Search results for: blue color detection
3645 Determination of Physicochemical Properties, Bioaccessibility of Phenolics and Antioxidant Capacity of Mineral Enriched Linden Herbal Tea Beverage
Authors: Senem Suna, Canan Ece Tamer, Ömer Utku Çopur
Abstract:
In this research, dried linden (Tilia argentea) leaves and blossoms were used as a raw material for mineral enriched herbal tea beverage production. For this aim, %1 dried linden was infused with boiling water (100 °C) for 5 minutes. After cooling, sucrose, citric acid, ascorbic acid, natural lemon flavor and natural mineral water were added. Beverage samples were plate filtered, filled into 200-mL glass bottles, capped then pasteurized at 98 °C for 15 minutes. Water soluble dry matter, titratable acidity, ascorbic acid, pH, minerals (Fe, Ca, Mg, K, Na), color (L*, a*, b*), turbidity, bioaccessible phenolics and antioxidant capacity were analyzed. Water soluble dry matter, titratable acidity, and ascorbic were determined as 7.66±0.28 g/100 g, 0.13±0.00 g/100 mL, and 19.42±0.62 mg/100 mL, respectively. pH was measured as 3.69. Fe, Ca, Mg, K and Na contents of the beverage were determined as 0.12±0.00, 115.48±0.05, 34.72±0.14, 48.67±0.43 and 85.72±1.01 mg/L, respectively. Color was measured as 13.63±0.05, -4.33±0.05, and 3.06±0.05 for L*, a*, and b* values. Turbidity was determined as 0.69±0.07 NTU. Bioaccessible phenolics were determined as 312.82±5.91 mg GAE/100 mL. Antioxidant capacities of chemical (MetOH:H2O:HCl) and physiological extracts (in vitro digestive enzymatic extraction) with DPPH (27.59±0.53 and 0.17±0.02 μmol trolox/mL), FRAP (21.01±0.97 and 13.27±0.19 μmol trolox/mL) and CUPRAC (44.71±9.42 and 2.80±0.64 μmol trolox/mL) methods were also evaluated. As a result, enrichment with natural mineral water was proposed for the development of functional and nutritional values together with a good potential for commercialization.Keywords: linden, herbal tea beverage, bioaccessibility, antioxidant capacity
Procedia PDF Downloads 1743644 EEG Diagnosis Based on Phase Space with Wavelet Transforms for Epilepsy Detection
Authors: Mohmmad A. Obeidat, Amjed Al Fahoum, Ayman M. Mansour
Abstract:
The recognition of an abnormal activity of the brain functionality is a vital issue. To determine the type of the abnormal activity either a brain image or brain signal are usually considered. Imaging localizes the defect within the brain area and relates this area with somebody functionalities. However, some functions may be disturbed without affecting the brain as in epilepsy. In this case, imaging may not provide the symptoms of the problem. A cheaper yet efficient approach that can be utilized to detect abnormal activity is the measurement and analysis of the electroencephalogram (EEG) signals. The main goal of this work is to come up with a new method to facilitate the classification of the abnormal and disorder activities within the brain directly using EEG signal processing, which makes it possible to be applied in an on-line monitoring system.Keywords: EEG, wavelet, epilepsy, detection
Procedia PDF Downloads 5383643 A Survey on Various Technique of Modified TORA over MANET
Authors: Shreyansh Adesara, Sneha Pandiya
Abstract:
The mobile ad-hoc network (MANET) is an important and open area research for the examination and determination of the performance evolution. Temporary ordered routing algorithm (TORA) is adaptable and distributed MANET routing algorithm which is totally dependent on internet MANET Encapsulation protocol (IMEP) for the detection of the link and sensing of the link. If IMEP detect the wrong link failure then the network suffer from congestion and unnecessary route maintenance. Thus, the improvement in link detection method of TORA is introduced by various methods on IMEP by different perspective from different person. There are also different reactive routing protocols like AODV, TORA and DSR has been compared for the knowledge of the routing scenario for different parameter and using different model.Keywords: IMEP, mobile ad-hoc network, protocol, TORA
Procedia PDF Downloads 4413642 Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy
Authors: May Fadheel Estephan, Richard Perks
Abstract:
Context: Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. Research Aim: The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a noninvasive optical technique that can be used to characterize the size and concentration of particles in a solution. Methodology: An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2, 0.8, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. Findings: The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. Theoretical Importance: The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a noninvasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. Data Collection: The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. Analysis Procedures: The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. Question Addressed: The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. Conclusion: The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a noninvasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection.Keywords: elastic light scattering spectroscopy, polystyrene spheres in suspension, optical probe, fibre optics
Procedia PDF Downloads 823641 Supernatural Beliefs Impact Pattern Perception
Authors: Silvia Boschetti, Jakub Binter, Robin Kopecký, Lenka PříPlatová, Jaroslav Flegr
Abstract:
