Search results for: computational calculations
1644 Simulation of Flow Patterns in Vertical Slot Fishway with Cylindrical Obstacles
Authors: Mohsen Solimani Babarsad, Payam Taheri
Abstract:
Numerical results of vertical slot fishways with and without cylinders study are presented. The simulated results and the measured data in the fishways are compared to validate the application of the model. This investigation is made using FLUENT V.6.3, a Computational Fluid Dynamics solver. Advantages of using these types of numerical tools are the possibility of avoiding the St.-Venant equations’ limitations, and turbulence can be modeled by means of different models such as the k-ε model. In general, the present study has demonstrated that the CFD model could be useful for analysis and design of vertical slot fishways with cylinders.Keywords: slot Fish-way, CFD, k-ε model, St.-Venant equations’
Procedia PDF Downloads 3631643 Enhancing Rupture Pressure Prediction for Corroded Pipes Through Finite Element Optimization
Authors: Benkouiten Imene, Chabli Ouerdia, Boutoutaou Hamid, Kadri Nesrine, Bouledroua Omar
Abstract:
Algeria is actively enhancing gas productivity by augmenting the supply flow. However, this effort has led to increased internal pressure, posing a potential risk to the pipeline's integrity, particularly in the presence of corrosion defects. Sonatrach relies on a vast network of pipelines spanning 24,000 kilometers for the transportation of gas and oil. The aging of these pipelines raises the likelihood of corrosion both internally and externally, heightening the risk of ruptures. To address this issue, a comprehensive inspection is imperative, utilizing specialized scraping tools. These advanced tools furnish a detailed assessment of all pipeline defects. It is essential to recalculate the pressure parameters to safeguard the corroded pipeline's integrity while ensuring the continuity of production. In this context, Sonatrach employs symbolic pressure limit calculations, such as ASME B31G (2009) and the modified ASME B31G (2012). The aim of this study is to perform a comparative analysis of various limit pressure calculation methods documented in the literature, namely DNV RP F-101, SHELL, P-CORRC, NETTO, and CSA Z662. This comparative assessment will be based on a dataset comprising 329 burst tests published in the literature. Ultimately, we intend to introduce a novel approach grounded in the finite element method, employing ANSYS software.Keywords: pipeline burst pressure, burst test, corrosion defect, corroded pipeline, finite element method
Procedia PDF Downloads 581642 Singular Perturbed Vector Field Method Applied to the Problem of Thermal Explosion of Polydisperse Fuel Spray
Authors: Ophir Nave
Abstract:
In our research, we present the concept of singularly perturbed vector field (SPVF) method, and its application to thermal explosion of diesel spray combustion. Given a system of governing equations, which consist of hidden Multi-scale variables, the SPVF method transfer and decompose such system to fast and slow singularly perturbed subsystems (SPS). The SPVF method enables us to understand the complex system, and simplify the calculations. Later powerful analytical, numerical and asymptotic methods (e.g method of integral (invariant) manifold (MIM), the homotopy analysis method (HAM) etc.) can be applied to each subsystem. We compare the results obtained by the methods of integral invariant manifold and SPVF apply to spray droplets combustion model. The research deals with the development of an innovative method for extracting fast and slow variables in physical mathematical models. The method that we developed called singular perturbed vector field. This method based on a numerical algorithm applied to global quasi linearization applied to given physical model. The SPVF method applied successfully to combustion processes. Our results were compared to experimentally results. The SPVF is a general numerical and asymptotical method that reveals the hierarchy (multi-scale system) of a given system.Keywords: polydisperse spray, model reduction, asymptotic analysis, multi-scale systems
Procedia PDF Downloads 2191641 Catalytic Thermodynamics of Nanocluster Adsorbates from Informational Statistical Mechanics
Authors: Forrest Kaatz, Adhemar Bultheel
Abstract:
We use an informational statistical mechanics approach to study the catalytic thermodynamics of platinum and palladium cuboctahedral nanoclusters. Nanoclusters and their adatoms are viewed as chemical graphs with a nearest neighbor adjacency matrix. We use the Morse potential to determine bond energies between cluster atoms in a coordination type calculation. We use adsorbate energies calculated from density functional theory (DFT) to study the adatom effects on the thermodynamic quantities, which are derived from a Hamiltonian. Oxygen radical and molecular adsorbates are studied on platinum clusters and hydrogen on palladium clusters. We calculate the entropy, free energy, and total energy as the coverage of adsorbates increases from bridge and hollow sites on the surface. Thermodynamic behavior versus adatom coverage is related to the structural distribution of adatoms on the nanocluster surfaces. The thermodynamic functions are characterized using a simple adsorption model, with linear trends as the coverage of adatoms increases. The data exhibits size effects for the measured thermodynamic properties with cluster diameters between 2 and 5 nm. Entropy and enthalpy calculations of Pt-O2 compare well with previous theoretical data for Pt(111)-O2, and our Pd-H results show similar trends as experimental measurements for Pd-H2 nanoclusters. Our methods are general and may be applied to wide variety of nanocluster adsorbate systems.Keywords: catalytic thermodynamics, palladium nanocluster absorbates, platinum nanocluster absorbates, statistical mechanics
Procedia PDF Downloads 1661640 Advanced Model for Calculation of the Neutral Axis Shifting and the Wall Thickness Distribution in Rotary Draw Bending Processes
Abstract:
