Search results for: Ad hocs networks
1583 A Broadband Tri-Cantilever Vibration Energy Harvester with Magnetic Oscillator
Authors: Xiaobo Rui, Zhoumo Zeng, Yibo Li
Abstract:
A novel tri-cantilever energy harvester with magnetic oscillator was presented, which could convert the ambient vibration into electrical energy to power the low-power devices such as wireless sensor networks. The most common way to harvest vibration energy is based on the use of linear resonant devices such as cantilever beam, since this structure creates the highest strain for a given force. The highest efficiency will be achieved when the resonance frequency of the harvester matches the vibration frequency. The limitation of the structure is the narrow effective bandwidth. To overcome this limitation, this article introduces a broadband tri-cantilever harvester with nonlinear stiffness. This energy harvester typically consists of three thin cantilever beams vertically arranged with Neodymium Magnets ( NdFeB)magnetics at its free end and a fixed base at the other end. The three cantilevers have different resonant frequencies by designed in different thicknesses. It is obviously that a similar advantage of multiple resonant frequencies as piezoelectric cantilevers array structure is built. To achieve broadband energy harvesting, magnetic interaction is used to introduce the nonlinear system stiffness to tune the resonant frequency to match the excitation. Since the three cantilever tips are all free and the magnetic force is distance dependent, the resonant frequencies will be complexly changed with the vertical vibration of the free end. Both model and experiment are built. The electromechanically coupled lumped-parameter model is presented. An electromechanical formulation and analytical expressions for the coupled nonlinear vibration response and voltage response are given. The entire structure is fabricated and mechanically attached to a electromagnetic shaker as a vibrating body via the fixed base, in order to couple the vibrations to the cantilever. The cantilevers are bonded with piezoelectric macro-fiber composite (MFC) materials (Model: M8514P2). The size of the cantilevers is 120*20mm2 and the thicknesses are separately 1mm, 0.8mm, 0.6mm. The prototype generator has a measured performance of 160.98 mW effective electrical power and 7.93 DC output voltage via the excitation level of 10m/s2. The 130% increase in the operating bandwidth is achieved. This device is promising to support low-power devices, peer-to-peer wireless nodes, and small-scale wireless sensor networks in ambient vibration environment.Keywords: tri-cantilever, ambient vibration, energy harvesting, magnetic oscillator
Procedia PDF Downloads 1561582 At the Intersection of Race and Gender in Social Work Education
Authors: LaShawnda N. Fields, Valandra
Abstract:
There remains much to learn about the experiences of Black women within social work education. Higher education, in general, has a strained relationship with this demographic and while social work has espoused a code of ethics and core values, Black women report inequitable experiences similar to those in other disciplines. Research-intensive (R-1) Carnegie-designated institutions typically have lower representation of those with historically marginalized identities; this study focuses on Black women in these schools of social work. This study presents qualitative findings from 9 in-depth interviews with Black women faculty members as well as interviews with 11 Black women doctoral students at R-1 universities. Many of the poor professional outcomes for Black women in academia are a result of their experiences with imposter syndrome and feeling as though they cannot present their authentic selves. The finding of this study highlighted the many ways imposter syndrome manifests within these study participants, from an inability to be productive to overproducing in an effort to win the respect and support of colleagues. Being scrutinized and seen as unprofessional when being authentic has led to some Black women isolating themselves and struggling to remain in academia. Other Black women have decided that regardless of the backlash they may receive, they will proudly present their authentic selves and allow their work to speak for itself rather than conform to the dominant White culture. These semi-structured, in-depth interviews shined a spotlight on the ways Black women doctoral students were denied inclusion throughout their programs. These students often believed both faculty members and peers seemed to actively work to ensure discomfort in these women. In response to these negative experiences and a lack of support, many of these Black women doctoral students created their own networks of support. These networks of support often included faculty members within social work but also beyond their discipline and outside of the academy at large. The faculty members who offered support to this demographic typically shared their race and gender identities. Both Black women faculty members and doctoral students historically have been forced to prioritize surviving, not thriving as a result of toxic environments within their schools of social work. This has negatively impacted their mental health and their levels of productivity. It is necessary for these institutions to build trust with these women by respecting their diverse backgrounds, supporting their race-related research interests, and honoring the rigor in a range of methodologies if substantial, sustainable change is to be achieved.Keywords: education, equity, inclusion, intersectionality
