Oktyabrsky
Abstract:
InAs Quantum Dots (QDs) in a GaAs matrix is a well-documented luminescent material with high light yield, as well as thermal and ionizing radiation tolerance due to quantum confinement. These benefits can be leveraged for high-efficiency, room temperature scintillation detectors. The proposed scintillator is composed of InAs QDs acting as luminescence centers in a GaAs stopping medium, which also acts as a waveguide. This system has appealing potential properties, including high light yield (~240,000 photons/MeV) and fast capture of photoelectrons (2-5ps), orders of magnitude better than currently used inorganic scintillators, such as LYSO or BaF2. The high refractive index of the GaAs matrix (n=3.4) ensures light emitted by the QDs is waveguided, which can be collected by an integrated photodiode (PD). Scintillation structures were grown using Molecular Beam Epitaxy (MBE) and consist of thick GaAs waveguiding layers with embedded sheets of modulation p-type doped InAs QDs. An AlAs sacrificial layer is grown between the waveguide and the GaAs substrate for epitaxial lift-off to separate the scintillator film and transfer it to a low-index substrate for waveguiding measurements. One consideration when using a low-density material like GaAs (~5.32 g/cm³) as a stopping medium is the matrix thickness in the dimension of radiation collection. Therefore, luminescence properties of very thick (4-20 microns) waveguides with up to 100 QD layers were studied. The optimization of the medium included QD shape, density, doping, and AlGaAs barriers at the waveguide surfaces to prevent non-radiative recombination. To characterize the efficiency of QD luminescence, low temperature photoluminescence (PL) (77-450 K) was measured and fitted using a kinetic model. The PL intensity degrades by only 40% at RT, with an activation energy for electron escape from QDs to the barrier of ~60 meV. Attenuation within the waveguide (WG) is a limiting factor for the lateral size of a scintillation detector, so PL spectroscopy in the waveguiding configuration was studied. Spectra were measured while the laser (630 nm) excitation point was scanned away from the collecting fiber coupled to the edge of the WG. The QD ground state PL peak at 1.04 eV (1190 nm) was inhomogeneously broadened with FWHM of 28 meV (33 nm) and showed a distinct red-shift due to self-absorption in the QDs. Attenuation stabilized after traveling over 1 mm through the WG, at about 3 cm⁻¹. Finally, a scintillator sample was used to test detection and evaluate timing characteristics using 5.5 MeV alpha particles. With a 2D waveguide and a small area of integrated PD, the collected charge averaged 8.4 x10⁴ electrons, corresponding to a collection efficiency of about 7%. The scintillation response had 80 ps noise-limited time resolution and a QD decay time of 0.6 ns. The data confirms unique properties of this scintillation detector which can be potentially much faster than any currently used inorganic scintillator.Keywords: GaAs, InAs, molecular beam epitaxy, quantum dots, III-V semiconductor
Procedia PDF Downloads 256906 Strengthening of Concrete Slabs with Steel Beams
Authors: Mizam Doğan
Abstract:
In service life; structures can be damaged if they are subjected to dead and live loads which are greater than design values. For preventing this case; possible loads must be correctly calculated, structure must be designed according to determined loads, and structure must not be used out of its function. If loading case of the structure changes when its function changes; it must be reinforced for continuing it is new function. Reinforcement is a process that is made by increasing the existing strengths of structural system elements of the structure as reinforced concrete walls, beams, and slabs. Reinforcement can be done by casting reinforced concrete, placing steel and fiber structural elements. In this paper, reinforcing of columns and slabs of a structure of which function is changed is studied step by step. This reinforcement is made for increasing vertical and lateral load carrying capacity of the building. Not for repairing damaged structural system.Keywords: strengthening, RC slabs, seismic load, steel beam, structural irregularity
Procedia PDF Downloads 260905 Solving Linear Systems Involved in Convex Programming Problems
Authors: Yixun Shi
Abstract:
Many interior point methods for convex programming solve an (n+m)x(n+m)linear system in each iteration. Many implementations solve this system in each iteration by considering an equivalent mXm system (4) as listed in the paper, and thus the job is reduced into solving the system (4). However, the system(4) has to be solved exactly since otherwise the error would be entirely passed onto the last m equations of the original system. Often the Cholesky factorization is computed to obtain the exact solution of (4). One Cholesky factorization is to be done in every iteration, resulting in higher computational costs. In this paper, two iterative methods for solving linear systems using vector division are combined together and embedded into interior point methods. Instead of computing one Cholesky factorization in each iteration, it requires only one Cholesky factorization in the entire procedure, thus significantly reduces the amount of computation needed for solving the problem. Based on that, a hybrid algorithm for solving convex programming problems is proposed.Keywords: convex programming, interior point method, linear systems, vector division
Procedia PDF Downloads 402904 Subsurface Exploration for Soil Geotechnical Properties and its Implications for Infrastructure Design and Construction in Victoria Island, Lagos, Nigeria
Authors: Sunday Oladele, Joseph Oluwagbeja Simeon
Abstract:
Subsurface exploration, integrating methods of geotechnics and geophysics, of a planned construction site in the coastal city of Lagos, Nigeria has been carried out with the aim of characterizing the soil properties and their implication for the proposed infrastructural development. Six Standard Penetration Tests (SPT), fourteen Dutch Cone Penetrometer Tests (DCPT) and 2D Electrical Resistivity Imaging employing Dipole-dipole and Pole-dipole arrays were implemented on the site. The topsoil (0 - 4m) consists of highly compacted sandy lateritic clay(10 to 5595Ωm) to 1.25m in some parts and dense sand in other parts to 5.50m depth. This topsoil was characterized as a material of very high shear strength (≤ 150kg/m2) and allowable bearing pressure value of 54kN/m2 to 85kN/m2 and a safety factor of 2.5. Soft amorphous peat/peaty clay (0.1 to 11.4Ωm), 3-6m thick, underlays the lateritic clay to about 18m depth. Grey, medium dense to very dense sand (0.37 to 2387Ωm) with occasional gravels underlies the peaty clay down to 30m depth. Within this layer, the freshwater bearing zones are characterized by high resistivity response (83 to 2387Ωm), while the clayey sand/saline water intruded sand produced subdued resistivity output (0.37 to 40Ωm). The overall ground-bearing pressure for the proposed structure would be 225kN/m2. Bored/cast-in-place pile at 18.00m depth with any of these diameters and respective safe working loads 600mm/1,140KN, 800mm/2,010KN and 1000mm/3,150KN is recommended for the proposed multi-story structure.Keywords: subsurface exploration, Geotechnical properties, resistivity imaging, pile
Procedia PDF Downloads 93903 The Influence of Basalt and Steel Fibers on the Flexural Behavior of RC Beams
Authors: Yasmin Z. Murad, Haneen M. Abdl-Jabbar
Abstract:
An experimental program is conducted in this research to investigate the influence of basalt fibers and steel fibers on the flexural behavior of RC beams. Reinforced concrete beams are constructed using steel fiber concrete and basalt fiber concrete. Steel and basalt fibers are included in a percentage of 15% and 2.5% of the total cement weight, respectively. Test results have shown that basalt fibers have increased the load carrying capacity of the beams up to 30% and the maximum deflection to almost 2.4 times that measured in the control specimen. It has also shown that steel fibers have increased the load carrying capacity of the beams up to 47% and the ultimate deflection is almost duplicated compared to the control beam. Steel and basalt fibers have increased the ductility of the reinforced concrete beams.Keywords: basalt fiber, steel fiber, reinforced concrete beams, flexural behavior
Procedia PDF Downloads 153902 A Comparative Assessment Method For Map Alignment Techniques
Authors: Rema Daher, Theodor Chakhachiro, Daniel Asmar
Abstract:
In the era of autonomous robot mapping, assessing the goodness of the generated maps is important, and is usually performed by aligning them to ground truth. Map alignment is difficult for two reasons: first, the query maps can be significantly distorted from ground truth, and second, establishing what constitutes ground truth for different settings is challenging. Most map alignment techniques to this date have addressed the first problem, while paying too little importance to the second. In this paper, we propose a benchmark dataset, which consists of synthetically transformed maps with their corresponding displacement fields. Furthermore, we propose a new system for comparison, where the displacement field of any map alignment technique can be computed and compared to the ground truth using statistical measures. The local information in displacement fields renders the evaluation system applicable to any alignment technique, whether it is linear or not. In our experiments, the proposed method was applied to different alignment methods from the literature, allowing for a comparative assessment between them all.Keywords: assessment methods, benchmark, image deformation, map alignment, robot mapping, robot motion
Procedia PDF Downloads 119901 Sum Capacity with Regularized Channel Inversion in Multi-Antenna Downlink Systems under Equal Power Constraint
Authors: Attaullah Khawaja, Amna Shabbir
Abstract:
Channel inversion is one of the simplest techniques for multiuser downlink systems with single-antenna users. In this paper regularized channel inversion under equal power constraint in the multiuser multiple input multiple output (MU-MIMO) broadcast channels has been considered. Sum capacity with plain channel inversion also known as Zero Forcing Beam Forming (ZFBF) and optimum sum capacity using Dirty Paper Coding (DPC) has also been investigated. Analysis and simulations show that regularization enhances the system performance and empower linear growth in Sum Capacity and specially work well at low signal to noise ratio (SNRs) regime.Keywords: broadcast channel, channel inversion, multiple antenna multiple-user wireless, multiple-input multiple-output (MIMO), regularization, dirty paper coding (DPC), sum capacity
Procedia PDF Downloads 527900 Seismic Response of Moment Resisting Steel Frame with Hysteresis Envelope Model of Joints
Authors: Krolo Paulina
Abstract:
The seismic response of moment-resisting steel frames depends on the behavior of the joints, especially when they are considered as ductile zones. The aim of this research is to provide a realistic assessment of the moment-resisting steel frame behavior under seismic loading using nonlinear static pushover analysis (N2 method). The hysteresis behavior of the joints in the frame model was described using a new hysteresis envelope model. The obtained seismic response was compared with the results of the seismic analysis obtained for the same steel frame that takes into account the monotonic model of the joints.Keywords: beam-to-column joints, hysteresis envelope model, moment-resisting frame, nonlinear static pushover analysis, N2 method
Procedia PDF Downloads 265899 Effect of Stiffeners on the Behavior of Slender Built up Steel I-Beams
Authors: M. E. Abou-Hashem El Dib, M. K. Swailem, M. M. Metwally, A. I. El Awady
Abstract:
This paper presents the effect of stiffeners on the behavior of slender steel I-beams. Nonlinear three dimensional finite element models are developed to represent the stiffened steel I-beams. The well established finite element (ANSYS 13.0) program is used to simulate the geometric and material nonlinear nature of the problem. Verification is achieved by comparing the obtained numerical results with the results of previous published experimental work. The parameters considered in the analysis are the horizontal stiffener's position and the horizontal stiffener's dimensions as well as the number of vertical stiffeners. The studied dimensions of the horizontal stiffeners include the stiffener width, the stiffener thickness and the stiffener length. The results of the achieved numerical parametric study for slender steel I-beams show the significant effect of stiffeners on the beam behavior and its failure load.Keywords: beams, local buckling, slender, stiffener, thin walled section
Procedia PDF Downloads 279898 Effect of Realistic Lubricant Properties on Thermal Electrohydrodynamic Lubrication Behavior in Circular Contacts
Authors: Puneet Katyal, Punit Kumar
Abstract:
A great deal of efforts has been done in the field of thermal effects in electrohydrodynamic lubrication (TEHL) during the last five decades. The focus was primarily on the development of an efficient numerical scheme to deal with the computational challenges involved in the solution of TEHL model; however, some important aspects related to the accurate description of lubricant properties such as viscosity, rheology and thermal conductivity in EHL point contact analysis remain largely neglected. A few studies available in this regard are based upon highly complex mathematical models difficult to formulate and execute. Using a simplified thermal EHL model for point contacts, this work sheds some light on the importance of accurate characterization of the lubricant properties and demonstrates that the computed TEHL characteristics are highly sensitive to lubricant properties. It also emphasizes the use of appropriate mathematical models with experimentally determined parameters to account for correct lubricant behaviour.Keywords: TEHL, shear thinning, rheology, conductivity
