Search results for: computational design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13805

Search results for: computational design

12575 Development of a Robust Procedure for Generating Structural Models of Calcium Aluminosilicate Glass Surfaces

Authors: S. Perera, T. R. Walsh, M. Solvang

Abstract:

The structure-property relationships of calcium aluminosilicate (CAS) glass surfaces are of scientific and technological interest regarding dissolution phenomena. Molecular dynamics (MD) simulations can provide atomic-scale insights into the structure and properties of the CAS interfaces in vacuo as the first step to conducting computational dissolution studies on CAS surfaces. However, one limitation to date is that although the bulk properties of CAS glasses have been well studied by MD simulation, corresponding efforts on CAS surface properties are relatively few in number (both theoretical and experimental). Here, a systematic computational protocol to create CAS surfaces in vacuo is developed by evaluating the sensitivity of the resultant surface structure with respect to different factors. Factors such as the relative thickness of the surface layer, the relative thickness of the bulk region, the cooling rate, and the annealing schedule (time and temperature) are explored. Structural features such as ring size distribution, defect concentrations (five-coordinated aluminium (AlV), non-bridging oxygen (NBO), and tri-cluster oxygen (TBO)), and linkage distribution are identified as significant features in dissolution studies.

Keywords: MD simulation, CAS glasses, surface structure, structure-property, CAS interface

Procedia PDF Downloads 91
12574 The Rehabilitation Solutions for the Hydraulic Jump Sweepout: A Case Study from India

Authors: Ali Heidari, Hany Saleem

Abstract:

The tailwater requirements are important criteria in the design of the stilling basins as energy dissipation of the spillways. The adequate tailwater level that ensures the hydraulic jump inside the basin should be fulfilled by the river's natural water level and the apron depth downstream of the chute. The requirements of the hydraulic jump should mainly be checked for the design flood, however, the drawn jump condition should not be critical in the discharges lesser than the design flood. The tailwater requirement is not met in Almatti dam, built in 2005 in India, and the jump sweep out from the basin, resulting in significant scour in the apron and end sill of the basin. This paper discusses different hydraulic solutions as sustainable solutions for the rehabilitation program. The deep apron alternative is proposed for the fewer bays of the spillway as the most cost-effective, sustainable solution. The apron level of 15 gates out of 26 gates should decrease by 5.4 m compared to the existing design to ensure a safe hydraulic jump up to the discharge of 10,000 m3/s i.e. 30% of the updated PMF.

Keywords: dam, spillway, stilling basin, Almatti

Procedia PDF Downloads 46
12573 Design of Single Point Mooring Buoy System by Parametric Analysis

Authors: Chul-Hee Jo, Do-Youb Kim, Seok-Jin Cho, Yu-Ho Rho

Abstract:

The Catenary Anchor Leg Mooring (CALM) Single Point Mooring (SPM) buoy system is the most popular and widely used type of offshore loading terminals. SPM buoy mooring systems have been deployed worldwide for a variety of applications, water depths and vessel sizes ranging from small production carriers to Very Large Crude Carriers (VLCCs). Because of safe and easy berthing and un-berthing operations, the SPM buoy mooring system is also preferred for offshore terminals. The SPM buoy consists of a buoy that is permanently moored to the seabed by means of multiple mooring lines. The buoy contains a bearing system that allows a part of it to rotate around the moored geostatic part. When moored to the rotating part of the buoy, a vessel is able to freely weathervane around the buoy. This study was verified the effects of design variables in order to design an SPM buoy mooring system through parametric analysis. The design variables have independent and nonlinear characteristics. Using parametric analysis, this research was found that the fairlead departure angle, wave height and period, chain diameter and line length effect to the mooring top tension, buoy excursion and line layback.

Keywords: Single Point Mooring (SPM), Catenary Anchor Leg Mooring(CALM), design variables, parametric analysis, mooring system optimization

Procedia PDF Downloads 384
12572 Applying Serious Game Design Frameworks to Existing Games for Integration of Custom Learning Objectives

Authors: Jonathan D. Moore, Mark G. Reith, David S. Long

Abstract:

Serious games (SGs) have been shown to be an effective teaching tool in many contexts. Because of the success of SGs, several design frameworks have been created to expedite the process of making original serious games to teach specific learning objectives (LOs). Even with these frameworks, the time required to create a custom SG from conception to implementation can range from months to years. Furthermore, it is even more difficult to design a game framework that allows an instructor to create customized game variants supporting multiple LOs within the same field. This paper proposes a refactoring methodology to apply the theoretical principles from well-established design frameworks to a pre-existing serious game. The expected result is a generalized game that can be quickly customized to teach LOs not originally targeted by the game. This methodology begins by describing the general components in a game, then uses a combination of two SG design frameworks to extract the teaching elements present in the game. The identified teaching elements are then used as the theoretical basis to determine the range of LOs that can be taught by the game. This paper evaluates the proposed methodology by presenting a case study of refactoring the serious game Battlespace Next (BSN) to teach joint military capabilities. The range of LOs that can be taught by the generalized BSN are identified, and examples of creating custom LOs are given. Survey results from users of the generalized game are also provided. Lastly, the expected impact of this work is discussed and a road map for future work and evaluation is presented.

