Search results for: shear strain
1554 Identification and Characterization of Oil-Degrading Bacteria from Crude Oil-Contaminated Desert Soil in Northeastern Jordan
Authors: Mohammad Aladwan, Adelia Skripova
Abstract:
Bioremediation aspects of crude oil-polluted fields can be achieved by isolation and identification of bacterial species from oil-contaminated soil in order to choose the most active isolates and increase the strength of others. In this study, oil-degrading bacteria were isolated and identified from oil-contaminated soil samples in northeastern Jordan. The bacterial growth count (CFU/g) was between 1.06×10⁵ and 0.75×10⁹. Eighty-two bacterial isolates were characterized by their morphology and biochemical tests. The identified bacterial genera included: Klebsiella, Staphylococcus, Citrobacter, Lactobacillus, Alcaligenes, Pseudomonas, Hafnia, Micrococcus, Rhodococcus, Serratia, Enterobacter, Bacillus, Salmonella, Mycobacterium, Corynebacterium, and Acetobacter. Molecular identification of a universal primer 16S rDNA gene was used to identify four bacterial isolates: Microbacterium esteraromaticum strain L20, Pseudomonas stutzeri strain 13636M, Klebsilla pneumoniae, and uncultured Klebsilla sp., known as new strains. Our results indicate that their specific oil-degrading bacteria isolates might have a high strength of oil degradation from oil-contaminated sites. Staphylococcus intermedius (75%), Corynebacterium xerosis (75%), and Pseudomonas fluorescens (50%) showed a high growth rate on different types of hydrocarbons, such as crude oil, toluene, naphthalene, and hexane. In addition, monooxygenase and catechol 2,3-dioxygenase were detected in 17 bacterial isolates, indicating their superior hydrocarbon degradation potential. Total petroleum hydrocarbons were analyzed using gas chromatography for soil samples. Soil samples M5, M7, and M8 showed the highest levels (43,645, 47,805, and 45,991 ppm, respectively), and M4 had the lowest level (7,514 ppm). All soil samples were analyzed for heavy metal contamination (Cu, Cd, Mn, Zn, and Pb). Site M7 contains the highest levels of Cu, Mn, and Pb, while Site M8 contains the highest levels of Mn and Zn. In the future, these isolates of bacteria can be used for the cleanup of oil-contaminated soil.Keywords: bioremediation, 16S rDNA gene, oil-degrading bacteria, hydrocarbons
Procedia PDF Downloads 1311553 Well Stability Analysis Based on Geomechanical Properties of Formations in One of the Wells of Haftgol Oil Field, Iran
Authors: Naser Ebadati
Abstract:
introductory statement: Drilling operations in oil wells often involve significant risks due to varying azimuths, slopes, and the passage through layers with different lithological properties. As a result, maintaining well stability is crucial. Instability in wells can lead to costly well losses, interrupted drilling operations, and halted production from reservoirs. Objective: One of the key challenges in drilling operations is ensuring the stability of the wellbore, particularly in loose and low-resistance formations. These factors make the analysis and evaluation of well stability essential. Therefore, building a geo mechanical model for a hydrocarbon field or reservoir requires both a stress field model and a mechanical properties model of the geological formations. Numerous studies have focused on analyzing the stability of well walls, an issue known as well instability. This study aims to analyze the stability and the safe mud weight window for drilling in one of the oil fields in southern Iran. Methodology: In wellbore stability analysis, it is essential to consider the stress field model, which includes values and directions of the three principal stresses, and the mechanical properties model, which covers elastic properties and rock fracture characteristics. Wellbore instability arises from mechanical failure of the rock. Well stability can be maintained by adjusting the drilling mud weight. This study investigates wellbore stability using field data. The lithological characteristics of the well mainly consist of limestone, dolomite, and shale, as determined from log data. Wellbore logging was conducted throughout the well to calculate the required drilling mud pressure using the Mohr-Coulomb criterion. Findings: The results indicate that the safe and stable drilling mud window ranges between 17.13 MPa and 27.80 MPa. By comparing and calculating induced stresses, it was determined that the wellbore wall primarily exhibits shear fractures in the form of wide shear fractures and tensile fractures in the form of radial tensile fractures.Keywords: drilling mud weight, formation evaluation, sheer strees, safe window
Procedia PDF Downloads 121552 Rheological Properties and Thermal Performance of Suspensions of Microcapsules Containing Phase Change Materials
Authors: Vinh Duy Cao, Carlos Salas-Bringas, Anna M. Szczotok, Marianne Hiorth, Anna-Lena Kjøniksen
Abstract:
The increasing cost of energy supply for the purposes of heating and cooling creates a demand for more energy efficient buildings. Improved construction techniques and enhanced material technology can greatly reduce the energy consumption needed for the buildings. Microencapsulated phase change materials (MPCM) suspensions utilized as heat transfer fluids for energy storage and heat transfer applications provide promising potential solutions. A full understanding of the flow and thermal characteristics of microcapsule suspensions is needed to optimize the design of energy storage systems, in order to reduce the capital cost, system size, and energy consumption. The MPCM suspensions exhibited pseudoplastic and thixotropic behaviour, and significantly improved the thermal performance of the suspensions. Three different models were used to characterize the thixotropic behaviour of the MPCM suspensions: the second-order structural, kinetic model was found to give a better fit to the experimental data than the Weltman and Figoni-Shoemaker models. For all samples, the initial shear stress increased, and the breakdown rate accelerated significantly with increasing concentration. The thermal performance and rheological properties, especially the selection of rheological models, will be useful for developing the applications of microcapsules as heat transfer fluids in thermal energy storage system such as calculation of an optimum MPCM concentration, pumping power requirement, and specific power consumption. The effect of temperature on the shear thinning properties of the samples suggests that some of the phase change material is located outside the capsules, and contributes to agglomeration of the samples.Keywords: latent heat, microencapsulated phase change materials, pseudoplastic, suspension, thixotropic behaviour
Procedia PDF Downloads 2721551 Coupled Field Formulation – A Unified Method for Formulating Structural Mechanics Problems
Authors: Ramprasad Srinivasan
Abstract:
Engineers create inventions and put their ideas in concrete terms to design new products. Design drivers must be established, which requires, among other things, a complete understanding of the product design, load paths, etc. For Aerospace Vehicles, weight/strength ratio, strength, stiffness and stability are the important design drivers. A complex built-up structure is made up of an assemblage of primitive structural forms of arbitrary shape, which include 1D structures like beams and frames, 2D structures like membranes, plate and shell structures, and 3D solid structures. Justification through simulation involves a check for all the quantities of interest, namely stresses, deformation, frequencies, and buckling loads and is normally achieved through the finite element (FE) method. Over the past few decades, Fiber-reinforced composites are fast replacing the traditional metallic structures in the weight-sensitive aerospace and aircraft industries due to their high specific strength, high specific stiffness, anisotropic properties, design freedom for tailoring etc. Composite panel constructions are used in aircraft to design primary structure components like wings, empennage, ailerons, etc., while thin-walled composite beams (TWCB) are used to model slender structures like stiffened panels, helicopter, and wind turbine rotor blades, etc. The TWCB demonstrates many non-classical effects like torsional and constrained warping, transverse shear, coupling effects, heterogeneity, etc., which makes the analysis of composite structures far more complex. Conventional FE formulations to model 1D structures suffer from many limitations like shear locking, particularly in slender beams, lower convergence rates due to material coupling in composites, inability to satisfy, equilibrium in the domain and natural boundary conditions (NBC) etc. For 2D structures, the limitations of conventional displacement-based FE formulations include the inability to satisfy NBC explicitly and many pathological problems such as shear and membrane locking, spurious modes, stress oscillations, lower convergence due to mesh distortion etc. This mandates frequent re-meshing to even achieve an acceptable mesh (satisfy stringent quality metrics) for analysis leading to significant cycle time. Besides, currently, there is a need for separate formulations (u/p) to model incompressible materials, and a single unified formulation is missing in the literature. Hence coupled field formulation (CFF) is a unified formulation proposed by the author for the solution of complex 1D and 2D structures addressing the gaps in the literature mentioned above. The salient features of CFF and its many advantages over other conventional methods shall be presented in this paper.Keywords: coupled field formulation, kinematic and material coupling, natural boundary condition, locking free formulation