Procedia PDF Downloads 811581 On Improving Breast Cancer Prediction Using GRNN-CP
Authors: Kefaya Qaddoum
Abstract:
The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.Keywords: neural network, conformal prediction, cancer classification, regression
Procedia PDF Downloads 2951580 Incentive-Based Motivation to Network with Coworkers: Strengthening Professional Networks via Online Social Networks
Authors: Jung Lee
Abstract:
The last decade has witnessed more people than ever before using social media and broadening their social circles. Social media users connect not only with their friends but also with professional acquaintances, primarily coworkers, and clients; personal and professional social circles are mixed within the same social media platform. Considering the positive aspect of social media in facilitating communication and mutual understanding between individuals, we infer that social media interactions with co-workers could indeed benefit one’s professional life. However, given privacy issues, sharing all personal details with one’s co-workers is not necessarily the best practice. Should one connect with coworkers via social media? Will social media connections with coworkers eventually benefit one’s long-term career? Will the benefit differ across cultures? To answer, this study examines how social media can contribute to organizational communication by tracing the foundation of user motivation based on social capital theory, leader-member exchange (LMX) theory and expectancy theory of motivation. Although social media was originally designed for personal communication, users have shown intentions to extend social media use for professional communication, especially when the proper incentive is expected. To articulate the user motivation and the mechanism of the incentive expectation scheme, this study applies those three theories and identify six antecedents and three moderators of social media use motivation including social network flaunt, shared interest, perceived social inclusion. It also hypothesizes that the moderating effects of those constructs would significantly differ based on the relationship hierarchy among the workers. To validate, this study conducted a survey of 329 active social media users with acceptable levels of job experiences. The analysis result confirms the specific roles of the three moderators in social media adoption for organizational communication. The present study contributes to the literature by developing a theoretical modeling of ambivalent employee perceptions about establishing social media connections with co-workers. This framework shows not only how both positive and negative expectations of social media connections with co-workers are formed based on expectancy theory of motivation, but also how such expectations lead to behavioral intentions using career success model. It also enhances understanding of how various relationships among employees can be influenced through social media use and such usage can potentially affect both performance and careers. Finally, it shows how cultural factors induced by social media use can influence relations among the coworkers.Keywords: the social network, workplace, social capital, motivation
Procedia PDF Downloads 1251579 Exploring the Psychosocial Brain: A Retrospective Analysis of Personality, Social Networks, and Dementia Outcomes
Authors: Felicia N. Obialo, Aliza Wingo, Thomas Wingo
Abstract:
Psychosocial factors such as personality traits and social networks influence cognitive aging and dementia outcomes both positively and negatively. The inherent complexity of these factors makes defining the underlying mechanisms of their influence difficult; however, exploring their interactions affords promise in the field of cognitive aging. The objective of this study was to elucidate some of these interactions by determining the relationship between social network size and dementia outcomes and by determining whether personality traits mediate this relationship. The longitudinal Alzheimer’s Disease (AD) database provided by Rush University’s Religious Orders Study/Memory and Aging Project was utilized to perform retrospective regression and mediation analyses on 3,591 participants. Participants who were cognitively impaired at baseline were excluded, and analyses were adjusted for age, sex, common chronic diseases, and vascular risk factors. Dementia outcome measures included cognitive trajectory, clinical dementia diagnosis, and postmortem beta-amyloid plaque (AB), and neurofibrillary tangle (NT) accumulation. Personality traits included