Keywords: serious games, learning objectives, game design, learning theory, game framework

Procedia PDF Downloads 109
12571 New Environmental Culture in Algeria: Eco Design

Authors: S. Tireche, A. Tairi abdelaziz

Abstract:

Environmental damage has increased steadily in recent decades: Depletion of natural resources, destruction of the ozone layer, greenhouse effect, degradation of the quality of life, land use etc. New terms have emerged as: "Prevention rather than cure" or "polluter pays" falls within the principles of common sense, their practical implementation still remains fragmented. Among the avenues to be explored, one of the most promising is certainly one that focuses on product design. Indeed, where better than during the design phase, can reduce the source of future impacts on the environment? What choices or those of design, they influence more on the environmental characteristics of products? The most currently recognized at the international level is the analysis of the life cycle (LCA) and Life Cycle Assessment, subject to International Standardization (ISO 14040-14043). LCA provides scientific and objective assessment of potential impacts of the product or service, considering its entire life cycle. This approach makes it possible to minimize impacts to the source in pollution prevention. It is widely preferable to curative approach, currently majority in the industrial crops, led mostly by a report of pollution. The "product" is to reduce the environmental impacts of a given product, taking into account all or part of its life cycle. Currently, there are emerging tools, known as eco-design. They are intended to establish an environmental profile of the product to improve its environmental performance. They require a quantity sufficient information on the product for each phase of its life cycle: raw material extraction, manufacturing, distribution, usage, end of life (recycling or incineration or deposit) and all stages of transport. The assessment results indicate the sensitive points of the product studied, points on which the developer must act.

Keywords: eco design, impact, life cycle analysis (LCA), sustainability

Procedia PDF Downloads 418
12570 Communication Design in Newspapers: A Comparative Study of Graphic Resources in Portuguese and Spanish Publications

Authors: Fátima Gonçalves, Joaquim Brigas, Jorge Gonçalves

Abstract:

As a way of managing the increasing volume and complexity of information that circulates in the present time, graphical representations are increasingly used, which add meaning to the information presented in communication media, through an efficient communication design. The visual culture itself, driven by technological evolution, has been redefining the forms of communication, so that contemporary visual communication represents a major impact on society. This article presents the results and respective comparative analysis of four publications in the Iberian press, focusing on the formal aspects of newspapers and the space they dedicate to the various communication elements. Two Portuguese newspapers and two Spanish newspapers were selected for this purpose. The findings indicated that the newspapers show a similarity in the use of graphic solutions, which corroborate a visual trend in communication design. The results also reveal that Spanish newspapers are more meticulous with graphic consistency. This study intended to contribute to improving knowledge of the Iberian generalist press.

Keywords: communication design, graphic resources, Iberian press, visual journalism

Procedia PDF Downloads 258
12569 Optimal Operation of a Photovoltaic Induction Motor Drive Water Pumping System

Authors: Nelson K. Lujara

Abstract:

The performance characteristics of a photovoltaic induction motor drive water pumping system with and without maximum power tracker is analyzed and presented. The analysis is done through determination and assessment of critical loss components in the system using computer aided design (CAD) tools for optimal operation of the system. The results can be used to formulate a well-calibrated computer aided design package of photovoltaic water pumping systems based on the induction motor drive. The results allow the design engineer to pre-determine the flow rate and efficiency of the system to suit particular application.

Keywords: photovoltaic, water pumping, losses, induction motor

Procedia PDF Downloads 296
12568 PbLi Activation Due to Corrosion Products in WCLL BB (EU-DEMO) and Its Impact on Reactor Design and Recycling

Authors: Nicole Virgili, Marco Utili

Abstract:

The design of the Breeding Blanket in Tokamak fusion energy systems has to guarantee sufficient availability in addition to its functions, that are, tritium breeding self-sufficiency, power extraction and shielding (the magnets and the VV). All these function in the presence of extremely harsh operating conditions in terms of heat flux and neutron dose as well as chemical environment of the coolant and breeder that challenge structural materials (structural resistance and corrosion resistance). The movement and activation of fluids from the BB to the Ex-vessel components in a fusion power plant have an important radiological consideration because flowing material can carry radioactivity to safety-critical areas. This includes gamma-ray emission from activated fluid and activated corrosion products, and secondary activation resulting from neutron emission, with implication for the safety of maintenance personnel and damage to electrical and electronic equipment. In addition to the PbLi breeder activation, it is important to evaluate the contribution due to the activated corrosion products (ACPs) dissolved in the lead-lithium eutectic alloy, at different concentration levels. Therefore, the purpose of the study project is to evaluate the PbLi activity utilizing the FISPACT II inventory code. Emphasis is given on how the design of the EU-DEMO WCLL, and potential recycling of the breeder material will be impacted by the activation of PbLi and the associated active corrosion products (ACPs). For this scope the following Computational Tools, Data and Geometry have been considered: • Neutron source: EU-DEMO neutron flux < 1014/cm2/s • Neutron flux distribution in equatorial breeding blanket module (BBM) #13 in the WCLL BB outboard central zone, which is the most activated zone, with the aim to introduce a conservative component utilizing MNCP6. • The recommended geometry model: 2017 EU DEMO CAD model. • Blanket Module Material Specifications (Composition) • Activation calculations for different ACP concentration levels in the PbLi breeder, with a given chemistry in stationary equilibrium conditions, using FISPACT II code. Results suggest that there should be a waiting time of about 10 years from the shut-down (SD) to be able to safely manipulate the PbLi for recycling operations with simple shielding requirements. The dose rate is mainly given by the PbLi and the ACP concentration (x1 or x 100) does not shift the result. In conclusion, the results show that there is no impact on PbLi activation due to ACPs levels.