A strict dichotomy was present between religion and science, but recently, cognitive science focusses on the impact of supernatural beliefs on cognitive processes such as pattern recognition. It has been hypothesized that cognitive and perceptual processes have been under evolutionary pressures that ensured amplified perception of patterns, especially when in stressful and harsh conditions. The pattern detection in religious and non-religious individuals after induction of negative, anxious mood shall constitute a cornerstone of the general role of anxiety, cognitive bias, leading towards or against the by-product hypothesis, one of the main theories on the evolutionary studies of religion. The apophenia (tendencies to perceive connection and meaning on unrelated events) and perception of visual patterns (or pateidolia) are of utmost interest. To capture the impact of culture and upbringing, a comparative study of two European countries, the Czech Republic (low organized religion participation, high esoteric belief) and Italy (high organized religion participation, low esoteric belief), are currently in the data collection phase. Outcomes will be presented at the conference. A battery of standardized questionnaires followed by pattern recognition tasks (the patterns involve color, shape, and are of artificial and natural origin) using an experimental method involving the conditioning of (controlled, laboratory-induced) stress is taking place. We hypothesize to find a difference between organized religious belief and personal (esoteric) belief that will be alike in both of the cultural environments.Keywords: culture, esoteric belief, pattern perception, religiosity
Procedia PDF Downloads 1863640 Behavioral Effects of Oxidant and Reduced Chemorepellent on Mutant and Wild-Type Tetrahymena thermophila
Authors: Ananya Govindarajan
Abstract:
Tetrahymena thermophila is a single-cell, eukaryotic organism that belongs to the Protozoa Kingdom. Tetrahymena thermophila is often used in signal transduction pathway studies because of its ability to model sensory input and the effects of environmental conditions such as chemicals and temperature. The recently discovered G37 chemorepellent receptor showed increased responsiveness to all chemorepellents. Investigating the mutant G37 Tetrahymena gene in various test solutions, including ferric chloride, ferrous sulfate, hydrogen peroxide, tetrazolium blue, potassium chloride, and dithiothreitol were performed to determine the role of oxidants and reducing agents with the mutant and wild-type cells (CU427) to assess the role of the receptor. Behavioral assays and recordings processed by ImageJ indicated that ferric chloride, hydrogen peroxide, and tetrazolium blue yielded little to no chemorepellent responses from G37 cells (<20% ARs). CU427 cells were over-responsive based on the mean percent of cells (>50% ARs). Reducing agents elicited chemorepellent responses from both G37 and CU427, in addition to potassium chloride. Cell responses were classified as over-responsive (>50% ARs). Dithiothreitol yielded unexpected results as G37 (37.0% ARs) and CU427 (38.1% ARs) had relatively similar responses and were only responsive and not over-responsive to the reducing agent test chemical solution. Ultimately, this indicates that the G37 receptor is more interactive with molecules that are reducing agents or non-oxidant compounds; G37 may be unable to sense and respond to oxidants effectively, further elucidating the pathways of the G37 strain and nature of this receptor. Results also indicate that the CSF most likely contained an oxidant, like ferric chloride. This research can be further applied to neuronal influences and how specific compounds may affect human neurons individually and their excitability as the responses model action potentials and membrane potential.Keywords: tetrahymena thermophila, signal transduction, chemosensory, oxidant, reducing agent
Procedia PDF Downloads 1323639 The Use of Remotely Sensed Data to Model Habitat Selections of Pileated Woodpeckers (Dryocopus pileatus) in Fragmented Landscapes
Authors: Ruijia Hu, Susanna T.Y. Tong
Abstract:
Light detection and ranging (LiDAR) and four-channel red, green, blue, and near-infrared (RGBI) remote sensed imageries allow an accurate quantification and contiguous measurement of vegetation characteristics and forest structures. This information facilitates the generation of habitat structure variables for forest species distribution modelling. However, applications of remote sensing data, especially the combination of structural and spectral information, to support evidence-based decisions in forest managements and conservation practices at local scale are not widely adopted. In this study, we examined the habitat requirements of pileated woodpecker (Dryocopus pileatus) (PW) in Hamilton County, Ohio, using ecologically relevant forest structural and vegetation characteristics derived from LiDAR and RGBI data. We hypothesized that the habitat of PW is shaped by vegetation characteristics that are directly associated with the availability of food, hiding and nesting resources, the spatial arrangement of habitat patches within home range, as well as proximity to water sources. We used 186 PW presence or absence locations to model their presence and absence in generalized additive model (GAM) at two scales, representing foraging and home range size, respectively. The results confirm PW’s preference for tall and large mature stands with structural complexity, typical of late-successional or old-growth forests. Besides, the crown size of dead trees shows a positive relationship with PW occurrence, therefore indicating the importance of declining living trees or early-stage dead trees within PW home range. These locations are preferred by PW for nest cavity excavation as it attempts to balance the ease of excavation and tree security. In addition, we found that PW can adjust its travel distance to the nearest water resource, suggesting that habitat fragmentation can have certain impacts on PW. Based on our findings, we recommend that forest managers should use different priorities to manage nesting, roosting, and feeding habitats. Particularly, when devising forest management and hazard tree removal plans, one needs to consider retaining enough cavity trees within high-quality PW habitat. By mapping PW habitat suitability for the study area, we highlight the importance of riparian corridor in facilitating PW to adjust to the fragmented urban landscape. Indeed, habitat improvement for PW in the study area could be achieved by conserving riparian corridors and promoting riparian forest succession along major rivers in Hamilton County.Keywords: deadwood detection, generalized additive model, individual tree crown delineation, LiDAR, pileated woodpecker, RGBI aerial imagery, species distribution models