agreeableness (A), conscientiousness (C), extraversion (E), neuroticism (N), and openness (O). The results show a positive correlation between social network size and cognitive trajectory (p-value = 0.004) and a negative relationship between social network size and odds of dementia diagnosis (p = 0.024/ Odds Ratio (OR) = 0.974). Only neuroticism mediates the positive relationship between social network size and cognitive trajectory (p < 2e-16). Agreeableness, extraversion, and neuroticism all mediate the negative relationship between social network size and dementia diagnosis (p=0.098, p=0.054, and p < 2e-16, respectively). All personality traits are independently associated with dementia diagnosis (A: p = 0.016/ OR = 0.959; C: p = 0.000007/ OR = 0.945; E: p = 0.028/ OR = 0.961; N: p = 0.000019/ OR = 1.036; O: p = 0.027/ OR = 0.972). Only conscientiousness and neuroticism are associated with postmortem AD pathologies; specifically, conscientiousness is negatively associated (AB: p = 0.001, NT: p = 0.025) and neuroticism is positively associated with pathologies (AB: p = 0.002, NT: p = 0.002). These results support the study’s objectives, demonstrating that social network size and personality traits are strongly associated with dementia outcomes, particularly the odds of receiving a clinical diagnosis of dementia. Personality traits interact significantly and beneficially with social network size to influence the cognitive trajectory and future dementia diagnosis. These results reinforce previous literature linking social network size to dementia risk and provide novel insight into the differential roles of individual personality traits in cognitive protection.Keywords: Alzheimer’s disease, cognitive trajectory, personality traits, social network size
Procedia PDF Downloads 1301578 An Analysis of Privacy and Security for Internet of Things Applications
Authors: Dhananjay Singh, M. Abdullah-Al-Wadud
Abstract:
The Internet of Things is a concept of a large scale ecosystem of wireless actuators. The actuators are defined as things in the IoT, those which contribute or produces some data to the ecosystem. However, ubiquitous data collection, data security, privacy preserving, large volume data processing, and intelligent analytics are some of the key challenges into the IoT technologies. In order to solve the security requirements, challenges and threats in the IoT, we have discussed a message authentication mechanism for IoT applications. Finally, we have discussed data encryption mechanism for messages authentication before propagating into IoT networks.Keywords: Internet of Things (IoT), message authentication, privacy, security
Procedia PDF Downloads 3861577 CERD: Cost Effective Route Discovery in Mobile Ad Hoc Networks
Authors: Anuradha Banerjee
Abstract:
A mobile ad hoc network is an infrastructure less network, where nodes are free to move independently in any direction. The nodes have limited battery power; hence, we require energy efficient route discovery technique to enhance their lifetime and network performance. In this paper, we propose an energy-efficient route discovery technique CERD that greatly reduces the number of route requests flooded into the network and also gives priority to the route request packets sent from the routers that has communicated with the destination very recently, in single or multi-hop paths. This does not only enhance the lifetime of nodes but also decreases the delay in tracking the destination.Keywords: ad hoc network, energy efficiency, flooding, node lifetime, route discovery
Procedia PDF Downloads 3501576 A Digital Clone of an Irrigation Network Based on Hardware/Software Simulation
Authors: Pierre-Andre Mudry, Jean Decaix, Jeremy Schmid, Cesar Papilloud, Cecile Munch-Alligne
Abstract:
In most of the Swiss Alpine regions, the availability of water resources is usually adequate even in times of drought, as evidenced by the 2003 and 2018 summers. Indeed, important natural stocks are for the moment available in the form of snow and ice, but the situation is likely to change in the future due to global and regional climate change. In addition, alpine mountain regions are areas where climate change will be felt very rapidly and with high intensity. For instance, the ice regime of these regions has already been affected in recent years with a modification of the monthly availability and extreme events of precipitations. The current research, focusing on the municipality of Val de Bagnes, located in the canton of Valais, Switzerland, is part of a project led by the Altis company and achieved in collaboration with WSL, BlueArk Entremont, and HES-SO Valais-Wallis. In this region, water occupies a key position notably for winter and summer tourism. Thus, multiple actors want to apprehend the future needs and availabilities of water, on both the 2050 and 2100 horizons, in order to plan the modifications to the water supply and distribution networks. For those changes to be salient and efficient, a good knowledge of the current water distribution networks is of most importance. In the current case, the