Keywords: activation, corrosion products, recycling, WCLL BB., PbLi

Procedia PDF Downloads 120
12567 Apps Reduce the Cost of Construction

Authors: Ali Mohammadi

Abstract:

Every construction that is done, the most important part of attention for employers and contractors is its cost, and they always try to reduce costs so that they can compete in the market, so they estimate the cost of construction before starting their activities. The costs can be generally divided into four parts: the materials used, the equipment used, the manpower required, and the time required. In this article, we are trying to talk about the three items of equipment, manpower, and time, and examine how the use of apps can reduce the cost of construction, while due to various reasons, it has received less attention in the field of app design. Also, because we intend to use these apps in construction and they are used by engineers and experts, we define these apps as engineering apps because the idea of ​​their design must be by an engineer who works in that field. Also, considering that most engineers are familiar with programming during their studies, they can design the apps they need using simple programming software.

Keywords: layout, as-bilt, monitoring, maps

Procedia PDF Downloads 58
12566 Logistics Process of Pineapple’s Leaves Product in Prachuapkhirikhan Province

Authors: Atcharawan Phenwansuk

Abstract:

The product design is important to the development of SME towards the global, because it made to the quality product to react the needs of consumers and could reduces cost in the production, making it more profitable. As a results, the business are competition advantage for more marketing. It also enhance image of product and firms to build its own brand products to be acceptable. The product was designed should be shape, size, colorful, and direct of target consumers. This is method to add value products to get popular and effective, because the beauty is first satisfaction which come from main shape and color of the design product, but the product was designed need to hold data and law combination of shape and color between artistic theory and satisfaction of consumers together. The design must consider the safety of life and asset of consumers the most important. From to use of designed products should be to consider the cost savings, convenient distance, transportation, routes (land, water or air) of living space on transport (capacity, volume, width, length of the car, truck and container, etc). The packaging must be can to prevent not damage of the products. If products is more large , maybe to design new packaging, which can easily disassembled for make smaller package such as designing the assembly. Products must be packed in the container for size standard for save costs, as well as the buyer can make transport and assembly of products to fit easily on your own.

Keywords: logistics process , pineapple’s leaves product, product design, satisfaction of consumers

Procedia PDF Downloads 395
12565 The Effect of Velocity Increment by Blockage Factor on Savonius Hydrokinetic Turbine Performance

Authors: Thochi Seb Rengma, Mahendra Kumar Gupta, P. M. V. Subbarao

Abstract:

Hydrokinetic turbines can be used to produce power in inaccessible villages located near rivers. The hydrokinetic turbine uses the kinetic energy of the water and maybe put it directly into the natural flow of water without dams. For off-grid power production, the Savonius-type vertical axis turbine is the easiest to design and manufacture. This proposal uses three-dimensional computational fluid dynamics (CFD) simulations to measure the considerable interaction and complexity of turbine blades. Savonius hydrokinetic turbine (SHKT) performance is affected by a blockage in the river, canals, and waterways. Putting a large object in a water channel causes water obstruction and raises local free stream velocity. The blockage correction factor or velocity increment measures the impact of velocity on the performance. SHKT performance is evaluated by comparing power coefficient (Cp) with tip-speed ratio (TSR) at various blockage ratios. The maximum Cp was obtained at a TSR of 1.1 with a blockage ratio of 45%, whereas TSR of 0.8 yielded the highest Cp without blockage. The greatest Cp of 0.29 was obtained with a 45% blockage ratio compared to a Cp max of 0.18 without a blockage.

Keywords: savonius hydrokinetic turbine, blockage ratio, vertical axis turbine, power coefficient

Procedia PDF Downloads 121
12564 The Design of Fire in Tube Boiler

Authors: Yoftahe Nigussie

Abstract:

This report presents a final year project pertaining to the design of Fire tube boiler for the purpose of producing saturated steam. The objective of the project is to produce saturated steam for different purpose with a capacity of 2000kg/h at 12bar design pressure by performing a design of a higher performance fire tube boiler that considered the requirements of cost minimization and parameters improvement. This is mostly done in selection of appropriate material for component parts, construction materials and production methods in different steps of analysis. In the analysis process, most of the design parameters are obtained by iterating with related formulas like selection of diameter of tubes with overall heat transfer coefficient optimization, and the other selections are also as like considered. The number of passes is two because of the size and area of the tubes and shell. As the analysis express by using heavy oil fuel no6 with a higher heating value of 44000kJ/kg and lower heating value of 41300kJ/kg and the amount of fuel consumed 140.37kg/hr. and produce 1610kw of heat with efficiency of 85.25%. The flow of the fluid is a cross flow because of its own advantage and the arrangement of the tube in-side the shell is welded with the tube sheet, and the tube sheet is attached with the shell and the end by using a gasket and weld. The design of the shell, using European Standard code section, is as like pressure vessel by considering the weight, including content and the supplementary accessories such as lifting lugs, openings, ends, man hole and supports with detail and assembly drawing.