Procedia PDF Downloads 200897 The MCNP Simulation of Prompt Gamma-Ray Neutron Activation Analysis at TRR-1/M1
Authors: S. Sangaroon, W. Ratanatongchai, S. Khaweerat, R. Picha, J. Channuie
Abstract:
The prompt gamma-ray neutron activation analysis system (PGNAA) has been constructed and installed at a 6 inch diameter neutron beam port of the Thai Research Reactor-1/ Modification 1 (TRR-1/M1) since 1989. It was designed for the reactor operating power at 1.2 MW. The purpose of the system is for an elemental and isotopic analytical. In 2016, the PGNAA facility will be developed to reduce the leakage and background of neutrons and gamma radiation at the sample and detector position. In this work, the designed condition of these facilities is carried out based on the Monte Carlo method using MCNP5 computer code. The conditions with different modification materials, thicknesses and structure of the PGNAA facility, including gamma collimator and radiation shields of the detector, are simulated, and then the optimal structure parameters with a significantly improved performance of the facility are obtained.Keywords: MCNP simulation, PGNAA, Thai research reactor (TRR-1/M1), radiation shielding
Procedia PDF Downloads 383896 Behavior of Steel Moment Frames Subjected to Impact Load
Authors: Hyungoo Kang, Minsung Kim, Jinkoo Kim
Abstract:
This study investigates the performance of a 2D and 3D steel moment frame subjected to vehicle collision at a first story column using LS-DYNA. The finite element models of vehicles provided by the National Crash Analysis Center (NCAC) are used for numerical analysis. Nonlinear dynamic time history analysis of the 2D and 3D model structures are carried out based on the arbitrary column removal scenario, and the vertical displacement of the damaged structures are compared with that obtained from collision analysis. The analysis results show that the model structure remains stable when the speed of the vehicle is 40km/h. However, at the speed of 80 and 120km/h both the 2D and 3D structures collapse by progressive collapse. The vertical displacement of the damaged joint obtained from collision analysis is significantly larger than the displacement computed based on the arbitrary column removal scenario.Keywords: vehicle collision, progressive collapse, FEM, LS-DYNA
Procedia PDF Downloads 342895 Influence of HIV Testing on Knowledge of HIV/AIDS Prevention Practices and Transmission among Undergraduate Youths in North-West University, Mafikeng
Authors: Paul Bigala, Samuel Oladipo, Steven Adebowale
Abstract:
This study examines factors influencing knowledge of HIV/AIDS Prevention Practices and Transmission (KHAPPT) among young undergraduate students (15-24 years). Knowledge composite index was computed for 820 randomly selected students. Chi-square, ANOVA, and multinomial logistic regression were used for the analyses (α=.05). The overall mean knowledge score was 16.5±3.4 out of a possible score of 28. About 83% of the students have undergone HIV test, 21.0% have high KHAPPT, 18% said there is cure for the disease, 23% believed that asking for condom is embarrassing and 11.7% said it is safe to share unsterilized sharp objects with friends or family members. The likelihood of high KHAPPT was higher among students who have had HIV test (OR=3.314; C.I=1.787-6.145, p<0.001) even when other variables were used as control. The identified predictors of high KHAPPT were; ever had HIV test, faculty, and ever used any HIV/AIDS prevention services. North-West University Mafikeng should intensify efforts on the HIV/AIDS awareness program on the campus.Keywords: HIV/AIDS knowledge, undergraduate students, HIV testing, Mafikeng
Procedia PDF Downloads 443894 Testing Capabilities and Limitations of EBM Technology to Guide Design with a Test Artifact Design including Unique Features
Authors: Kadir Akkuş, Burcu A. Hamat, Kaan Ciloglu
Abstract:
Additive Manufacturing (AM) is the respectable improvement of this century in the field of manufacturing and regarded as a breakthrough that represents the third industrial revolution by the leading authorities such as Wohlers Associates Inc., The Economist, and MIT Technology Review. Thanks to the stacking and unifying methodology of AM, design of lighter but stiffer parts with really more complex shapes and geometrical features, which were not possible by traditional subtractive manufacturing methods, became achievable. Through analysis of the AM process must be performed and mechanical properties of manufactured test parts must be studied to provide input for design. Furthermore, process capabilities, constraints, limitations and challenges regarding AM must be examined so that the design must be compatible with the process to be able to take all the advantages of the AM. In this paper, capabilities and limitations of AM will be investigated through a test part including unique features and manufactured from Ti-6Al-4V by employing Electron Beam Melting (EBM) technology by comparing to the test parts introduced in literature.Keywords: additive manufacturing, DfAM, EBM, test artifact, Ti-6Al-4V
Procedia PDF Downloads 112893 3D Building Model Utilizing Airborne LiDAR Dataset and Terrestrial Photographic Images
Authors: J. Jasmee, I. Roslina, A. Mohammed Yaziz & A.H Juazer Rizal
Abstract:
The need of an effective building information collection method is vital to support a diversity of land development activities. At present, advances in remote sensing such as airborne LiDAR (Light Detection and Ranging) is an established technology for building information collection, location, and elevation of the reflecting laser points towards the construction of 3D building models. In this study, LiDAR datasets and terrestrial photographic images of buildings towards the construction of 3D building models is explored. It is found that, the quantitative accuracy of the constructed 3D building model, namely in the horizontal and vertical components were ± 0.31m (RMSEx,y) and ± 0.145m (RMSEz) respectively. The accuracies were computed based on sixty nine (69) horizontal and twenty (20) vertical surveyed points. As for the qualitative assessment, it is shown that the appearance of the 3D building model is adequate to support the requirements of LOD3 presentation based on the OGC (Open Geospatial Consortium) standard CityGML.Keywords: LiDAR datasets, DSM, DTM, 3D building models
Procedia PDF Downloads 321892 Laser Welding of Titanium Alloy Ti64 to Polyamide 6.6: Effects of Welding Parameters on Temperature Profile Evolution
Authors: A. Al-Sayyad, P. Lama, J. Bardon, P. Hirchenhahn, L. Houssiau, P. Plapper
Abstract:
Composite metal–polymer materials, in particular titanium alloy (Ti-6Al-4V) to polyamide (PA6.6), fabricated by laser joining, have gained cogent interest among industries and researchers concerned with aerospace and biomedical applications. This work adopts infrared (IR) thermography technique to investigate effects of laser parameters used in the welding process on the three-dimensional temperature profile at the rear-side of titanium, at the region to be welded with polyamide. Cross sectional analysis of welded joints showed correlations between the morphology of titanium and polyamide at the weld zone with the corresponding temperature profile. In particular, spatial temperature profile was found to be correlated with the laser beam energy density, titanium molten pool width and depth, and polyamide heat affected zone depth.Keywords: laser welding, metals to polymers joining, process monitoring, temperature profile, thermography
Procedia PDF Downloads 134891 Analysing the Permanent Deformation of Cohesive Subsoil Subject to Long Term Cyclic Train Loading
Authors: Natalie M. Wride, Xueyu Geng
Abstract:
Subgrade soils of railway infrastructure are subjected to a significant number of load applications over their design life. The use of slab track on existing and future proposed rail links requires a reduced maintenance and repair regime for the embankment subgrade, due to restricted access to the subgrade soils for remediation caused by cyclic deformation. It is, therefore, important to study the deformation behaviour of soft cohesive subsoils induced as a result of long term cyclic loading. In this study, a series of oedometer tests and cyclic triaxial tests (10,000 cycles) have been undertaken to investigate the undrained deformation behaviour of soft kaolin. X-ray Computer Tomography (CT) scanning of the samples has been performed to determine the change in porosity and soil structure density from the sample microstructure as a result of the laboratory testing regime undertaken. Combined with the examination of excess pore pressures and strains obtained from the cyclic triaxial tests, the results are compared with an existing analytical solution for long term settlement considering repeated low amplitude loading. Modifications to the analytical solution are presented based on the laboratory analysis that shows good agreement with further test data.Keywords: creep, cyclic loading, deformation, long term settlement, train loading