Procedia PDF Downloads 691550 Variation in Carboxylesterase Activity in Spodoptera litura Fabricious (Noctuidae: Lepidoptera) Populations from India
Authors: V. Karuppaiah, J. C. Padaria, C. Srivastava
Abstract:
The tobacco caterpillar, Spodoptera litura Fab (Lepidoptera: Noctuidae) is a polyphagous pest various field and horticulture crops in India. Pest had virtually developed resistance to all commonly used insecticides. Enhanced detoxification is the prime mechanism that is dictated by detoxification different enzymes and carboxylesterase is one of the major enzyme responsible development of resistance. In India, insecticide resistance studies on S. litura are mainly deployed on detoxification enzymes activity and investigation at gene level alteration i.e. at nucleotide level is very merger. In the present study, we collected the S. litura larvae from three different cauliflower growing belt viz., IARI, New Delhi (Delhi), Palari, Sonepat (Haryana) and Varanasi (Uttar Pradesh) to study the role of carboxylesterase activity and its gene level variation The CarE activity was measured using UV-VIS spectrophotometer with 3rd instar larvae of S. litura. The elevated activity of CarE was observed in Sonepat strain (28.09 ± 0.09 µmol/min/mg of protein) followed by Delhi (26.72 ± 0.04 µmol/min/mg of protein) and Varanasi strain (10.00 ± 0.44 µmol/min/mg of protein) of S. litura. The genomic DNA was isolated from 3rd instar larvae and CarE gene was amplified using a primer sequence, F:5’tccagagttccttgtcaggcac3’; R:5’ctgcatcaagcatgtctc3. CarE gene, about 500bp was partially amplified, sequenced and submitted to NCBI (Accession No. KF835886, KF835887 and KF835888). The sequence data revealed polymorphism at nucleotide level in all the three strains and gene found to have 88 to 97% similarity with previous available nucleotide sequences of S. litura, S. littoralis and S. exiqua. The polymorphism at the nucleotide level could be a reason for differential activity of carboxylesterase enzymes among the strains. However, investigation at gene expression level would be useful to analyze the overproduction of carboxylesterase enzyme.Keywords: carboxylesterase, CarE gene, nucleotide polymorphism, insecticide resistance, spodoptera litura
Procedia PDF Downloads 9301549 Antimicrobial Resistance Patterns of Campylobacter from Pig and Cattle Carcasses in Poland
Authors: Renata Szewczyk, Beata Lachtara, Kinga Wieczorek, Jacek Osek
Abstract:
Campylobacter is recognized as the main cause of bacterial gastrointestinal infections in Europe. A main source of the pathogen is poultry and poultry meat; however, other animals like pigs and cattle can also be reservoirs of the bacteria. Human Campylobacter infections are often self-limiting but in some cases, macrolide and fluoroquinolones have to be used. The aim of this study was to determine antimicrobial resistance patterns (AMR) of Campylobacter isolated from pig and cattle carcasses. Between July 2009 and December 2015, 735 swabs from pig (n = 457) and cattle (n = 278) carcasses were collected at Polish slaughterhouses. All samples were tested for the presence of Campylobacter by ISO 10272-1 and confirmed to species level using PCR. The antimicrobial susceptibility of Campylobacter isolates was determined by a microbroth dilution method with six antimicrobials: gentamicin (GEN), streptomycin (STR), erythromycin (ERY), nalidixic acid (NAL), ciprofloxacin (CIP) and tetracycline (TET). It was found that 167 of 735 samples (22.7%) were contaminated with Campylobacter. The vast majority of them were of pig origin (134; 80.2%), whereas for cattle carcasses Campylobacter was less prevalent (33; 19.8%). Among positive samples C. coli was predominant species (123; 73.7%) and it was isolated mainly from pig carcasses. The remaining isolates were identified as C. jejuni (44; 26.3%). Antimicrobial susceptibility indicated that 22 out of 167 Campylobacter (13.2%) were sensitive to all antimicrobials used. Fourteen of them were C. jejuni (63.6%; pig, n = 6; cattle, n = 8) and 8 was C. coli (36.4%; pig, n = 4; cattle, n = 4). Most of the Campylobacter isolates (145; 86.8%) were resistant to one or more antimicrobials (C. coli, n = 115; C. jejuni, n = 30). Comparing the AMR for Campylobacter species it was found that the most common pattern for C. jejuni was CIP-NAL-TET (9; 30.0%), whereas CIP-NAL-STR-TET was predominant among C. coli (47; 40.9%). Multiresistance, defined as resistance to three or more classes of antimicrobials, was found in 57 C. coli strains, mostly obtained from pig (52 isolates). On the other hand, only one C. jejuni strain, isolated from cattle, showed multiresistance with pattern CIP-NAL-STR-TET. Moreover, CIP-NAL-STR-TET was characteristic for most of multiresistant C. coli isolates (47; 82.5%). For the remaining C. coli the resistance patterns were CIP-ERY-NAL-TET (7 strains; 12.3%) and for one strain of each patterns: ERY-STR-TET, CIP-STR-TET, CIP-NAL-GEN-STR-TET. According to the present findings resistance to erythromycin was observed only in 11 C. coli (pig, n = 10; cattle, n = 1). In conclusion, the results of this study showed that pig carcasses may be a serious public health concern because of contamination with C. coli that might features multiresistance to antimicrobials.Keywords: antimicrobial resistance, Campylobacter, carcasses, multi resistance
Procedia PDF Downloads 3391548 Estimation of Physico-Mechanical Properties of Tuffs (Turkey) from Indirect Methods
Authors: Mustafa Gok, Sair Kahraman, Mustafa Fener
Abstract:
In rock engineering applications, determining uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), and basic index properties such as density, porosity, and water absorption is crucial for the design of both underground and surface structures. However, obtaining reliable samples for direct testing, especially from rocks that weather quickly and have low strength, is often challenging. In such cases, indirect methods provide a practical alternative to estimate the physical and mechanical properties of these rocks. In this study, tuff samples collected from the Cappadocia region (Nevşehir) in Turkey were subjected to indirect testing methods. Over 100 tests were conducted, using needle penetrometer index (NPI), point load strength index (PLI), and disc shear index (BPI) to estimate the uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), density, and water absorption index of the tuffs. The relationships between the results of these indirect tests and the target physical properties were evaluated using simple and multiple regression analyses. The findings of this research reveal strong correlations between the indirect methods and the mechanical properties of the tuffs. Both uniaxial compressive strength and Brazilian tensile strength could be accurately predicted using NPI, PLI, and BPI values. The regression models developed in this study allow for rapid, cost-effective assessments of tuff strength in cases where direct testing is impractical. These results are particularly valuable for geological engineering applications, where time and resource constraints exist. This study highlights the significance of using indirect methods as reliable predictors of the mechanical behavior of weak rocks like tuffs. Further research is recommended to explore the application of these methods to other rock types with similar characteristics. Further research is required to compare the results with those of established direct test methods.Keywords: brazilian tensile strength, disc shear strength, indirect methods, tuffs, uniaxial compressive strength
Procedia PDF Downloads 241547 Tree Resistance to Wind Storm: The Effects of Soil Saturation on Tree Anchorage of Young Pinus pinaster
Authors: P. Defossez, J. M. Bonnefond, D. Garrigou, P. Trichet, F. Danjon
Abstract:
Windstorm damage to European forests has ecological, social and economic consequences of major importance. Most trees during storms are uprooted. While a large amount of work has been done over the last decade on understanding the aerial tree response to turbulent wind flow, much less is known about the root-soil interface, and the impact of soil moisture and root-soil system fatiguing on tree uprooting. Anchorage strength is expected to be reduced by water-logging and heavy rain during storms due to soil strength decrease with soil water content. Our paper is focused on the maritime pine cultivated on sandy soil, as a representative species of the Forêt des Landes, the largest cultivated forest in Europe. This study aims at providing knowledge on the effects of soil saturation on root anchorage. Pulling experiments on trees were performed to characterize the resistance to wind by measuring the critical bending moment (Mc). Pulling tests were performed on 12 maritime pines of 13-years old for two unsaturated soil conditions that represent the soil conditions expected in winter when wind storms occur in France (w=11.46 to 23.34 % gg⁻¹). A magnetic field digitizing technique was used to characterize the three-dimensional architecture of root systems. The soil mechanical properties as function of soil water content were characterized by laboratory mechanical measurements as function of soil water content and soil porosity on remolded samples using direct shear tests at low confining pressure ( < 15 kPa). Remarkably Mc did not depend on w but mainly on the root system morphology. We suggested that the importance of soil water conditions on tree anchorage depends on the tree size. This study gives a new insight on young tree anchorage: roots may sustain by themselves anchorage, whereas adhesion between roots and surrounding soil may be negligible in sandy soil.Keywords: roots, sandy soil, shear strength, tree anchorage, unsaturated soil
Procedia PDF Downloads 2991546 Effect of Microstructure and Texture of Magnesium Alloy Due to Addition of Pb
Authors: Yebeen Ji, Jimin Yun, Kwonhoo Kim
Abstract:
Magnesium alloys were limited for industrial applications due to having a limited slip system and high plastic anisotropy. It has been known that specific textures were formed during processing (rolling, etc.), and These textures cause poor formability. To solve these problems, many researchers have studied controlling texture by adding rare-earth elements. However, the high cost limits their use; therefore, alternatives are needed to replace them. Although Pb addition doesn’t directly improve magnesium properties, it has been known to suppress the diffusion of other alloying elements and reduce grain boundary energy. These characteristics are similar to the additions of rare-earth elements, and a similar texture behavior is expected as well. However, there is insufficient research on this. Therefore, this study investigates the behavior of texture and microstructure development after adding Pb to magnesium. This study compared and analyzed AZ61 alloy and Mg-15wt%Pb alloy to determine the effect of adding solute elements. The alloy was hot rolled and annealed to form a single phase and initial texture. Afterward, the specimen was set to contraction and elongate parallel to the rolling surface and the rolling direction and then subjected to high-temperature plane strain compression under the conditions of 723K and 0.05/s. Microstructural analysis and texture measurements were performed by SEM-EBSD. The peak stress in the true strain-stress curve after compression was higher in AZ61, but the shape of the flow curve was similar for both alloys. For both alloys, continuous dynamic recrystallization was confirmed to occur during the compression process. The basal texture developed parallel to the compressed surface, and the pole density was lower in the Mg-15wt%Pb alloy. It is confirmed that this change in behavior is because the orientation distribution of recrystallized grains has a more random orientation compared to the parent grains when Pb is added.Keywords: Mg, texture, Pb, DRX
Procedia PDF Downloads 531545 Changed Behavior of the Porcine Hemagglutinating Encephalomyelitis Virus (Betacoronavirus) in Respiratory Epithelial Cells
Authors: Ateeqa Aslam, Hans J. Nauwynck
Abstract:
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a betacoronavirus that has been studied in the past as a cause of vomiting and wasting disease (VWD) in young piglets (<3 weeks). Nowadays, the virus is still circulating on most farms in Belgium, but there are no descriptions anymore of VWD. Therefore, we are interested in differences between the old and new strains. We compared the replication kinetics of the old well-studied strain VW572 (1972) and the recent isolate P412 (2020) in a susceptible continuous cell line (RPD cells) and in primary porcine respiratory epithelial cells (PoRECs). The RPD cell line was inoculated with each PHEV strain at an m.o.i. of 1 the supernatant was collected, and the cells were fixed at different time points post-inoculation. The supernatant was titrated (extracellular virus titer), and the infected cells were revealed by immunofluorescence staining and quantitated by fluorescence microscopy. We found that VW572 replicated better in the RPD cell line at earlier time points when compared to P412. Porcine respiratory epithelial cells (PoREC) were isolated, grown at air-liquid interphase in transwells and inoculated with both strains of PHEV at a virus titer of 106.6TCID50 per 200 µl either at the apical side or at the basal side of the cells. At different time points after inoculation, the transwells were fixed and stained for infected cells. VW572 preferentially infected the epithelial cells via the basolateral side of porcine nasal epithelial cells, whereas P412 preferred the apical side. These findings suggest that there has been an evolution of PHEV in its interaction with the respiratory epithelial cells. In the future, more virus strains will be enclosed and the tropism of the strains for different neuronal cell types will be examined for the change in virus neurotropism.Keywords: porcine hemagglutinating encephalomyelitis virus (PHEV), primary porcine respiratory epithelial cells (PoRECs), virus tropism, vomiting and wasting disease (VWD)
Procedia PDF Downloads 671544 Development of Monoclonal Antibodies against the Acute Hepatopancreatic Necrosis Disease Toxins
Authors: Naveen Kumar B. T., Anuj Tyagi, Niraj Kumar Singh, Visanu Boonyawiwat, Shanthanagouda A. H., Orawan Boodde, Shankar K. M., Prakash Patil, Shubhkaramjeet Kaur
Abstract:
Since 2009, Acute Hepatopancreatic Necrosis Disease (AHPND) outbreaks have increased rapidly, and these have led to the major economic losses to the global shrimp industry. In comparison to other treatments, passive immunity and monoclonal antibody (MAb) based farmer level kit have proved their importance in controlling and treating the diseases in the shrimp industry. In the present study, MAbs were produced against the recombinant PirB protein Vibrio parahaemolyticus strain causing AHPND. Briefly, Balb/C mice were immunized with rPirB at 15 days interval, and antibody titer was determined by ELISA. Spleen cells from mice showing high antibody titer were fused with SP2O myeloma cells for hybridoma production. Among 130 hybridomas, four showed high antibody titer and positive reactivity in an immunoblot assay. In Western blot assay, three out of four MAbs (4C4, 2C2 and 4G3) showed reactivity to rPirB protein. However, in the natural host, only Mab clone 4G3 show strong reactivity (with a strain of V. parahemolyticus causing EMS/AHPND). These clones also showed reactivity with less than 20 kDa proteins in AHPND free V. parahaemolyticus (Thailand stain). Further, on from MAb 4G3 clone, four panels of single cell MAbs clones (G3F5, G3B8, G3H2, and G3D6) were produced of which three showed strong positive reactivity to rPirB protein in the Western blot. These MAbs have potential for controlling and prevention of the AHPND through passive immunity and development of filed level rapid diagnostic kits.Keywords: shrimp, economic loss, AHPND, MAb
Procedia PDF Downloads 2551543 Influence of the Moisture Content on the Flowability of Fine-Grained Iron Ore Concentrate
Authors: C. Lanzerstorfer, M. Hinterberger
Abstract:
The iron content of the ore used is crucial for the productivity and coke consumption rate in blast furnace pig iron production. Therefore, most iron ore deposits are processed in beneficiation plants to increase the iron content and remove impurities. In several comminution stages, the particle size of the ore is reduced to ensure that the iron oxides are physically liberated from the gangue. Subsequently, physical separation processes are applied to concentrate the iron ore. The fine-grained ore concentrates produced need to be transported, stored, and processed. For smooth operation of these processes, the flow properties of the material are crucial. The flowability of powders depends on several properties of the material: grain size, grain size distribution, grain shape, and moisture content of the material. The flowability of powders can be measured using ring shear testers. In this study, the influence of the moisture content on the flowability for the Krivoy Rog magnetite iron ore concentrate was investigated. Dry iron ore concentrate was mixed with varying amounts of water to produce samples with a moisture content in the range of 0.2 to 12.2%. The flowability of the samples was investigated using a Schulze ring shear tester. At all measured values of the normal stress (1.0 kPa – 20 kPa), the flowability decreased significantly from dry ore to a moisture content of approximately 3-5%. At higher moisture contents, the flowability was nearly constant, while at the maximum moisture content the flowability improved for high values of the normal stress only. The results also showed an improving flowability with increasing consolidation stress for all moisture content levels investigated. The wall friction angle of the dust with carbon steel (S235JR), and an ultra-high molecule low-pressure polyethylene (Robalon) was also investigated. The wall friction angle increased significantly from dry ore to a moisture content of approximately 3%. For higher moisture content levels, the wall friction angles were nearly constant. Generally, the wall friction angle was approximately 4° lower at the higher wall normal stress.Keywords: iron ore concentrate, flowability, moisture content, wall friction angle
Procedia PDF Downloads 3201542 An Atomistic Approach to Define Continuum Mechanical Quantities in One Dimensional Nanostructures at Finite Temperature
Authors: Smriti, Ajeet Kumar
Abstract:
We present a variant of the Irving-Kirkwood procedure to obtain the microscopic expressions of the cross-section averaged continuum fields such as internal force and moment in one-dimensional nanostructures in the non-equilibrium setting. In one-dimensional continuum theories for slender bodies, we deal with quantities such as mass, linear momentum, angular momentum, and strain energy densities, all defined per unit length. These quantities are obtained by integrating the corresponding pointwise (per unit volume) quantities over the cross-section of the slender body. However, no well-defined cross-section exists for these nanostructures at finite temperature. We thus define the cross-section of a nanorod to be an infinite plane which is fixed in space even when time progresses and defines the above continuum quantities by integrating the pointwise microscopic quantities over this infinite plane. The method yields explicit expressions of both the potential and kinetic parts of the above quantities. We further specialize in these expressions for helically repeating one-dimensional nanostructures in order to use them in molecular dynamics study of extension, torsion, and bending of such nanostructures. As, the Irving-Kirkwood procedure does not yield expressions of stiffnesses, we resort to a thermodynamic equilibrium approach to obtain the expressions of axial force, twisting moment, bending moment, and the associated stiffnesses by taking the first and second derivatives of the Helmholtz free energy with respect to conjugate strain measures. The equilibrium approach yields expressions independent of kinetic terms. We then establish the equivalence of the expressions obtained using the two approaches. The derived expressions are used to understand the extension, torsion, and bending of single-walled carbon nanotubes at non-zero temperatures.Keywords: thermoelasticity, molecular dynamics, one dimensional nanostructures, nanotube buckling
Procedia PDF Downloads 1301541 The Social Ecology of Serratia entomophila: Pathogen of Costelytra giveni
Authors: C. Watson, T. Glare, M. O'Callaghan, M. Hurst
Abstract:
The endemic New Zealand grass grub (Costelytra giveni, Coleoptera: Scarabaeidae) is an economically significant grassland pest in New Zealand. Due to their impacts on production within the agricultural sector, one of New Zealand's primary industries, several methods are being used to either control or prevent the establishment of new grass grub populations in the pasture. One such method involves the use of a biopesticide based on the bacterium Serratia entomophila. This species is one of the causative agents of amber disease, a chronic disease of the larvae which results in death via septicaemia after approximately 2 to 3 months. The ability of S. entomophila to cause amber disease is dependant upon the presence of the amber disease associated plasmid (pADAP), which encodes for the key virulence determinants required for the establishment and maintenance of the disease. Following the collapse of grass grub populations within the soil, resulting from either natural population build-up or application of the bacteria, non-pathogenic plasmid-free Serratia strains begin to predominate within the soil. Whilst the interactions between S. entomophila and grass grub larvae are well studied, less information is known on the interactions between plasmid-bearing and plasmid-free strains, particularly the potential impact of these interactions upon the efficacy of an applied biopesticide. Using a range of constructed strains with antibiotic tags, in vitro (broth culture) and in vivo (soil and larvae) experiments were conducted using inoculants comprised of differing ratios of isogenic pathogenic and non-pathogenic Serratia strains, enabling the relative growth of pADAP+ and pADAP- strains under competition conditions to be assessed. In nutrient-rich, the non-pathogenic pADAP- strain outgrew the pathogenic pADAP+ strain by day 3 when inoculated in equal quantities, and by day 5 when applied as the minority inoculant, however, there was an overall gradual decline in the number of viable bacteria for both strains over a 7-day period. Similar results were obtained in additional experiments using the same strains and continuous broth cultures re-inoculated at 24-hour intervals, although in these cultures, the viable cell count did not diminish over the 7-day period. When the same ratios were assessed in soil microcosms with limited available nutrients, the strains remained relatively stable over a 2-month period. Additionally, in vivo grass grub co-infections assays using the same ratios of tagged Serratia strains revealed similar results to those observed in the soil, but there was also evidence of horizontal transfer of pADAP from the pathogenic to the non-pathogenic strain within the larval gut after a period of 4 days. Whilst the influence of competition is more apparent in broth cultures than within the soil or larvae, further testing is required to determine whether this competition between pathogenic and non-pathogenic Serratia strains has any influence on efficacy and disease progression, and how this may impact on the ability of S. entomophila to cause amber disease within grass grub larvae when applied as a biopesticide.Keywords: biological control, entomopathogen, microbial ecology, New Zealand
Procedia PDF Downloads 1581540 A Dynamic Mechanical Thermal T-Peel Test Approach to Characterize Interfacial Behavior of Polymeric Textile Composites
Authors: J. R. Büttler, T. Pham
Abstract:
Basic understanding of interfacial mechanisms is of importance for the development of polymer composites. For this purpose, we need techniques to analyze the quality of interphases, their chemical and physical interactions and their strength and fracture resistance. In order to investigate the interfacial phenomena in detail, advanced characterization techniques are favorable. Dynamic mechanical thermal analysis (DMTA) using a rheological system is a sensitive tool. T-peel tests were performed with this system, to investigate the temperature-dependent peel behavior of woven textile composites. A model system was made of polyamide (PA) woven fabric laminated with films of polypropylene (PP) or PP modified by grafting with maleic anhydride (PP-g-MAH). Firstly, control measurements were performed with solely PP matrixes. Polymer melt investigations, as well as the extensional stress, extensional viscosity and extensional relaxation modulus at -10°C, 100 °C and 170 °C, demonstrate similar viscoelastic behavior for films made of PP-g-MAH and its non-modified PP-control. Frequency sweeps have shown that PP-g-MAH has a zero phase viscosity of around 1600 Pa·s and PP-control has a similar zero phase viscosity of 1345 Pa·s. Also, the gelation points are similar at 2.42*104 Pa (118 rad/s) and 2.81*104 Pa (161 rad/s) for PP-control and PP-g-MAH, respectively. Secondly, the textile composite was analyzed. The extensional stress of PA66 fabric laminated with either PP-control or PP-g-MAH at -10 °C, 25 °C and 170 °C for strain rates of 0.001 – 1 s-1 was investigated. The laminates containing the modified PP need more stress for T-peeling. However, the strengthening effect due to the modification decreases by increasing temperature and at 170 °C, just above the melting temperature of the matrix, the difference disappears. Independent of the matrix used in the textile composite, there is a decrease of extensional stress by increasing temperature. It appears that the more viscous is the matrix, the weaker the laminar adhesion. Possibly, the measurement is influenced by the fact that the laminate becomes stiffer at lower temperatures. Adhesive lap-shear testing at room temperature supports the findings obtained with the T-peel test. Additional analysis of the textile composite at the microscopic level ensures that the fibers are well embedded in the matrix. Atomic force microscopy (AFM) imaging of a cross section of the composite shows no gaps between the fibers and matrix. Measurements of the water contact angle show that the MAH grafted PP is more polar than the virgin-PP, and that suggests a more favorable chemical interaction of PP-g-MAH with PA, compared to the non-modified PP. In fact, this study indicates that T-peel testing by DMTA is a technique to achieve more insights into polymeric textile composites.Keywords: dynamic mechanical thermal analysis, interphase, polyamide, polypropylene, textile composite