Keywords: steam generation, external treatment, internal treatment, steam velocity

Procedia PDF Downloads 83
12563 A Genetic Algorithm for the Load Balance of Parallel Computational Fluid Dynamics Computation with Multi-Block Structured Mesh

Authors: Chunye Gong, Ming Tie, Jie Liu, Weimin Bao, Xinbiao Gan, Shengguo Li, Bo Yang, Xuguang Chen, Tiaojie Xiao, Yang Sun

Abstract:

Large-scale CFD simulation relies on high-performance parallel computing, and the load balance is the key role which affects the parallel efficiency. This paper focuses on the load-balancing problem of parallel CFD simulation with structured mesh. A mathematical model for this load-balancing problem is presented. The genetic algorithm, fitness computing, two-level code are designed. Optimal selector, robust operator, and local optimization operator are designed. The properties of the presented genetic algorithm are discussed in-depth. The effects of optimal selector, robust operator, and local optimization operator are proved by experiments. The experimental results of different test sets, DLR-F4, and aircraft design applications show the presented load-balancing algorithm is robust, quickly converged, and is useful in real engineering problems.

Keywords: genetic algorithm, load-balancing algorithm, optimal variation, local optimization

Procedia PDF Downloads 172
12562 Planning and Design Criteria to Make Urban Transport More Sustainable: The Case of Baku

Authors: Gülnar Bayramoğlu Barman

Abstract:

Since the industrial revolution, technological developments and increased population have caused environmental damages. To protect the nature and architectural environment, firstly, green architecture, ecological architecture and then sustainability occurred. This term has been proposed not to be a new term but a response to environmental disturbances caused by human activities and it is re-conceptualization of architecture. Sustainable architecture or sustainability is lot more extensive than ecological and green architecture. It contains the imbalance between environmental problems that is natural environment and consumption that occurred all around the world. An important part of sustainability debate focused on urban planning and design for more sustainable forms and patterns. In particular, it is discussed that planning and design of urban areas have a major effect on transport and therefore can help reduce car usage, emissions, global warming and climate change. There are many planning and design approaches and movement that introduce certain criteria and strategies to prevent car dependency and encourage people to use public transportation and walking. However, when review the literature, it is seen that planning movements, such as New Urbanism and Transit Oriented Development originated and were implemented mostly in West European and North American Cities. The purpose of this study is to find out whether all those criteria, principles and strategies are also relevant planning approaches for more non-western cities like Baku, which has a very different planning background and therefore possibly different urban form and transport issues. In order to answer the above mentioned question, planning and design approaches in the literature and these recent planning movements were studied and a check list was formed which indicate planning and design approaches that can help attain a more sustainable transport outcome. The checklist was then applied to the case of Baku.

Keywords: sustainability, sustainable development, sustainable transportation, transport, urban design

Procedia PDF Downloads 431
12561 Numerical Study of 5kW Vertical Axis Wind Turbine Using DOE Method

Authors: Yan-Ting Lin, Wei-Nian Su

Abstract:

The purpose of this paper is to demonstrate the design of 5kW vertical axis wind turbine (VAWT) using DOE method. The NACA0015 airfoil was implemented for the design and 3D simulation. The critical design parameters are chord length, tip speed ratio (TSR), aspect ratio (AR) and pitch angle in this investigation. The RNG k-ε turbulent model and the sliding mesh method are adopted in the CFD simulation. The results show that the model with zero pitch, 0.3 m in chord length, TSR of 3, and AR of 10 demonstrated the optimum aerodynamic power under the uniform 10m/s inlet velocity. The aerodynamic power is 3.61kW and 3.89kW under TSR of 3 and 4 respectively. The aerodynamic power decreased dramatically while TSR increased to 5.

Keywords: vertical axis wind turbine, CFD, DOE, VAWT

Procedia PDF Downloads 435
12560 Stimulating Team Creativity: A Study on Creative-Oriented Integrated Design Companies in Taiwan

Authors: Yueh Hsiu Giffen Cheng, Teng Jung Wang

Abstract:

According to the study of British national advisory council on creative and cultural education(NACCCE, what the present and the future need awesome innovative and creative people from the perspective of commercial human resources. Therefore, we can know from above, creativity plays an important role in today’s enterprise indeed. Besides, many companies are aimed at developing team work as their main goal, so “creativity” and “teamwork” become more and more important factors to succeed and team creativity also turn into an important issue gradually. Then, the study takes in-depth interviews of design companies’ leaders and uses self-designed questionnaire regarding affecting team creativity to conduct cross-analysis. The results show that for those creative-oriented integrated design companies, their design strategies don’t begin until data collection and their scripts are usually the best way to inspire creativity. Besides, passing down a legacy of experiences are their common educational training. Most important of all, their organizational resources and leaders can assist all the team to learn and grow effectively and the good interaction between the leader and the member can also bring work flexibility and efficiency. In short, the leader’s expectation of members’ performance can cause them to encourage each other to progress. Moreover, the analysis of questionnaire indicates that members who are open-minded and leaders who have transformational leadership style can both help to establish a good team interaction. Furthermore, abundant resources and training system are also good approaches to establish a harmonious relationship. Finally, through integrating the outcomes of interviews and questionnaires, we can infer that those integrated design companies’ circumstances of design progress are mainly from their leaders’ guidance. In addition, the analysis of design problems are focused on their creative strategies and their scripts and sketches can also inspire their creativity. In sum, the feature of all team is influenced by 4 factors: leaders who have transformational leadership style, open-minded members, flexible working environment, resources and interactive relationship. Ultimately, the study hopes that the result above can apply to the design-related industries or help general companies elevate the team creativity.