Rotary draw bending is a method which is being used in tube forming. In the tube bending process, the neutral axis moves towards the inner arc and the wall thickness distribution changes for tube’s cross section. Thinning takes place in the outer arc of the tube (extrados) due to the stretching of the material, whereas thickening occurs in the inner arc of the tube (intrados) due to the comparison of the material. The calculations of the wall thickness distribution, neutral axis shifting, and strain distribution have not been accurate enough, so far. The previous model (the geometrical model) describes the neutral axis shifting and wall thickness distribution. The geometrical of the tube, bending radius and bending angle are considered in the geometrical model, while the influence of the material properties of the tube forming are ignored. The advanced model is a modification of the previous model using material properties that depends on the correction factor. The correction factor is a purely empirically determined factor. The advanced model was compared with the Finite element simulation (FE simulation) using a different bending factor (Bf=bending radius/ diameter of the tube), wall thickness (Wf=diameter of the tube/ wall thickness), and material properties (strain hardening exponent). Finite element model of rotary draw bending has been performed in PAM-TUBE program (version: 2012). Results from the advanced model resemble the FE simulation and the experimental test.Keywords: rotary draw bending, material properties, neutral axis shifting, wall thickness distribution
Procedia PDF Downloads 3971639 The Connection between Required Safe Egress Time and Occupant Fire Safety Training
Authors: Christina Knorr
Abstract:
Analysis of the evacuation of occupants of a building plays a significant role in Fire Safety Engineering. One of the tools used for the analysis is the concept of the Required Safe Egress Time (RSET). It is generally accepted that RSET is measured from the time the fire ignites until the time that all occupants have evacuated to a safe location. Instructions on how RSET is determined can be found in both the International Fire Engineering Guidelines and, more recently, in the Australian Fire Engineering Guidelines. The guidelines also specify measures that could be applied to reduce the RSET and hence improve the performance of fire-safety measures of a building. Further, it is suggested that the delay period can be reduced through “training programs.” This study examined the overall level of fire-safety awareness among occupants of residential apartment buildings in Australia and investigated the possible effects of fire-safety training on the delay period and, hence, the RSET. A questionnaire, interviews, and an experiment were conducted to collect data about people’s fire-safety knowledge, people’s behaviour and nature, and the duration of activities people are likely to undertake in the event of a fire. The study led to an investigation into the delay and response time approximations and the development of a new equation to incorporate the impact of training into the RSET calculations for the general use of the fire engineering community. Regardless of the RSET, it can be concluded that fire-safety education and training for residents of apartment buildings have a direct impact on improving their behaviour and firefighting equipment usage in a fire incident.Keywords: fire safety engineering, fire safety training, occupant evacuation behaviour, required safe egress time
Procedia PDF Downloads 381638 Design and Analysis of a Lightweight Fire-Resistant Door
Authors: Zainab Fadil, Mouath Alawadhi, Abdullah Alhusainan, Fahad Alqadiri, Abdulaziz Alqadiri
Abstract:
This study investigates how lightweight a fire resistance door will perform with under types of insulation materials. Data is initially collected from various websites, scientific books and research papers. Results show that different layers of insulation in a single door can perform better than one insulator. Furthermore, insulation materials that are lightweight, high strength and low thermal conductivity are the most preferred for fire-rated doors. Whereas heavy weight, low strength, and high thermal conductivity are least preferred for fire-resistance doors. Fire-rated doors specifications, theoretical test methodology, structural analysis, and comparison between five different models with diverse layers insulations are presented. Five different door models are being investigated with different insulation materials and arrangements. Model 1 contains an air gap between door layers. Model 2 includes phenolic foam, mild steel and polyurethane. Model 3 includes phenolic foam and glass wool. Model 4 includes polyurethane and glass wool. Model 5 includes only rock wool between the door layers. It is noticed that model 5 is the most efficient model and its design is simple compared to other models. For this model, numerical calculations are performed to check its efficiency and the results are compared to data from experiments for validation. Good agreement was noticed.Keywords: fire resistance, insulation, strength, thermal conductivity, lightweight, layers
Procedia PDF Downloads 891637 The Permutation of Symmetric Triangular Equilateral Group in the Cryptography of Private and Public Key
Authors: Fola John Adeyeye
Abstract:
In this paper, we propose a cryptosystem private and public key base on symmetric group Pn and validates its theoretical formulation. This proposed system benefits from the algebraic properties of Pn such as noncommutative high logical, computational speed and high flexibility in selecting key which makes the discrete permutation multiplier logic (DPML) resist to attack by any algorithm such as Pohlig-Hellman. One of the advantages of this scheme is that it explore all the possible triangular symmetries. Against these properties, the only disadvantage is that the law of permutation multiplicity only allow an operation from left to right. Many other cryptosystems can be transformed into their symmetric group.Keywords: cryptosystem, private and public key, DPML, symmetric group Pn
Procedia PDF Downloads 2021636 Exploring Spin Reorientation Transition and Berry Curvature Driven Anomalous Hall Effect in Quasi-2D vdW Ferromagnet Fe4GeTe2
Authors: Satyabrata Bera, Mintu Mondal
Abstract:
Two-dimensional (2D) ferromagnetic materials have garnered significant attention due to their potential to host intriguing scientific phenomena such as the anomalous Hall effect, anomalous Nernst effect, and high transport spin polarization. This study focuses on the investigation of air-stable van der Waals(vdW) ferromagnets, FeGeTe₂ (FₙGT with n = 3, 4, and 5). Particular emphasis is placed on the Fe4GeTe2 (F4GT) compound, which exhibits a complex and fascinating magnetic behavior characterized by two distinct transitions: (i) paramagnetic (PM) to ferromagnetic (FM) around T C ∼ 270 K, and (ii) another spins reorientation transition (SRT) at T SRT ∼ 100 K . Scaling analysis of magnetocaloric effect confirms the second-order character of the ferromagnetic transition, while the same analysis at T SRT suggests that SRT is first-order phase transition. Moreover, the F4GT exhibits a large anomalous Hall conductivity (AHC), ∼ 490 S/cm at 2 K . The near-quadratic behavior of the anomalous Hall resistivity with the longitudinal resistivity suggests that a dominant AHC contribution arises from an intrinsic Berry curvature (BC) mechanism. Electronic structure calculations reveal a significant BC resulting from SOC-induced gapped nodal lines around the Fermi level, thereby giving rise to large AHC. Additionally, we reported exceptionally large anomalous Hall angle (≃ 10.6%) and Hall factor (≃ 0.22 V −1 ) values, the largest observed within this vdW family. The findings presented here, provide valuable insights into the fascinating magnetic and transport properties of 2D ferromagnetic materials, in particular, FₙGT family.Keywords: 2D vdW ferromagnet, spin reorientation transition, anomalous hall effect, berry curvature