water drinking network is well documented, but this is not the case for the irrigation one. Since the water consumption for irrigation is ten times higher than for drinking water, data acquisition on the irrigation network is a major point to determine future scenarios. This paper first presents the instrumentation and simulation of the irrigation network using custom-designed IoT devices, which are coupled with a digital clone simulated to reduce the number of measuring locations. The developed IoT ad-hoc devices are energy-autonomous and can measure flows and pressures using industrial sensors such as calorimetric water flow meters. Measurements are periodically transmitted using the LoRaWAN protocol over a dedicated infrastructure deployed in the municipality. The gathered values can then be visualized in real-time on a dashboard, which also provides historical data for analysis. In a second phase, a digital clone of the irrigation network was modeled using EPANET, a software for water distribution systems that performs extended-period simulations of flows and pressures in pressurized networks composed of reservoirs, pipes, junctions, and sinks. As a preliminary work, only a part of the irrigation network was modelled and validated by comparisons with the measurements. The simulations are carried out by imposing the consumption of water at several locations. The validation is performed by comparing the simulated pressures are different nodes with the measured ones. An accuracy of +/- 15% is observed on most of the nodes, which is acceptable for the operator of the network and demonstrates the validity of the approach. Future steps will focus on the deployment of the measurement devices on the whole network and the complete modelling of the network. Then, scenarios of future consumption will be investigated. Acknowledgment— The authors would like to thank the Swiss Federal Office for Environment (FOEN), the Swiss Federal Office for Agriculture (OFAG) for their financial supports, and ALTIS for the technical support, this project being part of the Swiss Pilot program 'Adaptation aux changements climatiques'.Keywords: hydraulic digital clone, IoT water monitoring, LoRaWAN water measurements, EPANET, irrigation network
Procedia PDF Downloads 1481575 Market Index Trend Prediction using Deep Learning and Risk Analysis
Authors: Shervin Alaei, Reza Moradi
Abstract:
Trading in financial markets is subject to risks due to their high volatilities. Here, using an LSTM neural network, and by doing some risk-based feature engineering tasks, we developed a method that can accurately predict trends of the Tehran stock exchange market index from a few days ago. Our test results have shown that the proposed method with an average prediction accuracy of more than 94% is superior to the other common machine learning algorithms. To the best of our knowledge, this is the first work incorporating deep learning and risk factors to accurately predict market trends.Keywords: deep learning, LSTM, trend prediction, risk management, artificial neural networks
Procedia PDF Downloads 1581574 Social Capital and Human Capital: An OECD Countries' Analysis
Authors: Shivani Khare
Abstract:
It is of paramount concern for economists to uncover the factors that determine human capital development, considered now to be one of the major factors behind economic growth and development. However, no human action is isolated but rather works within the set-up of the society. In recent years, a new field of investigation has come up that analyses the relationships that exist between social and human capital. Along these lines, this paper explores the effect of social capital on the indicators of human capital development – life expectancy at birth, mean years of schooling, and per capita income. The applied part of the analysis is performed using a panel data model for OECD countries and by using a series of chronological periods that within the 2005–2020 time frame.Keywords: social capital, human capital development, trust, social networks, socioeconomics
Procedia PDF Downloads 1411573 Optimized Deep Learning-Based Facial Emotion Recognition System
Authors: Erick C. Valverde, Wansu Lim
Abstract:
Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.Keywords: deep learning, face detection, facial emotion recognition, network optimization methods
Procedia PDF Downloads 1221572 Pattern Identification in Statistical Process Control Using Artificial Neural Networks
Authors: M. Pramila Devi, N. V. N. Indra Kiran
Abstract:
Control charts, predominantly in the form of X-bar chart, are important tools in statistical process control (SPC). They are useful in determining whether a process is behaving as intended or there are some unnatural causes of variation. A process is out of control if a point falls outside the control limits or a series of point’s exhibit an unnatural pattern. In this paper, a study is carried out on four training algorithms for CCPs recognition. For those algorithms optimal structure is identified and then they are studied for type I and type II errors for generalization without early stopping and with early stopping and the best one is proposed.Keywords: control chart pattern recognition, neural network, backpropagation, generalization, early stopping