Procedia PDF Downloads 1301539 Enhanced Anti-Obesity Effect of Soybean by Fermentation with Lactobacillus plantarum P1201 in 3T3-L1 Adipocyte
Authors: Chengliang Xie, Jinhyun Ryu, Hyun Joon Kim, Gyeong Jae Cho, Wan Sung Choi, Sang Soo Kang, Kye Man Cho, Dong Hoon Lee
Abstract:
Obesity has become a global health problem and a source of major metabolic diseases like type-2 diabetes, hypertension, heart disease, nonalcoholic fatty liver and cancer. Synthetic anti-obesity drugs are effective but very costly and with undesirable side effects, so natural products such as soybean are needed as an alternative for obesity treatment. Lactobacillus Plantarum P1201is a probiotic bacterial strain reported to produce conjugated linoleic acid (CLA) and increase the ratio of aglycone-isoflavone of soybean, both of which have anti-obesity effect. In this study, the anti-obesity effect of the fermented soybean extract with P1201 (FSE) will be evaluated compared with that of the soybean extract (SE) by 3T3-L1 cells as an in vitro model of adipogenesis. 3T3-L1 cells were treated with SE and FSE during the nine days of the differentiation, lipid accumulation was evaluated by oil-red staining and triglyceride content and the mRNA expression level of adipogenic or lipogenic genes were analyzed by RT-PCR and qPCR. The results showed that formation of lipid droplets in differentiated 3T3-L1 cells was inhibited and triglyceride content was reduced by 23.1% after treated with 1000 μg/mL of FSE compared with control. For SE-treated groups, no delipidating effect was observed. The effect of FSE on adipogenesis inhibition can be attributed to the down-regulation of mRNA expressionof CCAAT/enhancer binding protein (C/EBP-α), lipoprotein lipase (LPL), adiponectin, adipocyte fatty acid-binding protein (aP2), fatty acid synthesis (FAS) and CoA carboxylase (ACC). Our results demonstrated that the anti-obesity effect of soybean can be improved by fermentation with P1201, and P1201can be used as a potential probiotic bacterial strain to produce natural anti-obesity food.Keywords: fermentation, Lactobacillus plantarum P1201, obesity, soybean
Procedia PDF Downloads 3351538 Successful Treatment of Multifocal XDR Tuberculosis Osteomyelitis
Authors: Abeer N. Alshukairi, Abdulrahman A. Alrajhi, Abdulfattah W. Alamri, Adel F. Alothman
Abstract:
We described the nosocomial transmission of a pre-XDR or an MDR case of pulmonary tuberculosis in a HIV negative health care worker in an area endemic for MDR & XDR tuberculosis. With inadequate therapy and non-compliance, his strain developed acquired resistance and he presented with extra-pulmonary XDR tuberculosis in the form of multi-focal osteomyelitis and encysted pleural effusion. He was cured after 2 years of therapy with various anti-tuberculous drugs in addition to interferon gamma.Keywords: osteomyelitis, treatment, XDR tuberculosis, successful treatment
Procedia PDF Downloads 4851537 Application of Seismic Refraction Method in Geotechnical Study
Authors: Abdalla Mohamed M. Musbahi
Abstract:
The study area lies in Al-Falah area on Airport-Tripoli in Zone (16) Where planned establishment of complex multi-floors for residential and commercial, this part was divided into seven subzone. In each sup zone, were collected Orthogonal profiles by using Seismic refraction method. The overall aim with this project is to investigate the applicability of Seismic refraction method is a commonly used traditional geophysical technique to determine depth-to-bedrock, competence of bedrock, depth to the water table, or depth to other seismic velocity boundaries The purpose of the work is to make engineers and decision makers recognize the importance of planning and execution of a pre-investigation program including geophysics and in particular seismic refraction method. The overall aim with this thesis is achieved by evaluation of seismic refraction method in different scales, determine the depth and velocity of the base layer (bed-rock). Calculate the elastic property in each layer in the region by using the Seismic refraction method. The orthogonal profiles was carried out in every subzones of (zone 16). The layout of the seismic refraction set up is schematically, the geophones are placed on the linear imaginary line whit a 5 m spacing, the three shot points (in beginning of layout–mid and end of layout) was used, in order to generate the P and S waves. The 1st and last shot point is placed about 5 meters from the geophones and the middle shot point is put in between 12th to 13th geophone, from time-distance curve the P and S waves was calculated and the thickness was estimated up to three-layers. As we know any change in values of physical properties of medium (shear modulus, bulk modulus, density) leads to change waves velocity which passing through medium where any change in properties of rocks cause change in velocity of waves. because the change in properties of rocks cause change in parameters of medium density (ρ), bulk modulus (κ), shear modulus (μ). Therefore, the velocity of waves which travel in rocks have close relationship with these parameters. Therefore we can estimate theses parameters by knowing primary and secondary velocity (p-wave, s-wave).Keywords: application of seismic, geotechnical study, physical properties, seismic refraction
Procedia PDF Downloads 4961536 Analysis of Stress and Strain in Head Based Control of Cooperative Robots through Tetraplegics
Authors: Jochen Nelles, Susanne Kohns, Julia Spies, Friederike Schmitz-Buhl, Roland Thietje, Christopher Brandl, Alexander Mertens, Christopher M. Schlick
Abstract:
Industrial robots as part of highly automated manufacturing are recently developed to cooperative (light-weight) robots. This offers the opportunity of using them as assistance robots and to improve the participation in professional life of disabled or handicapped people such as tetraplegics. Robots under development are located within a cooperation area together with the working person at the same workplace. This cooperation area is an area where the robot and the working person can perform tasks at the same time. Thus, working people and robots are operating in the immediate proximity. Considering the physical restrictions and the limited mobility of tetraplegics, a hands-free robot control could be an appropriate approach for a cooperative assistance robot. To meet these requirements, the research project MeRoSy (human-robot synergy) develops methods for cooperative assistance robots based on the measurement of head movements of the working person. One research objective is to improve the participation in professional life of people with disabilities and, in particular, mobility impaired persons (e.g. wheelchair users or tetraplegics), whose participation in a self-determined working life is denied. This raises the research question, how a human-robot cooperation workplace can be designed for hands-free robot control. Here, the example of a library scenario is demonstrated. In this paper, an empirical study that focuses on the impact of head movement related stress is presented. 12 test subjects with tetraplegia participated in the study. Tetraplegia also known as quadriplegia is the worst type of spinal cord injury. In the experiment, three various basic head movements were examined. Data of the head posture were collected by a motion capture system; muscle activity was measured via surface electromyography and the subjective mental stress was assessed via a mental effort questionnaire. The muscle activity was measured for the sternocleidomastoid (SCM), the upper trapezius (UT) or trapezius pars descendens, and the splenius capitis (SPL) muscle. For this purpose, six non-invasive surface electromyography sensors were mounted on the head and neck area. An analysis of variance shows differentiated muscular strains depending on the type of head movement. Systematically investigating the influence of different basic head movements on the resulting strain is an important issue to relate the research results to other scenarios. At the end of this paper, a conclusion will be drawn and an outlook of future work will be presented.Keywords: assistance robot, human-robot interaction, motion capture, stress-strain-concept, surface electromyography, tetraplegia