Keywords: creativity, team creativity, integrated design companies, design process

Procedia PDF Downloads 351
12559 Design Development of Floating Performance Structure for Coastal Areas in the Maltese Islands

Authors: Rebecca E. Dalli Gonzi, Joseph Falzon

Abstract:

Background: Islands in the Mediterranean region offer opportunities for various industries to take advantage of the facilitation and use of versatile floating structures in coastal areas. In the context of dense land use, marine structures can contribute to ensure both terrestrial and marine resource sustainability. Objective: The aim of this paper is to present and critically discuss an array of issues that characterize the design process of a floating structure for coastal areas and to present the challenges and opportunities of providing such multifunctional and versatile structures around the Maltese coastline. Research Design: A three-tier research design commenced with a systematic literature review. Semi-structured interviews with stakeholders including a naval architect, a marine engineer and civil designers were conducted. A second stage preceded a focus group with stakeholders in design and construction of marine lightweight structures. The three tier research design ensured triangulation of issues. All phases of the study were governed by research ethics. Findings: Findings were grouped into three main themes: excellence, impact and implementation. These included design considerations, applications and potential impacts on local industry. Literature for the design and construction of marine structures in the Maltese Islands presented multiple gaps in the application of marine structures for local industries. Weather conditions, depth of sea bed and wave actions presented limitations on the design capabilities of the structure. Conclusion: Water structures offer great potential and conclusions demonstrate the applicability of such designs for Maltese waters. There is still no such provision within Maltese coastal areas for multi-purpose use. The introduction of such facilities presents a range of benefits for visiting tourists and locals thereby offering wide range of services to tourism and marine industry. Costs for construction and adverse weather conditions were amongst the main limitations that shaped design capacities of the water structures.

Keywords: coastal areas, lightweight, marine structure, multi purpose, versatile, floating device

Procedia PDF Downloads 158
12558 Improvement of Electric Aircraft Endurance through an Optimal Propeller Design Using Combined BEM, Vortex and CFD Methods

Authors: Jose Daniel Hoyos Giraldo, Jesus Hernan Jimenez Giraldo, Juan Pablo Alvarado Perilla

Abstract:

Range and endurance are the main limitations of electric aircraft due to the nature of its source of power. The improvement of efficiency on this kind of systems is extremely meaningful to encourage the aircraft operation with less environmental impact. The propeller efficiency highly affects the overall efficiency of the propulsion system; hence its optimization can have an outstanding effect on the aircraft performance. An optimization method is applied to an aircraft propeller in order to maximize its range and endurance by estimating the best combination of geometrical parameters such as diameter and airfoil, chord and pitch distribution for a specific aircraft design at a certain cruise speed, then the rotational speed at which the propeller operates at minimum current consumption is estimated. The optimization is based on the Blade Element Momentum (BEM) method, additionally corrected to account for tip and hub losses, Mach number and rotational effects; furthermore an airfoil lift and drag coefficients approximation is implemented from Computational Fluid Dynamics (CFD) simulations supported by preliminary studies of grid independence and suitability of different turbulence models, to feed the BEM method, with the aim of achieve more reliable results. Additionally, Vortex Theory is employed to find the optimum pitch and chord distribution to achieve a minimum induced loss propeller design. Moreover, the optimization takes into account the well-known brushless motor model, thrust constraints for take-off runway limitations, maximum allowable propeller diameter due to aircraft height and maximum motor power. The BEM-CFD method is validated by comparing its predictions for a known APC propeller with both available experimental tests and APC reported performance curves which are based on Vortex Theory fed with the NASA Transonic Airfoil code, showing a adequate fitting with experimental data even more than reported APC data. Optimal propeller predictions are validated by wind tunnel tests, CFD propeller simulations and a study of how the propeller will perform if it replaces the one of on known aircraft. Some tendency charts relating a wide range of parameters such as diameter, voltage, pitch, rotational speed, current, propeller and electric efficiencies are obtained and discussed. The implementation of CFD tools shows an improvement in the accuracy of BEM predictions. Results also showed how a propeller has higher efficiency peaks when it operates at high rotational speed due to the higher Reynolds at which airfoils present lower drag. On the other hand, the behavior of the current consumption related to the propulsive efficiency shows counterintuitive results, the best range and endurance is not necessary achieved in an efficiency peak.