Procedia PDF Downloads 523638 Molecular Detection of Acute Virus Infection in Children Hospitalized with Diarrhea in North India during 2014-2016
Authors: Ali Ilter Akdag, Pratima Ray
Abstract:
Background:This acute gastroenteritis viruses such as rotavirus, astrovirus, and adenovirus are mainly responsible for diarrhea in children below < 5 years old. Molecular detection of these viruses is crucially important to the understand development of the effective cure. This study aimed to determine the prevalence of common these viruses in children < 5 years old presented with diarrhea from Lala Lajpat Rai Memorial Medical College (LLRM) centre (Meerut) North India, India Methods: Total 312 fecal samples were collected from diarrheal children duration 3 years: in year 2014 (n = 118), 2015 (n = 128) and 2016 (n = 66) ,< 5 years of age who presented with acute diarrhea at the Lala Lajpat Rai Memorial Medical College (LLRM) centre(Meerut) North India, India. All samples were the first detection by EIA/RT-PCR for rotaviruses, adenovirus and astrovirus. Results: In 312 samples from children with acute diarrhea in sample viral agent was found, rotavirus A was the most frequent virus identified (57 cases; 18.2%), followed by Astrovirus in 28 cases (8.9%), adenovirus in 21 cases (6.7%). Mixed infections were found in 14 cases, all of which presented with acute diarrhea (14/312; 4.48%). Conclusions: These viruses are a major cause of diarrhea in children <5 years old in North India. Rotavirus A is the most common etiological agent, follow by astrovirus. This surveillance is important to vaccine development of the entire population. There is variation detection of virus year wise due to differences in the season of sampling, method of sampling, hygiene condition, socioeconomic level of the entire people, enrolment criteria, and virus detection methods. It was found Astrovirus higher then Rotavirus in 2015, but overall three years study Rotavirus A is mainly responsible for causing severe diarrhea in children <5 years old in North India. It emphasizes the required for cost-effective diagnostic assays for Rotaviruses which would help to determine the disease burden.Keywords: adenovirus, Astrovirus, hospitalized children, Rotavirus
Procedia PDF Downloads 1403637 The Effect of Technology on Skin Development and Progress
Authors: Haidy Weliam Megaly Gouda
Abstract:
Dermatology is often a neglected specialty in low-resource settings despite the high morbidity associated with skin disease. This becomes even more significant when associated with HIV infection, as dermatological conditions are more common and aggressive in HIV-positive patients. African countries have the highest HIV infection rates, and skin conditions are frequently misdiagnosed and mismanaged because of a lack of dermatological training and educational material. The frequent lack of diagnostic tests in the African setting renders basic clinical skills all the more vital. This project aimed to improve the diagnosis and treatment of skin disease in the HIV population in a district hospital in Malawi. A basic dermatological clinical tool was developed and produced in collaboration with local staff and based on available literature and data collected from clinics. The aim was to improve diagnostic accuracy and provide guidance for the treatment of skin disease in HIV-positive patients. A literature search within Embassy, Medline and Google Scholar was performed and supplemented through data obtained from attending 5 Antiretroviral clinics. From the literature, conditions were selected for inclusion in the resource if they were described as specific, more prevalent, or extensive in the HIV population or have more adverse outcomes if they develop in HIV patients. Resource-appropriate treatment options were decided using Malawian Ministry of Health guidelines and textbooks specific to African dermatology. After the collection of data and discussion with local clinical and pharmacy staff, a list of 15 skin conditions was included, and a booklet was created using the simple layout of a picture, a diagnostic description of the disease and treatment options. Clinical photographs were collected from local clinics (with full consent of the patient) or from the book ‘Common Skin Diseases in Africa’ (permission granted if fully acknowledged and used in a not-for-profit capacity). This tool was evaluated by the local staff alongside an educational teaching session on skin disease. This project aimed to reduce uncertainty in diagnosis and provide guidance for appropriate treatment in HIV patients by gathering information into one practical and manageable resource. To further this project, we hope to review the effectiveness of the tool in practice.Keywords: prevalence and pattern of skin diseases, impact on quality of life, rural Nepal, interventions, quality switched ruby laser, skin color river blindness, clinical signs, circularity index, grey level run length matrix, grey level co-occurrence matrix, local binary pattern, object detection, ring detection, shape identification