Procedia PDF Downloads 3191535 Micromechanical Modelling of Ductile Damage with a Cohesive-Volumetric Approach
Authors: Noe Brice Nkoumbou Kaptchouang, Pierre-Guy Vincent, Yann Monerie
Abstract:
The present work addresses the modelling and the simulation of crack initiation and propagation in ductile materials which failed by void nucleation, growth, and coalescence. One of the current research frameworks on crack propagation is the use of cohesive-volumetric approach where the crack growth is modelled as a decohesion of two surfaces in a continuum material. In this framework, the material behavior is characterized by two constitutive relations, the volumetric constitutive law relating stress and strain, and a traction-separation law across a two-dimensional surface embedded in the three-dimensional continuum. Several cohesive models have been proposed for the simulation of crack growth in brittle materials. On the other hand, the application of cohesive models in modelling crack growth in ductile material is still a relatively open field. One idea developed in the literature is to identify the traction separation for ductile material based on the behavior of a continuously-deforming unit cell failing by void growth and coalescence. Following this method, the present study proposed a semi-analytical cohesive model for ductile material based on a micromechanical approach. The strain localization band prior to ductile failure is modelled as a cohesive band, and the Gurson-Tvergaard-Needleman plasticity model (GTN) is used to model the behavior of the cohesive band and derived a corresponding traction separation law. The numerical implementation of the model is realized using the non-smooth contact method (NSCD) where cohesive models are introduced as mixed boundary conditions between each volumetric finite element. The present approach is applied to the simulation of crack growth in nuclear ferritic steel. The model provides an alternative way to simulate crack propagation using the numerical efficiency of cohesive model with a traction separation law directly derived from porous continuous model.Keywords: ductile failure, cohesive model, GTN model, numerical simulation
Procedia PDF Downloads 1531534 Study of Formation and Evolution of Disturbance Waves in Annular Flow Using Brightness-Based Laser-Induced Fluorescence (BBLIF) Technique
Authors: Andrey Cherdantsev, Mikhail Cherdantsev, Sergey Isaenkov, Dmitriy Markovich
Abstract:
In annular gas-liquid flow, liquid flows as a film along pipe walls sheared by high-velocity gas stream. Film surface is covered by large-scale disturbance waves which affect pressure drop and heat transfer in the system and are necessary for entrainment of liquid droplets from film surface into the core of gas stream. Disturbance waves are a highly complex and their properties are affected by numerous parameters. One of such aspects is flow development, i.e., change of flow properties with the distance from the inlet. In the present work, this question is studied using brightness-based laser-induced fluorescence (BBLIF) technique. This method enables one to perform simultaneous measurements of local film thickness in large number of points with high sampling frequency. In the present experiments first 50 cm of upward and downward annular flow in a vertical pipe of 11.7 mm i.d. is studied with temporal resolution of 10 kHz and spatial resolution of 0.5 mm. Thus, spatiotemporal evolution of film surface can be investigated, including scenarios of formation, acceleration and coalescence of disturbance waves. The behaviour of disturbance waves' velocity depending on phases flow rates and downstream distance was investigated. Besides measuring the waves properties, the goal of the work was to investigate the interrelation between disturbance waves properties and integral characteristics of the flow such as interfacial shear stress and flow rate of dispersed phase. In particular, it was shown that the initial acceleration of disturbance waves, defined by the value of shear stress, linearly decays with downstream distance. This lack of acceleration which may even lead to deceleration is related to liquid entrainment. Flow rate of disperse phase linearly grows with downstream distance. During entrainment events, liquid is extracted directly from disturbance waves, reducing their mass, area of interaction to the gas shear and, hence, velocity. Passing frequency of disturbance waves at each downstream position was measured automatically with a new algorithm of identification of characteristic lines of individual disturbance waves. Scenarios of coalescence of individual disturbance waves were identified. Transition from initial high-frequency Kelvin-Helmholtz waves appearing at the inlet to highly nonlinear disturbance waves with lower frequency was studied near the inlet using 3D realisation of BBLIF method in the same cylindrical channel and in a rectangular duct with cross-section of 5 mm by 50 mm. It was shown that the initial waves are generally two-dimensional but are promptly broken into localised three-dimensional wavelets. Coalescence of these wavelets leads to formation of quasi two-dimensional disturbance waves. Using cross-correlation analysis, loss and restoration of two-dimensionality of film surface with downstream distance were studied quantitatively. It was shown that all the processes occur closer to the inlet at higher gas velocities.Keywords: annular flow, disturbance waves, entrainment, flow development
Procedia PDF Downloads 2561533 Polyurethane Membrane Mechanical Property Study for a Novel Carotid Covered Stent
Authors: Keping Zuo, Jia Yin Chia, Gideon Praveen Kumar Vijayakumar, Foad Kabinejadian, Fangsen Cui, Pei Ho, Hwa Liang Leo
Abstract:
Carotid artery is the major vessel supplying blood to the brain. Carotid artery stenosis is one of the three major causes of stroke and the stroke is the fourth leading cause of death and the first leading cause of disability in most developed countries. Although there is an increasing interest in carotid artery stenting for treatment of cervical carotid artery bifurcation therosclerotic disease, currently available bare metal stents cannot provide an adequate protection against the detachment of the plaque fragments over diseased carotid artery, which could result in the formation of micro-emboli and subsequent stroke. Our research group has recently developed a novel preferential covered-stent for carotid artery aims to prevent friable fragments of atherosclerotic plaques from flowing into the cerebral circulation, and yet retaining the ability to preserve the flow of the external carotid artery. The preliminary animal studies have demonstrated the potential of this novel covered-stent design for the treatment of carotid therosclerotic stenosis. The purpose of this study is to evaluate the biomechanical property of PU membrane of different concentration configurations in order to refine the stent coating technique and enhance the clinical performance of our novel carotid covered stent. Results from this study also provide necessary material property information crucial for accurate simulation analysis for our stents. Method: Medical grade Polyurethane (ChronoFlex AR) was used to prepare PU membrane specimens. Different PU membrane configurations were subjected to uniaxial test: 22%, 16%, and 11% PU solution were made by mixing the original solution with proper amount of the Dimethylacetamide (DMAC). The specimens were then immersed in physiological saline solution for 24 hours before test. All specimens were moistened with saline solution before mounting and subsequent uniaxial testing. The specimens were preconditioned by loading the PU membrane sample to a peak stress of 5.5 Mpa for 10 consecutive cycles at a rate of 50 mm/min. The specimens were then stretched to failure at the same loading rate. Result: The results showed that the stress-strain response curves of all PU membrane samples exhibited nonlinear characteristic. For the ultimate failure stress, 22% PU membrane was significantly higher than 16% (p<0.05). In general, our preliminary results showed that lower concentration PU membrane is stiffer than the higher concentration one. From the perspective of mechanical properties, 22% PU membrane is a better choice for the covered stent. Interestingly, the hyperelastic Ogden model is able to accurately capture the nonlinear, isotropic stress-strain behavior of PU membrane with R2 of 0.9977 ± 0.00172. This result will be useful for future biomechanical analysis of our stent designs and will play an important role for computational modeling of our covered stent fatigue study.Keywords: carotid artery, covered stent, nonlinear, hyperelastic, stress, strain