Procedia PDF Downloads 861635 Synthesis, Characterization, Theoretical Crystal Structures and Antitubercular Activity Study of (E)-N'-(2,4-Dihydroxybenzylidene) Nicotinohydrazide and Some of Its Metal Complexes
Authors: Ogunniran Kehinde Olurotimi, Adekoya Joseph, Ehi-Eromosele Cyril, Mehdi Shihab, Mesubi Adediran, Tadigoppula Narender
Abstract:
Nicotinic acid hydrazide and 2,4-dihydoxylbenzaldehyde were condensed at 20°C to form an acylhydrazone (H3L) with ONO coordination pattern. The structure of the acylhydrazone was elucidated by using CHN analyzer, ESI mass spectrometry, IR, 1H NMR, 13C NMR and 2D NMR such as COSY and HSQC. Thereafter, five novel metal complexes [Mn(II), Fe(II), Pt(II) Zn(II) and Pd(II)] of the hydrazone ligand were synthesized and their structural characterization were achieved by several physicochemical methods, namely elemental analysis, electronic spectra, infrared, EPR, molar conductivity and powder X-ray diffraction studies. Structural geometries of some of the compounds were supported by using Hyper Chem-8 program for the molecular mechanics and semi-empirical calculations. The stability energy (E) and electron potentials (eV) for the frontier molecules were calculated by using PM3 method. An octahedral geometry was suggested for both Pd(II) and Zn(II) complexes while both Mn(II) and Fe(II) complexes conformed with tetrahedral pyramidal. However, Pt(II) complex agreed with tetrahedral geometry. In vitro antitubercular activity study of the ligand and the metal complexes were evaluated against Mycobacterium tuberculosis, H37Rv, by using micro-diluted method. The results obtained revealed that (PtL1) (MIC = 0.56 µg/mL), (ZnL1) (MIC = 0.61 µg/mL), (MnL1) (MIC = 0.71 µg/mL) and (FeL1) (MIC = 0.82 µg/mL), exhibited a significant activity when compared with first line drugs such as isoniazid (INH) (MIC = 0.9 µg/mL). H3L1 exhibited lesser antitubercular activity with MIC value of 1.02 µg/mL. However, the metal complexes displayed higher cytoxicity but were found to be non-significant different (P ˂ 0.05) to isoniazid drug.Keywords: hydrazones, electron spin resonance, thermogravimetric, powder X-ray diffraction, antitubercular agents
Procedia PDF Downloads 2681634 The Verification Study of Computational Fluid Dynamics Model of the Aircraft Piston Engine
Authors: Lukasz Grabowski, Konrad Pietrykowski, Michal Bialy
Abstract:
This paper presents the results of the research to verify the combustion in aircraft piston engine Asz62-IR. This engine was modernized and a type of ignition system was developed. Due to the high costs of experiments of a nine-cylinder 1,000 hp aircraft engine, a simulation technique should be applied. Therefore, computational fluid dynamics to simulate the combustion process is a reasonable solution. Accordingly, the tests for varied ignition advance angles were carried out and the optimal value to be tested on a real engine was specified. The CFD model was created with the AVL Fire software. The engine in the research had two spark plugs for each cylinder and ignition advance angles had to be set up separately for each spark. The results of the simulation were verified by comparing the pressure in the cylinder. The courses of the indicated pressure of the engine mounted on a test stand were compared. The real course of pressure was measured with an optical sensor, mounted in a specially drilled hole between the valves. It was the OPTRAND pressure sensor, which was designed especially to engine combustion process research. The indicated pressure was measured in cylinder no 3. The engine was running at take-off power. The engine was loaded by a propeller at a special test bench. The verification of the CFD simulation results was based on the results of the test bench studies. The course of the simulated pressure obtained is within the measurement error of the optical sensor. This error is 1% and reflects the hysteresis and nonlinearity of the sensor. The real indicated pressure measured in the cylinder and the pressure taken from the simulation were compared. It can be claimed that the verification of CFD simulations based on the pressure is a success. The next step was to research on the impact of changing the ignition advance timing of spark plugs 1 and 2 on a combustion process. Moving ignition timing between 1 and 2 spark plug results in a longer and uneven firing of a mixture. The most optimal point in terms of indicated power occurs when ignition is simultaneous for both spark plugs, but so severely separated ignitions are assured that ignition will occur at all speeds and loads of engine. It should be confirmed by a bench experiment of the engine. However, this simulation research enabled us to determine the optimal ignition advance angle to be implemented into the ignition control system. This knowledge allows us to set up the ignition point with two spark plugs to achieve as large power as possible.Keywords: CFD model, combustion, engine, simulation
Procedia PDF Downloads 3611633 Tabu Search Algorithm for Ship Routing and Scheduling Problem with Time Window
Authors: Khaled Moh. Alhamad
Abstract:
This paper describes a tabu search heuristic for a ship routing and scheduling problem (SRSP). The method was developed to address the problem of loading cargos for many customers using heterogeneous vessels. Constraints relate to delivery time windows imposed by customers, the time horizon by which all deliveries must be made and vessel capacities. The results of a computational investigation are presented. Solution quality and execution time are explored with respect to problem size and parameters controlling the tabu search such as tenure and neighbourhood size.Keywords: heuristic, scheduling, tabu search, transportation
Procedia PDF Downloads 5061632 Techno-Economic Analysis of the Production of Aniline
Authors: Dharshini M., Hema N. S.