Procedia PDF Downloads 3741571 Indicators of Regional Development, Case Study: Bucharest-Ilfov Region
Authors: Dan Cristian Popescu
Abstract:
The new territorial identities and global dynamics have determined a change of policies of economics, social and cultural development from a vertical to a horizontal approach, which is based on cooperation networks between institutional actors, economic operators or civil society representatives. The European integration has not only generated a different patterns of competitiveness, economic growth, concentration of attractive potential, but also disparities among regions of this country, or even in the countryside within a region. To a better understanding of the dynamics of regional development and the impact of this concept on Romania, I chose as a case study the region Bucharest-Ilfov which is analyzed on the basis of predetermined indicators and of the impact of European programs.Keywords: regional competition, regional development, rural, urban
Procedia PDF Downloads 5961570 Top-K Shortest Distance as a Similarity Measure
Authors: Andrey Lebedev, Ilya Dmitrenok, JooYoung Lee, Leonard Johard
Abstract:
Top-k shortest path routing problem is an extension of finding the shortest path in a given network. Shortest path is one of the most essential measures as it reveals the relations between two nodes in a network. However, in many real world networks, whose diameters are small, top-k shortest path is more interesting as it contains more information about the network topology. Many variations to compute top-k shortest paths have been studied. In this paper, we apply an efficient top-k shortest distance routing algorithm to the link prediction problem and test its efficacy. We compare the results with other base line and state-of-the-art methods as well as with the shortest path. Then, we also propose a top-k distance based graph matching algorithm.Keywords: graph matching, link prediction, shortest path, similarity
Procedia PDF Downloads 3621569 The Europeanization of Minority and Disability Rights: A Comparative View
Authors: Katharina Crepaz
Abstract:
Both minority rights and disability rights are relatively new fields for policy-making in a European context, and both are affected by the EU’s diversity mainstreaming approach, as well as by the non-discrimination legislation drafted at the European level. These processes correspond to the classic understanding of Europeanization, namely a “top-down” stream of influence from the European to the national and subnational levels. However, both minority and disability rights movements also show instances of “bottom-up” Europeanization, e.g. transnational advocacy networks and efforts to reach joint goals at the EU-level. This paper aims to provide a comparative perspective on Europeanization in both fields, pointing out similar dynamics and patterns, but also explaining in which sectors outcomes may be different and which domestic and other scope conditions may be responsible for these differences.Keywords: europeanization, disability rights, minority rights, comparative perspective
Procedia PDF Downloads 4181568 Lifetime Improvement of IEEE.802.15.6 Sensors in Scheduled Access Mode
Authors: Latif Adnane, C. E. Ait Zaouiat, M. Eddabbah
Abstract:
In Wireless Body Area Networks, the issue of systems lifetime is a big challenge to complete. In this paper, we have tackled this subject to suggest some solutions. For this aim, we have studied some batteries characteristics related to human body temperature. Moreover, we have analyzed a mathematical model which defines sensors lifetime (battery lifetime). Based on this model, we note that the random access increases the energy consumption, because nodes are waking up during the whole superframe period. Results show that using scheduled mode access of IEEE 802.15.6 maximizes the lifetime function, by setting nodes in the sleep mode in the inactive period of transmission.Keywords: battery, energy consumption, IEEE 802.15.6, lifetime, polling
Procedia PDF Downloads 3481567 Neural Network in Fixed Time for Collision Detection between Two Convex Polyhedra
Authors: M. Khouil, N. Saber, M. Mestari
Abstract:
In this paper, a different architecture of a collision detection neural network (DCNN) is developed. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons, linear and threshold logic, which simplified the actual implementation of all the networks proposed. The study of the collision detection is divided into two sections, the collision between a point and a polyhedron and then the collision between two convex polyhedra. The aim of this research is to determine through the AMAXNET network a mini maximum point in a fixed time, which allows us to detect the presence of a potential collision.Keywords: collision identification, fixed time, convex polyhedra, neural network, AMAXNET