Procedia PDF Downloads 3131532 Ectoine: A Compatible Solute in Radio-Halophilic Stenotrophomonas sp. WMA-LM19 Strain to Prevent Ultraviolet-Induced Protein Damage
Authors: Wasim Sajjad, Manzoor Ahmad, Sundas Qadir, Muhammad Rafiq, Fariha Hasan, Richard Tehan, Kerry L. McPhail, Aamer Ali Shah
Abstract:
Aim: This study aims to investigate the possible radiation protective role of a compatible solute in the tolerance of radio-halophilic bacterium against stresses, like desiccation and exposure to ionizing radiation. Methods and Results: Nine different radio-resistant bacteria were isolated from desert soil, where strain WMA-LM19 was chosen for detailed studies on the basis of its high tolerance for ultraviolet radiation among all these isolates. 16S rRNA gene sequencing indicated that the bacterium was closely related to Stenotrophomonas sp. (KT008383). A bacterial milking strategy was applied for extraction of intracellular compatible solutes in 70% (v/v) ethanol, which were purified by high-performance liquid chromatography (HPLC). The compound was characterized as ectoine by 1H and 13C nuclear magnetic resonance (NMR), and mass spectrometry (MS). Ectoine demonstrated more efficient preventive activity (54.80%) to erythrocyte membranes and also inhibited oxidative damage to proteins and lipids in comparison to the standard ascorbic acid. Furthermore, a high level of ectoine-mediated protection of bovine serum albumin against ionizing radiation (1500-2000 Jm-2) was observed, as indicated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. Conclusion: The results indicated that ectoine can be used as a potential mitigator and radio-protective agent to overcome radiation- and salinity-mediated oxidative damage in extreme environments. Significance and Impact of the Study: This study shows that ectoine from radio-halophiles can be used as a potential source in topical creams as sunscreen. The investigation of ectoine as UV protectant also changes the prospective that radiation resistance is specific only to molecular adaptation.Keywords: ectoine, anti-oxidant, stenotrophomonas sp., ultraviolet radiation
Procedia PDF Downloads 2141531 Effects of Moisture on Fatigue Behavior of Asphalt Concrete Mixtures Using Four-Point Bending Test
Authors: Mohit Chauhan, Atul Narayan
Abstract:
Moisture damage is the continuous deterioration of asphalt concrete mixtures by the loss of adhesive bond between the asphalt binder and aggregates, or loss of cohesive bonds within the asphalt binder in the presence of moisture. Moisture has been known to either cause or exacerbates distresses in asphalt concrete pavements. Since moisture would often retain for a relatively long duration at the bottom of asphalt concrete layer, the movement of traffic loading in this saturated condition would cause excess stresses or strains within the mixture. This would accelerate the degradation of the adhesion and cohesion within the mixture and likely to contribute the development of fatigue cracking in asphalt concrete pavements. In view of this, it is important to investigate the effect of moisture on the fatigue behavior of asphalt concrete mixtures. In this study, changes in fatigue characteristics after moisture conditioning were evaluated by conducting four-point beam fatigue tests on dry and moisture conditioned specimens. For this purpose, mixtures with two different types of binders were prepared and saturated with moisture using 700 mm Hg vacuum. Beam specimens, in this way, were taken to a saturation level of 65-75 percent. After preconditioning specimens in this degree of saturation and 60°C for a period of 24 hours, they were subjected to four point beam fatigue tests in strain-controlled mode with a strain amplitude of 400 microstrain. The results were then compared with the fatigue test results obtained with beam specimens that were not subjected to moisture conditioning. Test results show that the conditioning reduces both fatigue life and initial flexural stiffness of specimen significantly. The moisture conditioning was also found to increase the rate of reduction of flexural stiffness. Moreover, it was observed that the fatigue life ratio (FLR), the ratio of the fatigue life of the moisture conditioned sample to that of the dry sample, is significantly lower than the flexural stiffness ratio (FSR). The study indicates that four-point bending test is an appropriate tool with FLR and FSR as the potential parameters for moisture-sensitivity evaluation.Keywords: asphalt concrete, fatigue cracking, moisture damage, preconditioning
Procedia PDF Downloads 1411530 Predictions for the Anisotropy in Thermal Conductivity in Polymers Subjected to Model Flows by Combination of the eXtended Pom-Pom Model and the Stress-Thermal Rule
Authors: David Nieto Simavilla, Wilco M. H. Verbeeten
Abstract:
The viscoelastic behavior of polymeric flows under isothermal conditions has been extensively researched. However, most of the processing of polymeric materials occurs under non-isothermal conditions and understanding the linkage between the thermo-physical properties and the process state variables remains a challenge. Furthermore, the cost and energy required to manufacture, recycle and dispose polymers is strongly affected by the thermo-physical properties and their dependence on state variables such as temperature and stress. Experiments show that thermal conductivity in flowing polymers is anisotropic (i.e. direction dependent). This phenomenon has been previously omitted in the study and simulation of industrially relevant flows. Our work combines experimental evidence of a universal relationship between thermal conductivity and stress tensors (i.e. the stress-thermal rule) with differential constitutive equations for the viscoelastic behavior of polymers to provide predictions for the anisotropy in thermal conductivity in uniaxial, planar, equibiaxial and shear flow in commercial polymers. A particular focus is placed on the eXtended Pom-Pom model which is able to capture the non-linear behavior in both shear and elongation flows. The predictions provided by this approach are amenable to implementation in finite elements packages, since viscoelastic and thermal behavior can be described by a single equation. Our results include predictions for flow-induced anisotropy in thermal conductivity for low and high density polyethylene as well as confirmation of our method through comparison with a number of thermoplastic systems for which measurements of anisotropy in thermal conductivity are available. Remarkably, this approach allows for universal predictions of anisotropy in thermal conductivity that can be used in simulations of complex flows in which only the most fundamental rheological behavior of the material has been previously characterized (i.e. there is no need for additional adjusting parameters other than those in the constitutive model). Accounting for polymers anisotropy in thermal conductivity in industrially relevant flows benefits the optimization of manufacturing processes as well as the mechanical and thermal performance of finalized plastic products during use.Keywords: anisotropy, differential constitutive models, flow simulations in polymers, thermal conductivity
Procedia PDF Downloads 1861529 Nondestructive Monitoring of Atomic Reactions to Detect Precursors of Structural Failure
Authors: Volodymyr Rombakh
Abstract:
This article was written to substantiate the possibility of detecting the precursors of catastrophic destruction of a structure or device and stopping operation before it. Damage to solids results from breaking the bond between atoms, which requires energy. Modern theories of strength and fracture assume that such energy is due to stress. However, in a letter to W. Thomson (Lord Kelvin) dated December 18, 1856, J.C. Maxwell provided evidence that elastic energy cannot destroy solids. He proposed an equation for estimating a deformable body's energy, equal to the sum of two energies. Due to symmetrical compression, the first term does not change, but the second term is distortion without compression. Both types of energy are represented in the equation as a quadratic function of strain, but Maxwell repeatedly wrote that it is not stress but strain. Furthermore, he notes that the nature of the energy causing the distortion is unknown to him. An article devoted to theories of elasticity was published in 1850. Maxwell tried to express mechanical properties with the help of optics, which became possible only after the creation of quantum mechanics. However, Maxwell's work on elasticity is not cited in the theories of strength and fracture. The authors of these theories and their associates are still trying to describe the phenomena they observe based on classical mechanics. The study of Faraday's experiments, Maxwell's and Rutherford's ideas, made it possible to discover a previously unknown