Abstract:
The project for the production of aniline is done by providing 295.46 tons per day of nitrobenzene as feed. The material and energy balance calculations for the different equipment like distillation column, heat exchangers, reactor and mixer are carried out with simulation via DWSIM. The conversion of nitrobenzene to aniline by hydrogenation process is considered to be 96% and the total production of the plant was found to be 215 TPD. The cost estimation of the process is carried out to estimate the feasibility of the plant. The net profit and percentage return of investment is estimated to be ₹27 crores and 24.6%. The payback period was estimated to be 4.05 years and the unit production cost is ₹113/kg. A techno-economic analysis was performed for the production of aniline; the result includes economic analysis and sensitivity analysis of critical factors. From economic analysis, larger the plant scale increases the total capital investment and annual operating cost, even though the unit production cost decreases. Uncertainty analysis was performed to predict the influence of economic factors on profitability and the scenario analysis is one way to quantify uncertainty. In scenario analysis the best-case scenario and the worst-case scenario are compared with the base case scenario. The best-case scenario was found at a feed rate of 120 kmol/hr with a unit production cost of ₹112.05/kg and the worst-case scenario was found at a feed rate of 60 kmol/hr with a unit production cost of ₹115.9/kg. The base case is closely related to the best case by 99.2% in terms of unit production cost. since the unit production cost is less and the profitability is more with less payback time, it is feasible to construct a plant at this capacity.Keywords: aniline, nitrobenzene, economic analysis, unit production cost
Procedia PDF Downloads 1081631 Inverse Scattering of Two-Dimensional Objects Using an Enhancement Method
Authors: A.R. Eskandari, M.R. Eskandari
Abstract:
A 2D complete identification algorithm for dielectric and multiple objects immersed in air is presented. The employed technique consists of initially retrieving the shape and position of the scattering object using a linear sampling method and then determining the electric permittivity and conductivity of the scatterer using adjoint sensitivity analysis. This inversion algorithm results in high computational speed and efficiency, and it can be generalized for any scatterer structure. Also, this method is robust with respect to noise. The numerical results clearly show that this hybrid approach provides accurate reconstructions of various objects.Keywords: inverse scattering, microwave imaging, two-dimensional objects, Linear Sampling Method (LSM)
Procedia PDF Downloads 3871630 Fair Federated Learning in Wireless Communications
Authors: Shayan Mohajer Hamidi
Abstract:
Federated Learning (FL) has emerged as a promising paradigm for training machine learning models on distributed data without the need for centralized data aggregation. In the realm of wireless communications, FL has the potential to leverage the vast amounts of data generated by wireless devices to improve model performance and enable intelligent applications. However, the fairness aspect of FL in wireless communications remains largely unexplored. This abstract presents an idea for fair federated learning in wireless communications, addressing the challenges of imbalanced data distribution, privacy preservation, and resource allocation. Firstly, the proposed approach aims to tackle the issue of imbalanced data distribution in wireless networks. In typical FL scenarios, the distribution of data across wireless devices can be highly skewed, resulting in unfair model updates. To address this, we propose a weighted aggregation strategy that assigns higher importance to devices with fewer samples during the aggregation process. By incorporating fairness-aware weighting mechanisms, the proposed approach ensures that each participating device's contribution is proportional to its data distribution, thereby mitigating the impact of data imbalance on model performance. Secondly, privacy preservation is a critical concern in federated learning, especially in wireless communications where sensitive user data is involved. The proposed approach incorporates privacy-enhancing techniques, such as differential privacy, to protect user privacy during the model training process. By adding carefully calibrated noise to the gradient updates, the proposed approach ensures that the privacy of individual devices is preserved without compromising the overall model accuracy. Moreover, the approach considers the heterogeneity of devices in terms of computational capabilities and energy constraints, allowing devices to adaptively adjust the level of privacy preservation to strike a balance between privacy and utility. Thirdly, efficient resource allocation is crucial for federated learning in wireless communications, as devices operate under limited bandwidth, energy, and computational resources. The proposed approach leverages optimization techniques to allocate resources effectively among the participating devices, considering factors such as data quality, network conditions, and device capabilities. By intelligently distributing the computational load, communication bandwidth, and energy consumption, the proposed approach minimizes resource wastage and ensures a fair and efficient FL process in wireless networks. To evaluate the performance of the proposed fair federated learning approach, extensive simulations and experiments will be conducted. The experiments will involve a diverse set of wireless devices, ranging from smartphones to Internet of Things (IoT) devices, operating in various scenarios with different data distributions and network conditions. The evaluation metrics will include model accuracy, fairness measures, privacy preservation, and resource utilization. The expected outcomes of this research include improved model performance, fair allocation of resources, enhanced privacy preservation, and a better understanding of the challenges and solutions for fair federated learning in wireless communications. The proposed approach has the potential to revolutionize wireless communication systems by enabling intelligent applications while addressing fairness concerns and preserving user privacy.Keywords: federated learning, wireless communications, fairness, imbalanced data, privacy preservation, resource allocation, differential privacy, optimization