Procedia PDF Downloads 623636 Heavy Metal Contamination in Soils: Detection and Assessment Using Machine Learning Algorithms Based on Hyperspectral Images
Authors: Reem El Chakik
Abstract:
The levels of heavy metals in agricultural lands in Lebanon have been witnessing a noticeable increase in the past few years, due to increased anthropogenic pollution sources. Heavy metals pose a serious threat to the environment for being non-biodegradable and persistent, accumulating thus to dangerous levels in the soil. Besides the traditional laboratory and chemical analysis methods, Hyperspectral Imaging (HSI) has proven its efficiency in the rapid detection of HMs contamination. In Lebanon, a continuous environmental monitoring, including the monitoring of levels of HMs in agricultural soils, is lacking. This is due in part to the high cost of analysis. Hence, this proposed research aims at defining the current national status of HMs contamination in agricultural soil, and to evaluate the effectiveness of using HSI in the detection of HM in contaminated agricultural fields. To achieve the two main objectives of this study, soil samples were collected from different areas throughout the country and were analyzed for HMs using Atomic Absorption Spectrophotometry (AAS). The results were compared to those obtained from the HSI technique that was applied using Hyspex SWIR-384 camera. The results showed that the Lebanese agricultural soils contain high contamination levels of Zn, and that the more clayey the soil is, the lower reflectance it has.Keywords: agricultural soils in Lebanon, atomic absorption spectrophotometer, hyperspectral imaging., heavy metals contamination
Procedia PDF Downloads 1123635 Extraction of Phycocyanin from Spirulina platensis by Isoelectric Point Precipitation and Salting Out for Scale Up Processes
Authors: Velasco-Rendón María Del Carmen, Cuéllar-Bermúdez Sara Paulina, Parra-Saldívar Roberto
Abstract:
Phycocyanin is a blue pigment protein with fluorescent activity produced by cyanobacteria. It has been recently studied to determine its anticancer, antioxidant and antiinflamatory potential. Since 2014 it was approved as a Generally Recognized As Safe (GRAS) proteic pigment for the food industry. Therefore, phycocyanin shows potential for the food, nutraceutical, pharmaceutical and diagnostics industry. Conventional phycocyanin extraction includes buffer solutions and ammonium sulphate followed by chromatography or ATPS for protein separation. Therefore, further purification steps are time-requiring, energy intensive and not suitable for scale-up processing. This work presents an alternative to conventional methods that also allows large scale application with commercially available equipment. The extraction was performed by exposing the dry biomass to mechanical cavitation and salting out with NaCl to use an edible reagent. Also, isoelectric point precipitation was used by addition of HCl and neutralization with NaOH. The results were measured and compared in phycocyanin concentration, purity and extraction yield. Results showed that the best extraction condition was the extraction by salting out with 0.20 M NaCl after 30 minutes cavitation, with a concentration in the supernatant of 2.22 mg/ml, a purity of 3.28 and recovery from crude extract of 81.27%. Mechanical cavitation presumably increased the solvent-biomass contact, making the crude extract visibly dark blue after centrifugation. Compared to other systems, our process has less purification steps, similar concentrations in the phycocyanin-rich fraction and higher purity. The contaminants present in our process edible NaCl or low pHs that can be neutralized. It also can be adapted to a semi-continuous process with commercially available equipment. This characteristics make this process an appealing alternative for phycocyanin extraction as a pigment for the food industry.Keywords: extraction, phycocyanin, precipitation, scale-up
Procedia PDF Downloads 4383634 Early Detection of Neuropathy in Leprosy-Comparing Clinical Tests with Nerve Conduction Study
Authors: Suchana Marahatta, Sabina Bhattarai, Bishnu Hari Paudel, Dilip Thakur
Abstract:
Background: Every year thousands of patients develop nerve damage and disabilities as a result of leprosy which can be prevented by early detection and treatment. So, early detection and treatment of nerve function impairment is of paramount importance in leprosy. Objectives: To assess the electrophysiological pattern of the peripheral nerves in leprosy patients and to compare it with clinical assessment tools. Materials and Methods: In this comparative cross-sectional study, 74 newly diagnosed leprosy patients without reaction were enrolled. They underwent thorough evaluation for peripheral nerve function impairment using clinical tests [i.e. nerve palpation (NP), monofilament (MF) testing, voluntary muscle testing (VMT)] and nerve conduction study (NCS). Clinical findings were compared with that of NCS using SPSS version 11.5. Results: NCS was impaired in 43.24% of leprosy patient at the baseline. Among them, sensory NCS was impaired in more patients (32.4%) in comparison to motor NCS (20.3%). NP, MF, and VMT were impaired in 58.1%, 25.7%, and 9.4% of the patients, respectively. Maximum concordance of monofilament testing and sensory NCS was found for sural nerve (14.7%). Likewise, the concordance of motor NP and motor NCS was the maximum for ulnar nerve (14.9%). When individual parameters of the NCS were considered, amplitude was found to be the most frequently affected parameter for both sensory and motor NCS. It was impaired in 100% of cases with abnormal NCS findings. Conclusion: Since there was no acceptable concordance between NCS findings and clinical findings, we should consider NCS whenever feasible for early detection of neuropathy in leprosy. The amplitude of both sensory nerve action potential (SNAP) and compound nerve action potential (CAMP) could be important determinants of the abnormal NCS if supported by further studies.Keywords: leprosy, nerve function impairment, neuropathy, nerve conduction study