Keywords: BEM, blade design, CFD, electric aircraft, endurance, optimization, range

Procedia PDF Downloads 103
12557 The Unique Journeys from Different Pasts to Multiple Presents in the Work of the Pritzker Prize Laureates of 2010-2020

Authors: Christakis Chatzichristou, Kyriakos Myltiadou

Abstract:

The paper discusses how the Pritzker Prize Laureates of the last decade themselves identify the various ways different aspects or interpretations of the past have influenced their design methodologies. As the recipients of what is considered to be the most prestigious award in architecture, these architects are worth examining not only because of their exemplary work but also because of the strong influence they have on architectural culture in general. Rather than attempting to interpret their projects, the methodology chosen focuses on what the architects themselves have to say on the subject. The research aims at, and, as the tabular form of the findings shows, also succeeds in revealing the numerous and diverse ways different aspects of what is termed as the Past can potentially enrich contemporary design practices.

Keywords: design methodology, Pritzker Prize Laureates, past, culture, tradition

Procedia PDF Downloads 29
12556 The Use of Computer-Aided Design in Small Contractors in a Local Area of Korea

Authors: Myunghoun Jang

Abstract:

A survey of small-size contractors in Jeju was conducted to investigate college graduate's computer-aided design (CAD) competence. Most of small-size contractors use CAD software to review and update drawings submitted from an architect. This research analyzed the curriculum of the architectural engineering in several national universities. The CAD classes have 4 or 6 hours per week and use AutoCAD primarily. This paper proposes that a CAD class needs 6 hours per week, 2D drawing is the main theme in the curriculum, and exercises to make 3D models are also included in the CAD class. An improved method, for example Internet cafe and real time feedbacks using smartphones, to evaluate the reports and exercise results is necessary.

Keywords: CAD (Computer Aided Design), CAD education, education improvement, small-size contractor

Procedia PDF Downloads 264
12555 Improving School Design through Diverse Stakeholder Participation in the Programming Phase

Authors: Doris C. C. K. Kowaltowski, Marcella S. Deliberador

Abstract:

The architectural design process, in general, is becoming more complex, as new technical, social, environmental, and economical requirements are imposed. For school buildings, this scenario is also valid. The quality of a school building depends on known design criteria and professional knowledge, as well as feedback from building performance assessments. To attain high-performance school buildings, a design process should add a multidisciplinary team, through an integrated process, to ensure that the various specialists contribute at an early stage to design solutions. The participation of stakeholders is of special importance at the programming phase when the search for the most appropriate design solutions is underway. The composition of a multidisciplinary team should comprise specialists in education, design professionals, and consultants in various fields such as environmental comfort and psychology, sustainability, safety and security, as well as administrators, public officials and neighbourhood representatives. Users, or potential users (teachers, parents, students, school officials, and staff), should be involved. User expectations must be guided, however, toward a proper understanding of a response of design to needs to avoid disappointment. In this context, appropriate tools should be introduced to organize such diverse participants and ensure a rich and focused response to needs and a productive outcome of programming sessions. In this paper, different stakeholder in a school design process are discussed in relation to their specific contributions and a tool in the form of a card game is described to structure the design debates and ensure a comprehensive decision-making process. The game is based on design patterns for school architecture as found in the literature and is adapted to a specific reality: State-run public schools in São Paulo, Brazil. In this State, school buildings are managed by a foundation called Fundação para o Desenvolvimento da Educação (FDE). FDE supervises new designs and is responsible for the maintenance of ~ 5000 schools. The design process of this context was characterised with a recommendation to improve the programming phase. Card games can create a common environment, to which all participants can relate and, therefore, can contribute to briefing debates on an equal footing. The cards of the game described here represent essential school design themes as found in the literature. The tool was tested with stakeholder groups and with architecture students. In both situations, the game proved to be an efficient tool to stimulate school design discussions and to aid in the elaboration of a rich, focused and thoughtful architectural program for a given demand. The game organizes the debates and all participants are shown to spontaneously contribute each in his own field of expertise to the decision-making process. Although the game was specifically based on a local school design process it shows potential for other contexts because the content is based on known facts, needs and concepts of school design, which are global. A structured briefing phase with diverse stakeholder participation can enrich the design process and consequently improve the quality of school buildings.

Keywords: architectural program, design process, school building design, stakeholder

Procedia PDF Downloads 400
12554 Calibration of Resistance Factors for Reliability-Based Design of Driven Piles Considering Unsaturated Soil Effects

Authors: Mohammad Amin Tutunchian, Pedram Roshani, Reza Rezvani, Julio Ángel Infante Sedano

Abstract:

The highly recommended approach to design, known as the load and resistance factor design (LRFD) method, employs the geotechnical resistance factor (GRF) for shaping pile foundation designs. Within the standard process for designing pile foundations, geotechnical engineers commonly adopt a design strategy rooted in saturated soil mechanics (SSM), often disregarding the impact of unsaturated soil behavior. This oversight within the design procedure leads to the omission of the enhancement in shear strength exhibited by unsaturated soils, resulting in a more cautious outcome in design results. This research endeavors to present a methodology for fine-tuning the GRF used for axially loaded driven piles in Winnipeg, Canada. This is achieved through the application of a well-established probabilistic approach known as the first-order second moment (FOSM) method while also accounting for the influence of unsaturated soil behavior. The findings of this study demonstrate that incorporating the influence of unsaturated conditions yields an elevation in projected bearing capacity and recommends higher GRF values in accordance with established codes. Additionally, a novel factor referred to as phy has been introduced to encompass the impact of saturation conditions in the calculation of pile bearing capacity, as guided by prevalent static analysis techniques.