Procedia PDF Downloads 299890 A Study on Selection Issues of an Integrated Service Provider Using Analytical Hierarchy Process
Authors: M. Pramila Devi, J. Praveena
Abstract:
In today’s industrial scenario, the expectations and demand of customers are reaching great heights. In order to satisfy the customer requirements the users are increasingly turning towards fourth party logistics (4PL) service providers to manage their total supply chain operations. In this present research, initially, the criteria for the selection of integrated service providers have been identified and an integrated modal based on their inter-relationship has been developed with help of shippers, with this idea of what factors to be considered and their inter-relationships while selecting integrated service provider. Later, various methods deriving the priority weights viz. Analytical Hierarchy Process (AHP) have been employed for 4PL service provider selection. The derived priorities of 4PL alternatives using methods have been critically analyzed and compared for effective selection. The use of the modal indicates that the computed quantitative evaluation can be applied to improve the precision of the selection.Keywords: analytical hierarchy process, fourth party logistics, priority weight, criteria selection
Procedia PDF Downloads 432889 Robust Image Registration Based on an Adaptive Normalized Mutual Information Metric
Authors: Huda Algharib, Amal Algharib, Hanan Algharib, Ali Mohammad Alqudah
Abstract:
Image registration is an important topic for many imaging systems and computer vision applications. The standard image registration techniques such as Mutual information/ Normalized mutual information -based methods have a limited performance because they do not consider the spatial information or the relationships between the neighbouring pixels or voxels. In addition, the amount of image noise may significantly affect the registration accuracy. Therefore, this paper proposes an efficient method that explicitly considers the relationships between the adjacent pixels, where the gradient information of the reference and scene images is extracted first, and then the cosine similarity of the extracted gradient information is computed and used to improve the accuracy of the standard normalized mutual information measure. Our experimental results on different data types (i.e. CT, MRI and thermal images) show that the proposed method outperforms a number of image registration techniques in terms of the accuracy.Keywords: image registration, mutual information, image gradients, image transformations
Procedia PDF Downloads 248888 An Image Based Visual Servoing (IBVS) Approach Using a Linear-Quadratic Regulator (LQR) for Quadcopters
Authors: C. Gebauer, C. Henke, R. Vossen
Abstract:
Within the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2020, a team of unmanned aerial vehicles (UAV) is used to capture intruder drones by physical interaction. The challenge is motivated by UAV safety. The purpose of this work is to investigate the agility of a quadcopter being controlled visually. The aim is to track and follow a highly dynamic target, e.g., an intruder quadcopter. The following is realized in close range and the opponent has a velocity of up to 10 m/s. Additional limitations are given by the hardware itself, where only monocular vision is present, and no additional knowledge about the targets state is available. An image based visual servoing (IBVS) approach is applied in combination with a Linear Quadratic Regulator (LQR). The IBVS is integrated into the LQR and an optimal trajectory is computed within the projected three-dimensional image-space. The approach has been evaluated on real quadcopter systems in different flight scenarios to demonstrate the system's stability.Keywords: image based visual servoing, quadcopter, dynamic object tracking, linear-quadratic regulator
Procedia PDF Downloads 150887 Far-Field Acoustic Prediction of a Supersonic Expanding Jet Using Large Eddy Simulation
Authors: Jesus Ruano, Asensi Oliva
Abstract:
The hydrodynamic field generated by a jet expansion is computed via three dimensional compressible Large Eddy Simulation (LES). Finite Volume Method (FVM) will be the discretization used during this simulation as well as hybrid schemes based on Kinetic Energy Preserving (KEP) schemes and up-winding Godunov based schemes with instabilities detectors. Velocity and pressure fields will be stored at different surfaces near the jet, but far enough to enclose all the fluctuations, in order to use them as input for the acoustic solver. The acoustic field is obtained in the far-field region at several locations by means of a hybrid method based on Ffowcs-Williams and Hawkings (FWH) equation. This equation will be formulated in the spectral domain, via Fourier Transform of the acoustic sources, which are modeled from the results of the initial simulation. The obtained results will allow the study of the broadband noise generated as well as sound directivities.Keywords: far-field noise, Ffowcs-Williams and Hawkings, finite volume method, large eddy simulation, jet noise
Procedia PDF Downloads 298886 Combined Effect of High Curing Temperature and Crack Width on Chloride Migration in Reinforced Concrete Beams
Authors: Elkedrouci Lotfi, Diao Bo, Pang Sen, Li Yi
Abstract:
Deterioration of reinforced concrete structures is a serious concern in the construction engineering, largely due to chloride induced corrosion of reinforcement. Chloride penetration is markedly influenced by one or several major factors at the same time such as cuing in combination with different crack widths which have spectacular effect on reinforced concrete structures. This research presents the results of an experimental investigation involving reinforced concrete beams with three different crack widths ranging from 0 to 0.2mm, curing temperatures of 20°C or 40°C and water-to-cement of 0.5. Chloride content profiles were determined under non-steady state diffusion at 20°C. Based on the obtained results, higher chloride content was obtained under condition of high curing temperature in combination with large crack more than 0.1mm and there are no significant differences between narrow crack width (less than 0.1 mm) and beams without crack (0mm).Keywords: crack width, high curing temperature, rapid chloride migration, reinforced concrete beam
Procedia PDF Downloads 208885 Numerical Investigation on Load Bearing Capacity of Pervious Concrete Piles as an Alternative to Granular Columns
Authors: Ashkan Shafee, Masoud Ghodrati, Ahmad Fahimifar
Abstract:
Pervious concrete combines considerable permeability with adequate strength, which makes it very beneficial in pavement construction and also in ground improvement projects. In this paper, a single pervious concrete pile subjected to vertical and lateral loading is analysed using a verified three dimensional finite element code. A parametric study was carried out in order to investigate load bearing capacity of a single unreinforced pervious concrete pile in saturated soft soil and also gain insight into the failure mechanism of this rather new soil improvement technique. The results show that concrete damaged plasticity constitutive model can perfectly simulate the highly brittle nature of the pervious concrete material and considering the computed vertical and horizontal load bearing capacities, some suggestions have been made for ground improvement projects.Keywords: concrete damaged plasticity, ground improvement, load-bearing capacity, pervious concrete pile
Procedia PDF Downloads 229884 Structural Reliability Analysis Using Extreme Learning Machine
Authors: Mehul Srivastava, Sharma Tushar Ravikant, Mridul Krishn Mishra
Abstract:
In structural design, the evaluation of safety and probability failure of structure is of significant importance, mainly when the variables are random. On real structures, structural reliability can be evaluated obtaining an implicit limit state function. The structural reliability limit state function is obtained depending upon the statistically independent variables. In the analysis of reliability, we considered the statistically independent random variables to be the load intensity applied and the depth or height of the beam member considered. There are many approaches for structural reliability problems. In this paper Extreme Learning Machine technique and First Order Second Moment Method is used to determine the reliability indices for the same set of variables. The reliability index obtained using ELM is compared with the reliability index obtained using FOSM. Higher the reliability index, more feasible is the method to determine the reliability.Keywords: reliability, reliability index, statistically independent, extreme learning machine
Procedia PDF Downloads 684