Procedia PDF Downloads 3193633 Algorithms for Fast Computation of Pan Matrix Profiles of Time Series Under Unnormalized Euclidean Distances
Authors: Jing Zhang, Daniel Nikovski
Abstract:
We propose an approximation algorithm called LINKUMP to compute the Pan Matrix Profile (PMP) under the unnormalized l∞ distance (useful for value-based similarity search) using double-ended queue and linear interpolation. The algorithm has comparable time/space complexities as the state-of-the-art algorithm for typical PMP computation under the normalized l₂ distance (useful for shape-based similarity search). We validate its efficiency and effectiveness through extensive numerical experiments and a real-world anomaly detection application.Keywords: pan matrix profile, unnormalized euclidean distance, double-ended queue, discord discovery, anomaly detection
Procedia PDF Downloads 2473632 Application of Federated Learning in the Health Care Sector for Malware Detection and Mitigation Using Software-Defined Networking Approach
Authors: A. Dinelka Panagoda, Bathiya Bandara, Chamod Wijetunga, Chathura Malinda, Lakmal Rupasinghe, Chethana Liyanapathirana
Abstract:
This research takes us forward with the concepts of Federated Learning and Software-Defined Networking (SDN) to introduce an efficient malware detection technique and provide a mitigation mechanism to give birth to a resilient and automated healthcare sector network system by also adding the feature of extended privacy preservation. Due to the daily transformation of new malware attacks on hospital Integrated Clinical Environment (ICEs), the healthcare industry is at an undefinable peak of never knowing its continuity direction. The state of blindness by the array of indispensable opportunities that new medical device inventions and their connected coordination offer daily, a factor that should be focused driven is not yet entirely understood by most healthcare operators and patients. This solution has the involvement of four clients in the form of hospital networks to build up the federated learning experimentation architectural structure with different geographical participation to reach the most reasonable accuracy rate with privacy preservation. While the logistic regression with cross-entropy conveys the detection, SDN comes in handy in the second half of the research to stack up the initial development phases of the system with malware mitigation based on policy implementation. The overall evaluation sums up with a system that proves the accuracy with the added privacy. It is no longer needed to continue with traditional centralized systems that offer almost everything but not privacy.Keywords: software-defined network, federated learning, privacy, integrated clinical environment, decentralized learning, malware detection, malware mitigation
Procedia PDF Downloads 1873631 A Comparative Study of Deep Learning Methods for COVID-19 Detection
Authors: Aishrith Rao
Abstract:
COVID 19 is a pandemic which has resulted in thousands of deaths around the world and a huge impact on the global economy. Testing is a huge issue as the test kits have limited availability and are expensive to manufacture. Using deep learning methods on radiology images in the detection of the coronavirus as these images contain information about the spread of the virus in the lungs is extremely economical and time-saving as it can be used in areas with a lack of testing facilities. This paper focuses on binary classification and multi-class classification of COVID 19 and other diseases such as pneumonia, tuberculosis, etc. Different deep learning methods such as VGG-19, COVID-Net, ResNET+ SVM, Deep CNN, DarkCovidnet, etc., have been used, and their accuracy has been compared using the Chest X-Ray dataset.Keywords: deep learning, computer vision, radiology, COVID-19, ResNet, VGG-19, deep neural networks
Procedia PDF Downloads 1603630 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification
Authors: Ian Omung'a
Abstract:
Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision
Procedia PDF Downloads 933629 Fake News Detection Based on Fusion of Domain Knowledge and Expert Knowledge
Authors: Yulan Wu
Abstract:
The spread of fake news on social media has posed significant societal harm to the public and the nation, with its threats spanning various domains, including politics, economics, health, and more. News on social media often covers multiple domains, and existing models studied by researchers and relevant organizations often perform well on datasets from a single domain. However, when these methods are applied to social platforms with news spanning multiple domains, their performance significantly deteriorates. Existing research has attempted to enhance the detection performance of multi-domain datasets by adding single-domain labels to the data. However, these methods overlook the fact that a news article typically belongs to multiple domains, leading to the loss of domain knowledge information contained within the news text. To address this issue, research has found that news records in different domains often use different vocabularies to describe their content. In this paper, we propose a fake news detection framework that combines domain knowledge and expert knowledge. Firstly, it utilizes an unsupervised domain discovery module to generate a low-dimensional vector for each news article, representing domain embeddings, which can retain multi-domain knowledge of the news content. Then, a feature extraction module uses the domain embeddings discovered through unsupervised domain knowledge to guide multiple experts in extracting news knowledge for the total feature representation. Finally, a classifier is used to determine whether the news is fake or not. Experiments show that this approach can improve multi-domain fake news detection performance while reducing the cost of manually labeling domain labels.Keywords: fake news, deep learning, natural language processing, multiple domains