Procedia PDF Downloads 4271566 Networks, Regulations and Public Action: The Emerging Experiences of Sao Paulo
Authors: Lya Porto, Giulia Giacchè, Mario Aquino Alves
Abstract:
The paper aims to describe the linkage between government and civil society proposing a study on agro-ecological agriculture policy and urban action in São Paulo city underling the main achievements obtained. The negotiation processes between social movements and the government (inputs) and its results on political regulation and public action for Urban Agriculture (UA) in São Paulo city (outputs) have been investigated. The method adopted is qualitative, with techniques of semi-structured interviews, participant observation, and documental analysis. The authors conducted 30 semi-structured interviews with organic farmers, activists, governmental and non-governmental managers. Participant observation was conducted in public gardens, urban farms, public audiences, democratic councils, and social movements meetings. Finally, public plans and laws were also analyzed. São Paulo city with around 12 million inhabitants spread out in a 1522 km2 is the economic capital of Brazil, marked by spatial and socioeconomic segregation, currently aggravated by environmental crisis, characterized by water scarcity, pollution, and climate changes. In recent years, Urban Agriculture (UA) social movements gained strength and struggle for a different city with more green areas, organic food production, and public occupation. As the dynamics of UA occurs by the action of multiple actresses and institutions that struggle to build multiple senses on UA, the analysis will be based on literature about solidarity economy, governance, public action and networks. Those theories will mark out the analysis that will emphasize the approach of inter-subjectivity built between subjects, as well as the hybrid dynamics of multiple actors and spaces in the construction of policies for UA. Concerning UA we identified four main typologies based on land ownership, main function (economic or activist), form of organization of the space, and type of production (organic or not). The City Hall registers 500 productive unities of agriculture, with around 1500 producers, but researcher estimated a larger number of unities. Concerning the social movements we identified three categories that differ in goals and types of organization, but all of them work by networks of activists and/or organizations. The first category does not consider themselves as a movement, but a network. They occupy public spaces to grow organic food and to propose another type of social relations in the city. This action is similar to what became known as the green guerrillas. The second is configured as a movement that is structured to raise awareness about agro-ecological activities. The third one is a network of social movements, farmers, organizations and politicians that work focused on pressure and negotiation with executive and legislative government to approve regulations and policies on organic and agro-ecological Urban Agriculture. We conclude by highlighting how the interaction among institutions and civil society produced important achievements for recognition and implementation of UA within the city. Some results of this process are awareness for local production, legal and institutional recognition of the rural zone around the city into the planning tool, the investment on organic school public procurements, the establishment of participatory management of public squares, the inclusion of UA on Municipal Strategic Plan and Master Plan.Keywords: public action, policies, agroecology, urban and peri-urban agriculture, Sao Paulo
Procedia PDF Downloads 2971565 Optimisation of the Input Layer Structure for Feedforward Narx Neural Networks
Authors: Zongyan Li, Matt Best
Abstract:
This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. An application of vehicle dynamic model identification is also presented in this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal number of neurons for the neural network is investigated.Keywords: correlation analysis, F-ratio, levenberg-marquardt, MSE, NARX, neural network, optimisation
Procedia PDF Downloads 3751564 Towards Creative Movie Title Generation Using Deep Neural Models
Authors: Simon Espigolé, Igor Shalyminov, Helen Hastie
Abstract:
Deep machine learning techniques including deep neural networks (DNN) have been used to model language and dialogue for conversational agents to perform tasks, such as giving technical support and also for general chit-chat. They have been shown to be capable of generating long, diverse and coherent sentences in end-to-end dialogue systems and natural language generation. However, these systems tend to imitate the training data and will only generate the concepts and language within the scope of what they have been trained on. This work explores how deep neural networks can be used in a task that would normally require human creativity, whereby the human would read the movie description and/or watch the movie and come up with a compelling, interesting movie title. This task differs from simple