Procedia PDF Downloads 751629 Technological Ensuring of the Space Reflector Antennas Manufacturing Process from Carbon Fiber Reinforced Plastics
Authors: Pyi Phyo Maung
Abstract:
In the study, the calculations of the permeability coefficient, values of the volume and porosity of a unit cell of a woven fabric before and after deformation based on the geometrical parameters are presented. Two types of carbon woven fabric structures were investigated: standard type, which integrated the filament, has a cross sectional shape of a cylinder and spread tow type, which has a rectangular cross sectional shape. The space antennas reflector, which distinctive feature is the presence of the surface of double curvature, is considered as the object of the research. Modeling of the kinetics of the process of impregnation of the reflector for the two types of carbon fabric’s unit cell structures was performed using software RAM-RTM. This work also investigated the influence of the grid angle between warp and welt of the unit cell on the duration of impregnation process. The results showed that decreasing the angle between warp and welt of the unit cell, the decreasing of the permeability values were occurred. Based on the results of calculation samples of the reflectors, their quality was determined. The comparisons of the theoretical and experimental results have been carried out. Comparison of the two textile structures (standard and spread tow) showed that the standard textiles with circular cross section were impregnated faster than spread tows, which have a rectangular cross section.Keywords: vacuum assistant resin infusion, impregnation time, shear angle, reflector and modeling
Procedia PDF Downloads 2731628 Atmospheric Dispersion Modeling for a Hypothetical Accidental Release from the 3 MW TRIGA Research Reactor of Bangladesh
Authors: G. R. Khan, Sadia Mahjabin, A. S. Mollah, M. R. Mawla
Abstract:
Atmospheric dispersion modeling is significant for any nuclear facilities in the country to predict the impact of radiological doses on environment as well as human health. That is why to ensure safety of workers and population at plant site; Atmospheric dispersion modeling and radiation dose calculations were carried out for a hypothetical accidental release of airborne radionuclide from the 3 MW TRIGA research reactor of Savar, Bangladesh. It is designed with reactor core which consists of 100 fuel elements(1.82245 cm in diameter and 38.1 cm in length), arranged in an annular corefor steady-state and square wave power level of 3 MW (thermal) and for pulsing with maximum power level of 860MWth.The fuel is in the form of a uniform mixture of 20% uranium and 80% zirconium hydride. Total effective doses (TEDs) to the public at various downwind distances were evaluated with a health physics computer code “HotSpot” developed by Lawrence Livermore National Laboratory, USA. The doses were estimated at different Pasquill stability classes (categories A-F) with site-specific averaged meteorological conditions. The meteorological data, such as, average wind speed, frequency distribution of wind direction, etc. have also been analyzed based on the data collected near the reactor site. The results of effective doses obtained remain within the recommended maximum effective dose.Keywords: accidental release, dispersion modeling, total effective dose, TRIGA
Procedia PDF Downloads 1361627 Fatigue Crack Behaviour in a Residual Stress Field at Fillet Welds in Ship Structures
Authors: Anurag Niranjan, Michael Fitzpatrick, Yin Jin Janin, Jazeel Chukkan, Niall Smyth
Abstract:
Fillet welds are used in joining longitudinal stiffeners in ship structures. Welding residual stresses in fillet welds are generally distributed in a non-uniform manner, as shown in previous research the residual stress redistribution occurs under the cyclic loading that is experienced by such joints during service, and the combination of the initial residual stress, local constraints, and loading can alter the stress field in ways that are extremely difficult to predict. As the residual stress influences the crack propagation originating from the toe of the fillet welds, full understanding of the residual stress field and how it evolves is very important for structural integrity calculations. Knowledge of the residual stress redistribution in the presence of a flaw is therefore required for better fatigue life prediction. Moreover, defect assessment procedures such as BS7910 offer very limited guidance for flaw acceptance and the associated residual stress redistribution in the assessment of fillet welds. Therefore the objective of this work is to study a surface-breaking flaw at the weld toe region in a fillet weld under cyclic load, in conjunction with residual stress measurement at pre-defined crack depths. This work will provide details of residual stress redistribution under cyclic load in the presence of a crack. The outcome of this project will inform integrity assessment with respect to the treatment of residual stress in fillet welds. Knowledge of the residual stress evolution for this weld geometry will be greatly beneficial for flaw tolerance assessments (BS 7910, API 591).Keywords: fillet weld, fatigue, residual stress, structure integrity
Procedia PDF Downloads 1421626 Optimum Design of Hybrid (Metal-Composite) Mechanical Power Transmission System under Uncertainty by Convex Modelling
Authors: Sfiso Radebe
Abstract:
The design models dealing with flawless composite structures are in abundance, where the mechanical properties of composite structures are assumed to be known a priori. However, if the worst case scenario is assumed, where material defects combined with processing anomalies in composite structures are expected, a different solution is attained. Furthermore, if the system being designed combines in series hybrid elements, individually affected by material constant variations, it implies that a different approach needs to be taken. In the body of literature, there is a compendium of research that investigates different modes of failure affecting hybrid metal-composite structures. It covers areas pertaining to the failure of the hybrid joints, structural deformation, transverse displacement, the suppression of vibration and noise. In the present study a system employing a combination of two or more hybrid power transmitting elements will be explored for the least favourable dynamic loads as well as weight minimization, subject to uncertain material properties. Elastic constants are assumed to be uncertain-but-bounded quantities varying slightly around their nominal values where the solution is determined using convex models of uncertainty. Convex analysis of the problem leads to the computation of the least favourable solution and ultimately to a robust design. This approach contrasts with a deterministic analysis where the average values of elastic constants are employed in the calculations, neglecting the variations in the material properties.Keywords: convex modelling, hybrid, metal-composite, robust design
Procedia PDF Downloads 2111625 Nonlinear Modelling of Sloshing Waves and Solitary Waves in Shallow Basins
Authors: Mohammad R. Jalali, Mohammad M. Jalali
Abstract:
The earliest theories of sloshing waves and solitary waves based on potential theory idealisations and irrotational flow have been extended to be applicable to more realistic domains. To this end, the computational fluid dynamics (CFD) methods are widely used. Three-dimensional CFD methods such as Navier-Stokes solvers with volume of fluid treatment of the free surface and Navier-Stokes solvers with mappings of the free surface inherently impose high computational expense; therefore, considerable effort has gone into developing depth-averaged approaches. Examples of such approaches include Green–Naghdi (GN) equations. In Cartesian system, GN velocity profile depends on horizontal directions, x-direction and y-direction. The effect of vertical direction (z-direction) is also taken into consideration by applying weighting function in approximation. GN theory considers the effect of vertical acceleration and the consequent non-hydrostatic pressure. Moreover, in GN theory, the flow is rotational. The present study illustrates the application of GN equations to propagation of sloshing waves and solitary waves. For this purpose, GN equations solver is verified for the benchmark tests of Gaussian hump sloshing and solitary wave propagation in shallow basins. Analysis of the free surface sloshing of even harmonic components of an initial Gaussian hump demonstrates that the GN model gives predictions in satisfactory agreement with the linear analytical solutions. Discrepancies between the GN predictions and the linear analytical solutions arise from the effect of wave nonlinearities arising from the wave amplitude itself and wave-wave interactions. Numerically predicted solitary wave propagation indicates that the GN model produces simulations in good agreement with the analytical solution of the linearised wave theory. Comparison between the GN model numerical prediction and the result from perturbation analysis confirms that nonlinear interaction between solitary wave and a solid wall is satisfactorilly modelled. Moreover, solitary wave propagation at an angle to the x-axis and the interaction of solitary waves with each other are conducted to validate the developed model.Keywords: Green–Naghdi equations, nonlinearity, numerical prediction, sloshing waves, solitary waves
Procedia PDF Downloads 2851624 The Confiscation of Ill-Gotten Gains in Pollution: The Taiwan Experience and the Interaction between Economic Analysis of Law and Environmental Economics Perspectives
Authors: Chiang-Lead Woo
Abstract:
In reply to serious environmental problems, the Taiwan government quickly adjusted some articles to suit the needs of environmental protection recently, such as the amendment to article 190-1 of the Taiwan Criminal Code. The transfer of legislation comes as an improvement which canceled the limitation of ‘endangering public safety’. At the same time, the article 190-1 goes from accumulative concrete offense to abstract crime of danger. Thus, the public looks forward to whether environmental crime following the imposition of fines or penalties works efficiently in anti-pollution by the deterrent effects. However, according to the addition to article 38-2 of the Taiwan Criminal Code, the confiscation system seems controversial legislation to restrain ill-gotten gains. Most prior studies focused on comparisons with the Administrative Penalty Law and the Criminal Code in environmental issue in Taiwan; recently, more and more studies emphasize calculations on ill-gotten gains. Hence, this paper try to examine the deterrent effect in environmental crime by economic analysis of law and environmental economics perspective. This analysis shows that only if there is an extremely high probability (equal to 100 percent) of an environmental crime case being prosecuted criminally by Taiwan Environmental Protection Agency, the deterrent effects will work. Therefore, this paper suggests deliberating the confiscation system from supplementing the System of Environmental and Economic Accounting, reasonable deterrent fines, input management, real-time system for detection of pollution, and whistleblower system, environmental education, and modernization of law.Keywords: confiscation, ecosystem services, environmental crime, ill-gotten gains, the deterrent effect, the system of environmental and economic accounting
Procedia PDF Downloads 1691623 Improving Trainings of Mineral Processing Operators Through Gamification and Modelling and Simulation
Authors: Pedro A. S. Bergamo, Emilia S. Streng, Jan Rosenkranz, Yousef Ghorbani
Abstract:
Within the often-hazardous mineral industry, simulation training has speedily gained appreciation as an important method of increasing site safety and productivity through enhanced operator skill and knowledge. Performance calculations related to froth flotation, one of the most important concentration methods, is probably the hardest topic taught during the training of plant operators. Currently, most training teach those skills by traditional methods like slide presentations and hand-written exercises with a heavy focus on memorization. To optimize certain aspects of these pieces of training, we developed “MinFloat”, which teaches the operation formulas of the froth flotation process with the help of gamification. The simulation core based on a first-principles flotation model was implemented in Unity3D and an instructor tutoring system was developed, which presents didactic content and reviews the selected answers. The game was tested by 25 professionals with extensive experience in the mining industry based on a questionnaire formulated for training evaluations. According to their feedback, the game scored well in terms of quality, didactic efficacy and inspiring character. The feedback of the testers on the main target audience and the outlook of the mentioned solution is presented. This paper aims to provide technical background on the construction of educational games for the mining industry besides showing how feedback from experts can more efficiently be gathered thanks to new technologies such as online forms.Keywords: training evaluation, simulation based training, modelling, and simulation, froth flotation
Procedia PDF Downloads 1131622 PM Air Quality of Windsor Regional Scale Transport’s Impact and Climate Change
Authors: Moustafa Osman Mohammed
Abstract:
This paper is mapping air quality model to engineering the industrial system that ultimately utilized in extensive range of energy systems, distribution resources, and end-user technologies. The model is determining long-range transport patterns contribution as area source can either traced from 48 hrs backward trajectory model or remotely described from background measurements data in those days. The trajectory model will be run within stable conditions and quite constant parameters of the atmospheric pressure at the most time of the year. Air parcel trajectory is necessary for estimating the long-range transport of pollutants and other chemical species. It provides a better understanding of airflow patterns. Since a large amount of meteorological data and a great number of calculations are required to drive trajectory, it will be very useful to apply HYPSLIT model to locate areas and boundaries influence air quality at regional location of Windsor. 2–days backward trajectories model at high and low concentration measurements below and upward the benchmark which was areas influence air quality measurement levels. The benchmark level will be considered as 30 (μg/m3) as the moderate level for Ontario region. Thereby, air quality model is incorporating a midpoint concept between biotic and abiotic components to broaden the scope of quantification impact. The later outcomes’ theories of environmental obligation suggest either a recommendation or a decision of what is a legislative should be achieved in mitigation measures of air emission impact ultimately.Keywords: air quality, management systems, environmental impact assessment, industrial ecology, climate change
Procedia PDF Downloads 2471621 A Multilevel Approach for Stroke Prediction Combining Risk Factors and Retinal Images
Authors: Jeena R. S., Sukesh Kumar A.
Abstract:
Stroke is one of the major reasons of adult disability and morbidity in many of the developing countries like India. Early diagnosis of stroke is essential for timely prevention and cure. Various conventional statistical methods and computational intelligent models have been developed for predicting the risk and outcome of stroke. This research work focuses on a multilevel approach for predicting the occurrence of stroke based on various risk factors and invasive techniques like retinal imaging. This risk prediction model can aid in clinical decision making and help patients to have an improved and reliable risk prediction.Keywords: prediction, retinal imaging, risk factors, stroke
Procedia PDF Downloads 3031620 Comparison of Bone Mineral Density of Lumbar Spines between High Level Cyclists and Sedentary
Authors: Mohammad Shabani
Abstract:
The physical activities depending on the nature of the mechanical stresses they induce on bone sometimes have brought about different results. The purpose of this study was to compare bone mineral density (BMD) of the lumbar spine between the high-level cyclists and sedentary. Materials and Methods: In the present study, 73 cyclists senior (age: 25.81 ± 4.35 years; height: 179.66 ± 6.31 cm; weight: 71.55 ± 6.31 kg) and 32 sedentary subjects (age: 28.28 ± 4.52 years; height: 176.56 ± 6.2 cm; weight: 74.47 ± 8.35 kg) participated voluntarily. All cyclists belonged to the different teams from the International Cycling Union and they trained competitively for 10 years. BMD of the lumbar spine of the subjects was measured using DXA X-ray (Lunar). Descriptive statistics calculations were performed using computer software data processing (Statview 5, SAS Institute Inc. USA). The comparison of two independent distributions (BMD high level cyclists and sedentary) was made by the Student T Test standard. Probability 0.05 (p≤0 / 05) was adopted as significance. Results: The result of this study showed that the BMD values of the lumbar spine of sedentary subjects were significantly higher for all measured segments. Conclusion and Discussion: Cycling is firstly a common sport and on the other hand endurance sport. It is now accepted that weight bearing exercises have an osteogenic effect compared to non-weight bearing exercises. Thus, endurance sports such as cycling, compared to the activities imposing intense force in short time, seem not to really be osteogenic. Therefore, it can be concluded that cycling provides low stimulates osteogenic because of specific biomechanical forces of the sport and its lack of impact.Keywords: BMD, lumbar spine, high level cyclist, cycling
Procedia PDF Downloads 2681619 Cyclostationary Analysis of Polytime Coded Signals for LPI Radars
Authors: Metuku Shyamsunder, Kakarla Subbarao, P. Prasanna
Abstract:
In radars, an electromagnetic waveform is sent, and an echo of the same signal is received by the receiver. From this received signal, by extracting various parameters such as round trip delay, Doppler frequency it is possible to find distance, speed, altitude, etc. However, nowadays as the technology increases, intruders are intercepting transmitted signal as it reaches them, and they will be extracting the characteristics and trying to modify them. So there is a need to develop a system whose signal cannot be identified by no cooperative intercept receivers. That is why LPI radars came into existence. In this paper, a brief discussion on LPI radar and its modulation (polytime code (PT1)), detection (cyclostationary (DFSM & FAM) techniques such as DFSM, FAM are presented and compared with respect to computational complexity.Keywords: LPI radar, polytime codes, cyclostationary DFSM, FAM
Procedia PDF Downloads 4761618 Numerical Analysis of Fluid Mixing in Three Split and Recombine Micromixers at Different Inlets Volume Ratio
Authors: Vladimir Viktorov, M. Readul Mahmud, Carmen Visconte
Abstract:
Numerical simulation were carried out to study the mixing of miscible liquid at different inlets volume ratio (1 to 3) within two existing mixers namely Chain, Tear-drop and one new “C-H” mixer. The new passive C-H micromixer is developed based on split and recombine principles, combining the operation concepts of known Chain mixer and H mixer. The mixing performances of the three micromixers were predicted by a preliminary numerical analysis of the flow patterns inside the channel in terms of the segregation or distribution of path lines. Afterward, the efficiency and the pressure drop were investigated numerically, taking into account species transport. All numerical calculations were computed at a wide range of Reynolds number from 1 to 100. Among the presented three micromixers, tear-drop provides fairly good efficiency except in the middle range of Re numbers but has high-pressure drop. In addition, inlets flow ratio has a significant influence on efficiency, especially at the Re number range of 10 to 50, Moreover maximum increase of efficiency is almost 10% when inlets flow ratio is increased by 1. Chain mixer presents relatively low mixing efficiency at low and middle range of Re numbers (5≤Re≤50) but has reasonable pressure drop. Furthermore, Chain mixer shows almost no dependence on inlets flow ratio. Whereas, C-H mixer poses excellent mixing efficiency (more than 93%) for all range of Re numbers and causes the lowest pressure drop, On top of that efficiency has slight dependency on inlets flow ratio. In addition, C-H mixer shows respectively about three and two times lower pressure drop than Tear-drop and Chain mixers.Keywords: CFD, micromixing, passive micromixer, SAR
Procedia PDF Downloads 4821617 Least Support Orthogonal Matching Pursuit (LS-OMP) Recovery Method for Invisible Watermarking Image
Authors: Israa Sh. Tawfic, Sema Koc Kayhan
Abstract:
In this paper, first, we propose least support orthogonal matching pursuit (LS-OMP) algorithm to improve the performance, of the OMP (orthogonal matching pursuit) algorithm. LS-OMP algorithm adaptively chooses optimum L (least part of support), at each iteration. This modification helps to reduce the computational complexity significantly and performs better than OMP algorithm. Second, we give the procedure for the invisible image watermarking in the presence of compressive sampling. The image reconstruction based on a set of watermarked measurements is performed using LS-OMP.Keywords: compressed sensing, orthogonal matching pursuit, restricted isometry property, signal reconstruction, least support orthogonal matching pursuit, watermark
Procedia PDF Downloads 3381616 Methane Oxidation to Methanol Catalyzed by Copper Oxide Clusters Supported in MIL-53(Al): A Density Functional Theory Study
Authors: Chun-Wei Yeh, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
Reducing greenhouse gases or converting them into fuels and chemicals with added value is vital for the environment. Given the enhanced techniques for hydrocarbon extraction in this context, the catalytic conversion of methane to methanol is particularly intriguing for future applications as vehicle fuels and/or bulk chemicals. Metal-organic frameworks (MOFs) have received much attention recently for the oxidation of methane to methanol. In addition, biomimetic material, particulate methane monooxygenase (pMMO), has been reported to convert methane using copper oxide clusters as active sites. Inspired by these, in this study, we considered the well-known MIL-53(Al) MOF as support for copper oxide clusters (Cu2Ox, Cu3Ox) to investigate their reactivity towards methane oxidation using Density Functional Theory (DFT) calculations. The copper oxide clusters (Cu2O2, Cu3O2) are modeled by oxidizing copper clusters (Cu2, Cu3) with two oxidizers, O2 and N2O. The initial C-H bond activation barriers on Cu2O2/MIL-53(Al) and Cu3O2/MIL-53(Al) catalysts are 0.70 eV and 0.64 eV, respectively, and are the rate-determining steps in the overall methane conversion to methanol reactions. The desorption energy of the methanol over the Cu2O/MIL-53(Al) and Cu3O/MIL-53(Al) is 0.71eV and 0.75 eV, respectively. Furthermore, to explore the prospect of catalyst reusability, we considered the different oxidants and proposed the different reaction pathways for completing the reaction cycle and regenerating the active copper oxide clusters. To know the reason for the difference between bi-copper and tri-cooper systems, we also did an electronic analysis. Finally, we calculate the Microkinetic Simulation. The result shows that the reaction can happen at room temperature.Keywords: DFT study, copper oxide cluster, MOFs, methane conversion
Procedia PDF Downloads 791615 Probabilistic Modeling Laser Transmitter
Authors: H. S. Kang
Abstract:
Coupled electrical and optical model for conversion of electrical energy into coherent optical energy for transmitter-receiver link by solid state device is presented. Probability distribution for travelling laser beam switching time intervals and the number of switchings in the time interval is obtained. Selector function mapping is employed to regulate optical data transmission speed. It is established that regulated laser transmission from PhotoActive Laser transmitter follows principal of invariance. This considerably simplifies design of PhotoActive Laser Transmission networks.Keywords: computational mathematics, finite difference Markov chain methods, sequence spaces, singularly perturbed differential equations
Procedia PDF Downloads 431