Procedia PDF Downloads 733628 Potassium-Phosphorus-Nitrogen Detection and Spectral Segmentation Analysis Using Polarized Hyperspectral Imagery and Machine Learning
Authors: Nicholas V. Scott, Jack McCarthy
Abstract:
Military, law enforcement, and counter terrorism organizations are often tasked with target detection and image characterization of scenes containing explosive materials in various types of environments where light scattering intensity is high. Mitigation of this photonic noise using classical digital filtration and signal processing can be difficult. This is partially due to the lack of robust image processing methods for photonic noise removal, which strongly influence high resolution target detection and machine learning-based pattern recognition. Such analysis is crucial to the delivery of reliable intelligence. Polarization filters are a possible method for ambient glare reduction by allowing only certain modes of the electromagnetic field to be captured, providing strong scene contrast. An experiment was carried out utilizing a polarization lens attached to a hyperspectral imagery camera for the purpose of exploring the degree to which an imaged polarized scene of potassium, phosphorus, and nitrogen mixture allows for improved target detection and image segmentation. Preliminary imagery results based on the application of machine learning algorithms, including competitive leaky learning and distance metric analysis, to polarized hyperspectral imagery, suggest that polarization filters provide a slight advantage in image segmentation. The results of this work have implications for understanding the presence of explosive material in dry, desert areas where reflective glare is a significant impediment to scene characterization.Keywords: explosive material, hyperspectral imagery, image segmentation, machine learning, polarization
Procedia PDF Downloads 1423627 Optimize Data Evaluation Metrics for Fraud Detection Using Machine Learning
Authors: Jennifer Leach, Umashanger Thayasivam
Abstract:
The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, though, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate people. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease this advancement. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent data, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which testing split and technique would lead to the most optimal results.Keywords: data science, fraud detection, machine learning, supervised learning
Procedia PDF Downloads 1953626 New Result for Optical OFDM in Code Division Multiple Access Systems Using Direct Detection
Authors: Cherifi Abdelhamid
Abstract:
In optical communication systems, OFDM has received increased attention as a means to overcome various limitations of optical transmission systems such as modal dispersion, relative intensity noise, chromatic dispersion, polarization mode dispersion and self-phase modulation. The multipath dispersion limits the maximum transmission data rates. In this paper we investigate OFDM system where multipath induced intersymbol interference (ISI) is reduced and we increase the number of users by combining OFDM system with OCDMA system using direct detection Incorporate OOC (orthogonal optical code) for minimize a bit error rate.Keywords: OFDM, OCDMA, OOC (orthogonal optical code), (ISI), prim codes (Pc)
Procedia PDF Downloads 6523625 An Immune-Inspired Web Defense Architecture
Authors: Islam Khalil, Amr El-Kadi
Abstract:
With the increased use of web technologies, microservices, and Application Programming Interface (API) for integration between systems, and with the development of containerization of services on the operating system level as a method of isolating system execution and for easing the deployment and scaling of systems, there is a growing need as well as opportunities for providing platforms that improve the security of such services. In our work, we propose an architecture for a containerization platform that utilizes various concepts derived from the human immune system. The goal of the proposed containerization platform is to introduce the concept of slowing down or throttling suspected malicious digital pathogens (intrusions) to reduce their damage footprint while providing more opportunities for forensic inspection of suspected pathogens in addition to the ability to snapshot, rollback, and recover from possible damage. The proposed platform also leverages existing intrusion detection algorithms by integrating and orchestrating their cooperative operation for more effective intrusion detection. We show how this model reduces the damage footprint of intrusions and gives a greater time window for forensic investigation. Moreover, during our experiments, our proposed platform was able to uncover unintentional system design flaws that resulted in internal DDoS-like attacks by submodules of the system itself rather than external intrusions.Keywords: containers, human immunity, intrusion detection, security, web services
Procedia PDF Downloads 953624 Recommendations of Plant and Plant Composition Which Can Be Used in Visual Landscape Improvement in Urban Spaces in Cold Climate Regions
Authors: Feran Asur
Abstract:
In cities, plants; with its visual and functional effects, it helps to provide balance between human and environmental system. It is possible to develop alternative solutions to eliminate visual pollution by evaluating the potential properties of plant materials with other inanimate materials such as color, texture, form, size, etc. characteristics and other inanimate materials such as highlighter, background forming, harmonizing and concealer. In cold climates, the number of ornamental plant species that grow in warmer climates is less. For this reason, especially in the landscaping works of urban spaces, it is difficult to create the desired visuality with aesthetically qualified plants that are suitable for the ecology of the area, without creating monotony, with color variety. In this study, the importance of plant and plant compositions in the solution of visual problems in urban environments in cold climatic conditions is emphasized. The potential of ornamental plants that can be used for this purpose in preventing visual pollution is given. It has been shown how to use prominent features of these ornamental plants such as size, form, texture, vegetation periods to improve visual landscape in urban spaces in a long time. In addition to the design group disciplines that have activity on planning or application basis in the city and its surroundings, landscape architecture discipline can provide visual improvement of the studies to be carried out in detail in terms of planting design.Keywords: residential landscape, planting, urban space, visual improvement
Procedia PDF Downloads 1403623 Using Vulnerability to Reduce False Positive Rate in Intrusion Detection Systems
Authors: Nadjah Chergui, Narhimene Boustia
Abstract:
Intrusion Detection Systems are an essential tool for network security infrastructure. However, IDSs have a serious problem which is the generating of massive number of alerts, most of them are false positive ones which can hide true alerts and make the analyst confused to analyze the right alerts for report the true attacks. The purpose behind this paper is to present a formalism model to perform correlation engine by the reduction of false positive alerts basing on vulnerability contextual information. For that, we propose a formalism model based on non-monotonic JClassicδє description logic augmented with a default (δ) and an exception (є) operator that allows a dynamic inference according to contextual information.Keywords: context, default, exception, vulnerability
Procedia PDF Downloads 2593622 Heart Murmurs and Heart Sounds Extraction Using an Algorithm Process Separation
Authors: Fatima Mokeddem
Abstract:
The phonocardiogram signal (PCG) is a physiological signal that reflects heart mechanical activity, is a promising tool for curious researchers in this field because it is full of indications and useful information for medical diagnosis. PCG segmentation is a basic step to benefit from this signal. Therefore, this paper presents an algorithm that serves the separation of heart sounds and heart murmurs in case they exist in order to use them in several applications and heart sounds analysis. The separation process presents here is founded on three essential steps filtering, envelope detection, and heart sounds segmentation. The algorithm separates the PCG signal into S1 and S2 and extract cardiac murmurs.Keywords: phonocardiogram signal, filtering, Envelope, Detection, murmurs, heart sounds
Procedia PDF Downloads 1403621 Sensor Validation Using Bottleneck Neural Network and Variable Reconstruction
Authors: Somia Bouzid, Messaoud Ramdani
Abstract:
The success of any diagnosis strategy critically depends on the sensors measuring process variables. This paper presents a detection and diagnosis sensor faults method based on a Bottleneck Neural Network (BNN). The BNN approach is used as a statistical process control tool for drinking water distribution (DWD) systems to detect and isolate the sensor faults. Variable reconstruction approach is very useful for sensor fault isolation, this method is validated in simulation on a nonlinear system: actual drinking water distribution system. Several results are presented.Keywords: fault detection, localization, PCA, NLPCA, auto-associative neural network
Procedia PDF Downloads 3893620 Using Satellite Images Datasets for Road Intersection Detection in Route Planning
Authors: Fatma El-Zahraa El-Taher, Ayman Taha, Jane Courtney, Susan Mckeever
Abstract:
Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated.Keywords: satellite images, remote sensing images, data acquisition, autonomous vehicles
Procedia PDF Downloads 1443619 Methods for Early Detection of Invasive Plant Species: A Case Study of Hueston Woods State Nature Preserve
Authors: Suzanne Zazycki, Bamidele Osamika, Heather Craska, Kaelyn Conaway, Reena Murphy, Stephanie Spence
Abstract:
Invasive Plant Species (IPS) are an important component of effective preservation and conservation of natural lands management. IPS are non-native plants which can aggressively encroach upon native species and pose a significant threat to the ecology, public health, and social welfare of a community. The presence of IPS in U.S. nature preserves has caused economic costs, which has estimated to exceed $26 billion a year. While different methods have been identified to control IPS, few methods have been recognized for early detection of IPS. This study examined identified methods for early detection of IPS in Hueston Woods State Nature Preserve. Mixed methods research design was adopted in this four-phased study. The first phase entailed data gathering, the phase described the characteristics and qualities of IPS and the importance of early detection (ED). The second phase explored ED methods, Geographic