summarization in that the movie title may not necessarily be derivable from the content or semantics of the movie description. Here, we train a type of DNN called a sequence-to-sequence model (seq2seq) that takes as input a short textual movie description and some information on e.g. genre of the movie. It then learns to output a movie title. The idea is that the DNN will learn certain techniques and approaches that the human movie titler may deploy that may not be immediately obvious to the human-eye. To give an example of a generated movie title, for the movie synopsis: ‘A hitman concludes his legacy with one more job, only to discover he may be the one getting hit.’; the original, true title is ‘The Driver’ and the one generated by the model is ‘The Masquerade’. A human evaluation was conducted where the DNN output was compared to the true human-generated title, as well as a number of baselines, on three 5-point Likert scales: ‘creativity’, ‘naturalness’ and ‘suitability’. Subjects were also asked which of the two systems they preferred. The scores of the DNN model were comparable to the scores of the human-generated movie title, with means m=3.11, m=3.12, respectively. There is room for improvement in these models as they were rated significantly less ‘natural’ and ‘suitable’ when compared to the human title. In addition, the human-generated title was preferred overall 58% of the time when pitted against the DNN model. These results, however, are encouraging given the comparison with a highly-considered, well-crafted human-generated movie title. Movie titles go through a rigorous process of assessment by experts and focus groups, who have watched the movie. This process is in place due to the large amount of money at stake and the importance of creating an effective title that captures the audiences’ attention. Our work shows progress towards automating this process, which in turn may lead to a better understanding of creativity itself.Keywords: creativity, deep machine learning, natural language generation, movies
Procedia PDF Downloads 3271563 Gesture-Controlled Interface Using Computer Vision and Python
Authors: Vedant Vardhan Rathour, Anant Agrawal
Abstract:
The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computer using hand gestures and voice commands. The system leverages advanced computer vision techniques using the MediaPipe framework and OpenCV to detect and interpret real time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the Speech Recognition library allows for seamless execution of tasks like web searches, location navigation and gesture control on the system through voice commands.Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks
Procedia PDF Downloads 201562 Application of Signature Verification Models for Document Recognition
Authors: Boris M. Fedorov, Liudmila P. Goncharenko, Sergey A. Sybachin, Natalia A. Mamedova, Ekaterina V. Makarenkova, Saule Rakhimova
Abstract:
In modern economic conditions, the question of the possibility of correct recognition of a signature on digital documents in order to verify the expression of will or confirm a certain operation is relevant. The additional complexity of processing lies in the dynamic variability of the signature for each individual, as well as in the way information is processed because the signature refers to biometric data. The article discusses the issues of using artificial intelligence models in order to improve the quality of signature confirmation in document recognition. The analysis of several possible options for using the model is carried out. The results of the study are given, in which it is possible to correctly determine the authenticity of the signature on small samples.Keywords: signature recognition, biometric data, artificial intelligence, neural networks
Procedia PDF Downloads 1491561 Preliminary Analysis of a Phylogeography Study of Dendropsophus minutus in the Guiana Shield
Authors: Mera-Martínez Daniela
Abstract:
Dendropsophus minutus, is a species distributed in South America including the slopes of the Andes, the Amazon basin, forests of southeastern Brazil and in Guyana where tropical forests are characteristic. The relationship of amphibians found in this locality is evidenced by molecular markers, with the objective of analyzing if the geographic distance is influencing the structure of the populations of D. minutus in Guyana; we analyzed 65 sequences from the 3 localities of Guyana where haplotype networks, Mantel Test and phylogeny were realized to know the influence. It was evidenced that there is a haplotypic difference in the locality of Guyana compared to Suriname and French Guyana, but this does not have a correlation with the geographic distance, but this one can be influenced by the conditions of the places.Keywords: phylogeography, Dendropsophus, geographic distance, molecular markers
Procedia PDF Downloads 2141560 Mindset Change: Unlocking the Potential for Community-Based Rural Development in Uganda
Authors: Daisy Owomugasho Ndikuno
Abstract:
The paper explores the extent to which mindset change has been critical in the community rural development in Uganda. It is descriptive research with The Parish Development Model as a case study. The results show that rural community development is possible and its success largely depends on harnessing local resources and knowledge; leveraging education, empowerment and awareness; creating sustainable livelihoods and encouraging entrepreneurship and innovation; access to financial resources; and building collaborative networks and partnerships. In all these, the role of mindset change is critical. By instilling a positive, collaborative and innovative mindset, rural communities can overcome challenges and chat a path towards sustainable development.Keywords: community, development, mindset, change
Procedia PDF Downloads 1041559 The Outcome of Using Machine Learning in Medical Imaging
Authors: Adel Edwar Waheeb Louka
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery
Procedia PDF Downloads 751558 Review of Transportation Modeling Software
Authors: Hassan M. Al-Ahmadi, Hamad Bader Almobayedh
Abstract:
Planning for urban transportation is essential for developing effective and sustainable transportation networks that meet the needs of various communities. Advanced modeling software is required for effective transportation planning, management, and optimization. This paper compares PTV VISUM, Aimsun, TransCAD, and Emme, four industry-leading software tools for transportation planning and modeling. Each software has strengths and limitations, and the project's needs, financial constraints, and level of technical expertise influence the choice of software. Transportation experts can design and improve urban transportation systems that are effective, sustainable, and meet the changing needs of their communities by utilizing these software tools.Keywords: PTV VISUM, Aimsun, TransCAD, transportation modeling software
Procedia PDF Downloads 341557 A Named Data Networking Stack for Contiki-NG-OS
Authors: Sedat Bilgili, Alper K. Demir
Abstract:
The current Internet has become the dominant use with continuing growth in the home, medical, health, smart cities and industrial automation applications. Internet of Things (IoT) is an emerging technology to enable such applications in our lives. Moreover, Named Data Networking (NDN) is also emerging as a Future Internet architecture where it fits the communication needs of IoT networks. The aim of this study is to provide an NDN protocol stack implementation running on the Contiki operating system (OS). Contiki OS is an OS that is developed for constrained IoT devices. In this study, an NDN protocol stack that can work on top of IEEE 802.15.4 link and physical layers have been developed and presented.Keywords: internet of things (IoT), named-data, named data networking (NDN), operating system
Procedia PDF Downloads 1741556 Comparative Study of Scheduling Algorithms for LTE Networks
Authors: Samia Dardouri, Ridha Bouallegue
Abstract:
Scheduling is the process of dynamically allocating physical resources to User Equipment (UE) based on scheduling algorithms implemented at the LTE base station. Various algorithms have been proposed by network researchers as the implementation of scheduling algorithm which represents an open issue in Long Term Evolution (LTE) standard. This paper makes an attempt to study and compare the performance of PF, MLWDF and EXP/PF scheduling algorithms. The evaluation is considered for a single cell with interference scenario for different flows such as Best effort, Video and VoIP in a pedestrian and vehicular environment using the LTE-Sim network simulator. The comparative study is conducted in terms of system throughput, fairness index, delay, packet loss ratio (PLR) and total cell spectral efficiency.Keywords: LTE, multimedia flows, scheduling algorithms, mobile computing
Procedia PDF Downloads 3861555 Helping Older Users Staying Connected
Authors: Q. Raza
Abstract:
Getting old is inevitable, tasks which were once simple are now a daily struggle. This paper is a study of how older users interact with web application based upon a series of experiments. The experiments conducted involved 12 participants and the experiments were split into two parts. The first set gives the users a feel of current social networks and the second set take into considerations from the participants and the results of the two are compared. This paper goes in detail on the psychological aspects such as social exclusion, Metacognition memory and Therapeutic memories and how this relates to users becoming isolated from society, social networking can be the roof on a foundation of successful computer interaction. The purpose of this paper is to carry out a study and to propose new ideas to help users to be able to use social networking sites easily and efficiently.Keywords: cognitive psychology, special memory, social networking and human computer interaction
Procedia PDF Downloads 4471554 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network
Authors: Gulfam Haider, sana danish
Abstract:
Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent
Procedia PDF Downloads 132