Keywords: unsaturated soils, shear strength, LRFD, FOSM, GRF

Procedia PDF Downloads 83
12553 An Axiomatic Model for Development of the Allocated Architecture in Systems Engineering Process

Authors: Amir Sharahi, Reza Tehrani, Ali Mollajan

Abstract:

The final step to complete the “Analytical Systems Engineering Process” is the “Allocated Architecture” in which all Functional Requirements (FRs) of an engineering system must be allocated into their corresponding Physical Components (PCs). At this step, any design for developing the system’s allocated architecture in which no clear pattern of assigning the exclusive “responsibility” of each PC for fulfilling the allocated FR(s) can be found is considered a poor design that may cause difficulties in determining the specific PC(s) which has (have) failed to satisfy a given FR successfully. The present study utilizes the Axiomatic Design method principles to mathematically address this problem and establishes an “Axiomatic Model” as a solution for reaching good alternatives for developing the allocated architecture. This study proposes a “loss Function”, as a quantitative criterion to monetarily compare non-ideal designs for developing the allocated architecture and choose the one which imposes relatively lower cost to the system’s stakeholders. For the case-study, we use the existing design of U. S. electricity marketing subsystem, based on data provided by the U.S. Energy Information Administration (EIA). The result for 2012 shows the symptoms of a poor design and ineffectiveness due to coupling among the FRs of this subsystem.

Keywords: allocated architecture, analytical systems engineering process, functional requirements (FRs), physical components (PCs), responsibility of a physical component, system’s stakeholders

Procedia PDF Downloads 400
12552 Future Metro Station: Remodeling Underground Environment Based on Experience Scenarios and IoT Technology

Authors: Joo Min Kim, Dongyoun Shin

Abstract:

The project Future Station (FS) seek for a deeper understanding of metro station. The main idea of the project is enhancing the underground environment by combining new architectural design with IoT technology. This research shows the understanding of the metro environment giving references regarding traditional design approaches and IoT combined space design. Based on the analysis, this research presents design alternatives in two metro stations those are chosen for a testbed. It also presents how the FS platform giving a response to travelers and deliver the benefit to metro operators. In conclusion, the project describes methods to build future metro service and platform that understand traveler’s intentions and giving appropriate services back for enhancing travel experience. It basically used contemporary technology such as smart sensing grid, big data analysis, smart building, and machine learning technology.

Keywords: future station, digital lifestyle experience, sustainable metro, smart metro, smart city

Procedia PDF Downloads 293
12551 System Identification in Presence of Outliers

Authors: Chao Yu, Qing-Guo Wang, Dan Zhang

Abstract:

The outlier detection problem for dynamic systems is formulated as a matrix decomposition problem with low-rank, sparse matrices and further recast as a semidefinite programming (SDP) problem. A fast algorithm is presented to solve the resulting problem while keeping the solution matrix structure and it can greatly reduce the computational cost over the standard interior-point method. The computational burden is further reduced by proper construction of subsets of the raw data without violating low rank property of the involved matrix. The proposed method can make exact detection of outliers in case of no or little noise in output observations. In case of significant noise, a novel approach based on under-sampling with averaging is developed to denoise while retaining the saliency of outliers and so-filtered data enables successful outlier detection with the proposed method while the existing filtering methods fail. Use of recovered “clean” data from the proposed method can give much better parameter estimation compared with that based on the raw data.

Keywords: outlier detection, system identification, matrix decomposition, low-rank matrix, sparsity, semidefinite programming, interior-point methods, denoising

Procedia PDF Downloads 302
12550 Latest Generation Conducted Electrical Weapon Dart Design: Signature Marking and Removal for the Emergency Medicine Professional

Authors: J. D. Ho, D. M. Dawes, B. Driver

Abstract:

Introduction: TASER Conducted Electrical Weapons (CEWs) are the dominant CEWs in use and have been used in modern police and military operations since the late 1990s as a form of non-lethal weaponry. The 3rd generation of CEWs has been recently introduced and is known as The TASER 7. This new CEW will be replacing current CEW technology and has a new dart design that is important for emergency medical professionals to be familiar with because it requires a different method of removal and will leave a different marking pattern in human tissue than they may have been previously familiar with. features of this new dart design include: higher velocity impact, larger impact surface area, break away dart body segment, dual back-barb retention, newly designed removal process. As the TASER 7 begins to be deployed by the police and military personnel, these new features make it imperative that emergency medical professionals become familiar with the signature markings that this new dart design will make on human tissue and how to remove them. Methods: Multiple observational studies using high speed photography were used to record impact patterns of the new dart design on fresh tissue and also the newly recommended dart removal process. Both animal and human subjects were used to test this dart design prior to production release. Results: Data presented will include dart design overview, flight pattern accuracy, impact analysis, and dart removal example. Tissue photographs will be presented to demonstrate examples of signature TASER 7 dart markings that emergency medical professionals can expect to see. Conclusion: This work will provide the reader with an understanding of this newest generation CEW dart design, its key features, its signature marking pattern that can be expected and a recommendation of how to remove it from human tissue.