Information Systems (GIS) and Citizen Science were discovered as ED methods for IPS. The third phase of the study involved the creation of hotspot maps to identify likely areas for IPS growth. While the fourth phase involved testing and evaluating mobile applications that can support the efforts of citizen scientists in IPS detection. Literature reviews were conducted on IPS and ED methods, and four regional experts from ODNR and Miami University were interviewed. A questionnaire was used to gather information about ED methods used across the state. The findings revealed that geospatial methods, including Unmanned Aerial Vehicles (UAVs), Multispectral Satellites (MSS), and Normalized Difference Vegetation Index (NDVI), are not feasible for early detection of IPS, as they require GIS expertise, are still an emerging technology, and are not suitable for every habitat for the ED of IPS. Therefore, Other ED methods options were explored, which include predicting areas where IPS will grow, which can be done through monitoring areas that are like the species’ native habitat. Through literature review and interviews, IPS are known to grow in frequently disturbed areas such as along trails, shorelines, and streambanks. The research team called these areas “hotspots” and created maps of these hotspots specifically for HW NP to support and narrow the efforts of citizen scientists and staff in the ED of IPS. The results further showed that utilizing citizen scientists in the ED of IPS is feasible, especially through single day events or passive monitoring challenges. The study concluded that the creation of hotspot maps to direct the efforts of citizen scientists are effective for the early detection of IPS. Several recommendations were made, among which is the creation of hotspot maps to narrow the ED efforts as citizen scientists continues to work in the preserves and utilize citizen science volunteers to identify and record emerging IPS.Keywords: early detection, hueston woods state nature preserve, invasive plant species, hotspots
Procedia PDF Downloads 1033618 Constructing a Semi-Supervised Model for Network Intrusion Detection
Authors: Tigabu Dagne Akal
Abstract:
While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.Keywords: intrusion detection, data mining, computer science, data mining
Procedia PDF Downloads 2963617 Automatic Multi-Label Image Annotation System Guided by Firefly Algorithm and Bayesian Method
Authors: Saad M. Darwish, Mohamed A. El-Iskandarani, Guitar M. Shawkat
Abstract:
Nowadays, the amount of available multimedia data is continuously on the rise. The need to find a required image for an ordinary user is a challenging task. Content based image retrieval (CBIR) computes relevance based on the visual similarity of low-level image features such as color, textures, etc. However, there is a gap between low-level visual features and semantic meanings required by applications. The typical method of bridging the semantic gap is through the automatic image annotation (AIA) that extracts semantic features using machine learning techniques. In this paper, a multi-label image annotation system guided by Firefly and Bayesian method is proposed. Firstly, images are segmented using the maximum variance intra cluster and Firefly algorithm, which is a swarm-based approach with high convergence speed, less computation rate and search for the optimal multiple threshold. Feature extraction techniques based on color features and region properties are applied to obtain the representative features. After that, the images are annotated using translation model based on the Net Bayes system, which is efficient for multi-label learning with high precision and less complexity. Experiments are performed using Corel Database. The results show that the proposed system is better than traditional ones for automatic image annotation and retrieval.Keywords: feature extraction, feature selection, image annotation, classification
Procedia PDF Downloads 5863616 Carcass Characteristics and Qualities of Philippine White Mallard (Anas boschas L.) and Pekin (Anas platyrhynchos L.) Duck
Authors: Jerico M. Consolacion, Maria Cynthia R. Oliveros
Abstract:
The Philippine White Mallard duck was compared with Pekin duck for potential meat production. A total of 50 ducklings were randomly assigned to five (5) pens per treatment after one month of brooding. Each pen containing five (5) ducks was considered as a replicate. The ducks were raised until 12 weeks of age and slaughtered at the end of the growing period. Meat from both breeds was analyzed. The data were subjected to the Independent-Sample T-test at 5% level of confidence. Results showed that post-mortem pH (0, 20 minutes, 50 minutes, 1 hour and 20 minutes, 1 hour and 50 minutes, and 24 hours ) did not differ significantly (P>0.05) between breeds. However, Pekin ducks (89.84±0.71) had a significantly higher water-holding capacity than Philippine White Mallard ducks (87.93±0.63) (P<0.05). Also, meat color (CIE L, a, b) revealed that no significant differences among the lightness, redness, and yellowness of the skin (breast) in both breeds (P>0.05) except for the yellowness of the lean muscles of the Pekin duck breast. Pekin duck meat (1.15±0.04) had significantly higher crude fat content than Philippine White Mallard (0.47±0.58). The study clearly showed that breed is a factor and provided some pronounced effects among the parameters. However, these results are considered as preliminary information on the meat quality of Philippine White Mallard duck. Hence, further studies are needed to understand and fully utilize it for meat production and develop different meat products from this breed.Keywords: crude fat, meat color, meat pH, water-holding capacity
Procedia PDF Downloads 273