area of electromagnetic radiation. The properties of photons emitted in this reaction are fundamentally different from those of photons emitted in nuclear reactions and are caused by the transition of electrons in an atom. The photons released during all processes in the universe, including from plants and organs in natural conditions; their penetrating power in metal is millions of times greater than that of one of the gamma rays. However, they are not non-invasive. This apparent contradiction is because the chaotic motion of protons is accompanied by the chaotic radiation of photons in time and space. Such photons are not coherent. The energy of a solitary photon is insufficient to break the bond between atoms, one of the stages of which is ionization. The photographs registered the rail deformation by 113 cars, while the Gaiger Counter did not. The author's studies show that the cause of damage to a solid is the breakage of bonds between a finite number of atoms due to the stimulated emission of metastable atoms. The guarantee of the reliability of the structure is the ratio of the energy dissipation rate to the energy accumulation rate, but not the strength, which is not a physical parameter since it cannot be measured or calculated. The possibility of continuous control of this ratio is due to the spontaneous emission of photons by metastable atoms. The article presents calculation examples of the destruction of energy and photographs due to the action of photons emitted during the atomic-proton reaction.Keywords: atomic-proton reaction, precursors of man-made disasters, strain, stress
Procedia PDF Downloads 951528 Biodegradation of 2,4-Dichlorophenol by Pseudomonas chlororaphis Strain Isolated from Activated Sludge Sample from a Wastewater Treatment Plant in Durban, South Africa
Authors: Boitumelo Setlhare, Mduduzi P. Mokoena, Ademola O. Olaniran
Abstract:
Agricultural and industrial activities have led to increasing production of xenobiotics such as 2,4-dichlorophenol (2,4-DCP), a derivative of 2,4-dichlorophenoxyacetic acid (2,4-D), which is a widely used herbicide. Bioremediation offers an efficient, cost-effective and environmentally friendly method for degradation of the compound through the activities of the various microbial enzymes involved in the catabolic pathway. The aim of this study was to isolate and characterize bacterial isolate indigenous to contaminated sites in Durban, South Africa for 2,4-DCP degradation. One bacterium capable of utilizing 2,4-DCP as sole carbon source was isolated using culture enrichment technique and identified as Pseudomonas chlororaphis strain UFB2 via PCR amplification and analysis of 16S rRNA gene sequence. This isolate was able to degrade up to 75.11% of 2,4-DCP in batch cultures within 10 days, with the degradation rate constant of 0.14 mg/l/d. Phylogenetic analysis revealed the relatedness of this bacterial isolate to other Pseudomonas sp. previously characterized for chlorophenol degradation. PCR amplification of the catabolic genes involved in 2,4-DCP degradation revealed the presence of the correct amplicons for phenol hydroxylase (600 bp), catechol 1,2-dioxygenase (214 bp), muconate isomerase (851 bp), cis-dienelactone hydrolase (577 bp), and trans-dienelactone hydrolase (491 bp) genes. Enzyme assays revealed activity as high as 21840 mU/mg, 15630 mU/mg, 2340 mU/mg and 1490 mU/mg obtained for phenol hydroxylase, catechol 1,2-dioxygenase, cis-dienelactone hydroxylase and trans-dienelactone hydroxylase, respectively. The absence of catechol 2,3-dioxygenase gene and the corresponding enzyme in this isolate suggests that the organism followed ortho-pathway for 2,4-DCP degradation. Furthermore, the absence of malaycetate reductase genes showed that the bacterium may not be able to completely mineralize 2,4-DCP. Further studies are required to optimize 2,4-DCP degradation by this isolate as well as to elucidate the mechanism of 2,4-DCP degradation.Keywords: biodegradation, catechol 1, 2-dioxygenase, 2, 4-dichlorophenol, phenol hydroxylase, Pseudomonas chlororaphis
Procedia PDF Downloads 2551527 Analysis of Bridge-Pile Foundation System in Multi-layered Non-Linear Soil Strata Using Energy-Based Method
Authors: Arvan Prakash Ankitha, Madasamy Arockiasamy
Abstract:
The increasing demand for adopting pile foundations in bridgeshas pointed towardsthe need to constantly improve the existing analytical techniques for better understanding of the behavior of such foundation systems. This study presents a simplistic approach using the energy-based method to assess the displacement responses of piles subjected to general loading conditions: Axial Load, Lateral Load, and a Bending Moment. The governing differential equations and the boundary conditions for a bridge pile embedded in multi-layered soil strata subjected to the general loading conditions are obtained using the Hamilton’s principle employing variational principles and minimization of energies. The soil non-linearity has been incorporated through simple constitutive relationships that account for degradation of soil moduli with increasing strain values.A simple power law based on published literature is used where the soil is assumed to be nonlinear-elastic and perfectly plastic. A Tresca yield surface is assumed to develop the soil stiffness variation with different strain levels that defines the non-linearity of the soil strata. This numerical technique has been applied to a pile foundation in a two - layered soil strata for a pier supporting the bridge and solved using the software MATLAB R2019a. The analysis yields the bridge pile displacements at any depth along the length of the pile. The results of the analysis are in good agreement with the published field data and the three-dimensional finite element analysis results performed using the software ANSYS 2019R3. The methodology can be extended to study the response of the multi-strata soil supporting group piles underneath the bridge piers.Keywords: pile foundations, deep foundations, multilayer soil strata, energy based method
Procedia PDF Downloads 1461526 Coupled Exciton - Surface Plasmon Polariton Enhanced Photoresponse of Two-Dimensional Hydrogenated Honeycomb Silicon Boride
Authors: Farzaneh Shayeganfar, Ali Ramazani
Abstract:
Exciton (strong electronic interaction of electron-hole) and hot carriers created by surface plasmon polaritons has been demonstrated in nanoscale optoelectronic devices, enhancing the photoresponse of the system. Herein, we employ a quantum framework to consider coupled exciton- hot carriers effects on photovoltaiv energy distribution, scattering process, polarizability and light emission of 2D-semicnductor. We use density functional theory (DFT) to design computationally a semi-functionalized 2D honeycomb silicon boride (SiB) monolayer with H atoms, suitable for photovoltaics. The dynamical stability, electronic and optical properties of SiB and semi-hydrogenated SiB structures were investigated utilizing the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The calculated phonon dispersion shows that while an unhydrogenated SiB monolayer is dynamically unstable, surface semi-hydrogenation improves the stability of the structure and leads to a transition from metallic to semiconducting conductivity with a direct band gap of about 1.57 eV, appropriate for photovoltaic applications. The optical conductivity of this H-SiB structure, determined using the random phase approximation (RPA), shows that light adsorption should begin at the boundary of the visible range of light. Additionally, due to hydrogenation, the reflectivity spectrum declines sharply with respect to the unhydrogenated reflectivity spectrum in the IR and visible ranges of light. The energy band gap remains direct, increasing from 0.9 to 1.8 eV, upon increasing the strain from -6% (compressive) to +6% (tensile). Additionally, compressive and tensile strains lead, respectively, to red and blue shifts of optical the conductivity threshold around the visible range of light. Overall, this study suggests that H-SiB monolayers are suitable as two-dimensional solar cell materials.Keywords: surface plasmon, hot carrier, strain engineering, valley polariton
Procedia PDF Downloads 1151525 Analysis for Shear Spinning of Tubes with Hard-To-Work Materials
Authors: Sukhwinder Singh Jolly
Abstract:
Metal spinning is one such process in which the stresses are localized to a small area and the material is made to flow or move over the mandrel with the help of spinning tool. Spinning of tubular products can be performed by two techniques, forward spinning and backward spinning. Many researchers have studied the process both experimentally and analytically. An effort has been made to apply the process to the spinning of thin wall, highly precision, small bore long tube in hard-to-work materials such as titanium.Keywords: metal spinning, hard-to-work materials, roller diameter, power consumption
Procedia PDF Downloads 390