Keywords: TASER 7, conducted electrical weapon, dart mark, dart removal

Procedia PDF Downloads 149
12549 Application of Grasshopper Optimization Algorithm for Design and Development of Net Zero Energy Residential Building in Ahmedabad, India

Authors: Debasis Sarkar

Abstract:

This paper aims to apply the Grasshopper-Optimization-Algorithm (GOA) for designing and developing a Net-Zero-Energy residential building for a mega-city like Ahmedabad in India. The methodology implemented includes advanced tools like Revit for model creation and MATLAB for simulation, enabling the optimization of the building design. GOA has been applied in reducing cooling loads and overall energy consumption through optimized passive design features. For the attainment of a net zero energy mission, solar panels were installed on the roof of the building. It has been observed that the energy consumption of 8490 kWh was supported by the installed solar panels. Thereby only 840kWh had to be supported by non-renewable energy sources. The energy consumption was further reduced through the application of simulation and optimization methods like GOA, which further reduced the energy consumption to about 37.56 kWh per month from April to July when energy demand was at its peak. This endeavor aimed to achieve near-zero-energy consumption, showcasing the potential of renewable energy integration in building sustainability.

Keywords: grasshopper optimization algorithm, net zero energy, residential building, sustainable design

Procedia PDF Downloads 21
12548 Design of Transmit Beamspace and DOA Estimation in MIMO Radar

Authors: S. Ilakkiya, A. Merline

Abstract:

A multiple-input multiple-output (MIMO) radar systems use modulated waveforms and directive antennas to transmit electromagnetic energy into a specific volume in space to search for targets. This paper deals with the design of transmit beamspace matrix and DOA estimation for multiple-input multiple-output (MIMO) radar with collocated antennas.The design of transmit beamspace matrix is based on minimizing the difference between a desired transmit beampattern and the actual one while enforcing the constraint of uniform power distribution across the transmit array elements. Rotational invariance property is established at the transmit array by imposing a specific structure on the beamspace matrix. Semidefinite programming and spatial-division based design (SDD) are also designed separately. In MIMO radar systems, DOA estimation is an essential process to determine the direction of incoming signals and thus to direct the beam of the antenna array towards the estimated direction. This estimation deals with non-adaptive spectral estimation and adaptive spectral estimation techniques. The design of the transmit beamspace matrix and spectral estimation techniques are studied through simulation.

Keywords: adaptive and non-adaptive spectral estimation, direction of arrival estimation, MIMO radar, rotational invariance property, transmit, receive beamforming

Procedia PDF Downloads 512
12547 CO2 Emission and Cost Optimization of Reinforced Concrete Frame Designed by Performance Based Design Approach

Authors: Jin Woo Hwang, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

As greenhouse effect has been recognized as serious environmental problem of the world, interests in carbon dioxide (CO2) emission which comprises major part of greenhouse gas (GHG) emissions have been increased recently. Since construction industry takes a relatively large portion of total CO2 emissions of the world, extensive studies about reducing CO2 emissions in construction and operation of building have been carried out after the 2000s. Also, performance based design (PBD) methodology based on nonlinear analysis has been robustly developed after Northridge Earthquake in 1994 to assure and assess seismic performance of building more exactly because structural engineers recognized that prescriptive code based design approach cannot address inelastic earthquake responses directly and assure performance of building exactly. Although CO2 emissions and PBD approach are recent rising issues on construction industry and structural engineering, there were few or no researches considering these two issues simultaneously. Thus, the objective of this study is to minimize the CO2 emissions and cost of building designed by PBD approach in structural design stage considering structural materials. 4 story and 4 span reinforced concrete building optimally designed to minimize CO2 emissions and cost of building and to satisfy specific seismic performance (collapse prevention in maximum considered earthquake) of building satisfying prescriptive code regulations using non-dominated sorting genetic algorithm-II (NSGA-II). Optimized design result showed that minimized CO2 emissions and cost of building were acquired satisfying specific seismic performance. Therefore, the methodology proposed in this paper can be used to reduce both CO2 emissions and cost of building designed by PBD approach.

Keywords: CO2 emissions, performance based design, optimization, sustainable design

Procedia PDF Downloads 402
12546 Forecasting Etching Behavior Silica Sand Using the Design of Experiments Method

Authors: Kefaifi Aissa, Sahraoui Tahar, Kheloufi Abdelkrim, Anas Sabiha, Hannane Farouk

Abstract:

The aim of this study is to show how the Design of Experiments Method (DOE) can be put into use as a practical approach for silica sand etching behavior modeling during its primary step of leaching. In the present work, we have studied etching effect on particle size during a primary step of leaching process on Algerian silica sand with florid acid (HF) at 20% and 30 % during 4 and 8 hours. Therefore, a new purity of the sand is noted depending on the time of leaching. This study was expanded by a numerical approach using a method of experiment design, which shows the influence of each parameter and the interaction between them in the process and approved the obtained experimental results. This model is a predictive approach using hide software. Based on the measured parameters experimentally in the interior of the model, the use of DOE method can make it possible to predict the outside parameters of the model in question and can give us the optimize response without making the experimental measurement.

Keywords: acid leaching, design of experiments method(DOE), purity silica, silica etching

Procedia PDF Downloads 278