Search results for: results validation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 37867

Search results for: results validation

36667 Reconstruction of Age-Related Generations of Siberian Larch to Quantify the Climatogenic Dynamics of Woody Vegetation Close the Upper Limit of Its Growth

Authors: A. P. Mikhailovich, V. V. Fomin, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova

Abstract:

Woody vegetation among the upper limit of its habitat is a sensitive indicator of biota reaction to regional climate changes. Quantitative assessment of temporal and spatial changes in the distribution of trees and plant biocenoses calls for the development of new modeling approaches based upon selected data from measurements on the ground level and ultra-resolution aerial photography. Statistical models were developed for the study area located in the Polar Urals. These models allow obtaining probabilistic estimates for placing Siberian Larch trees into one of the three age intervals, namely 1-10, 11-40 and over 40 years, based on the Weilbull distribution of the maximum horizontal crown projection. Authors developed the distribution map for larch trees with crown diameters exceeding twenty centimeters by deciphering aerial photographs made by a UAV from an altitude equal to fifty meters. The total number of larches was equal to 88608, forming the following distribution row across the abovementioned intervals: 16980, 51740, and 19889 trees. The results demonstrate that two processes can be observed in the course of recent decades: first is the intensive forestation of previously barren or lightly wooded fragments of the study area located within the patches of wood, woodlands, and sparse stand, and second, expansion into mountain tundra. The current expansion of the Siberian Larch in the region replaced the depopulation process that occurred in the course of the Little Ice Age from the late 13ᵗʰ to the end of the 20ᵗʰ century. Using data from field measurements of Siberian larch specimen biometric parameters (including height, diameter at root collar and at 1.3 meters, and maximum projection of the crown in two orthogonal directions) and data on tree ages obtained at nine circular test sites, authors developed a model for artificial neural network including two layers with three and two neurons, respectively. The model allows quantitative assessment of a specimen's age based on height and maximum crone projection values. Tree height and crown diameters can be quantitatively assessed using data from aerial photographs and lidar scans. The resulting model can be used to assess the age of all Siberian larch trees. The proposed approach, after validation, can be applied to assessing the age of other tree species growing near the upper tree boundaries in other mountainous regions. This research was collaboratively funded by the Russian Ministry for Science and Education (project No. FEUG-2023-0002) and Russian Science Foundation (project No. 24-24-00235) in the field of data modeling on the basis of artificial neural network.

Keywords: treeline, dynamic, climate, modeling

Procedia PDF Downloads 86
36666 Experimental Investigation of Boundary Layer Transition on Rotating Cones in Axial Flow in 0 and 35 Degrees Angle of Attack

Authors: Ali Kargar, Kamyar Mansour

Abstract:

In this paper, experimental results of using hot wire anemometer and smoke visualization are presented. The results obtained on the hot wire anemometer for critical Reynolds number and transitional Reynolds number are compared by previous results. Excellent agreement is found for the transitional Reynolds number. The results for the transitional Reynolds number are also compared by previous linear stability results. The results of the smoke visualization clearly show the cross flow vortices which arise in the transition process from a laminar to a turbulent flow. A non-zero angle of attack is also considered. We compare our results by linear stability theory which was done by Garret et. Al (2007). We just emphasis, Also the visualization and hot wire anemometer results have been compared graphically. The goal in this paper is to check reliability of using hot wire anemometer and smoke visualization in transition problems and check reliability of linear stability theory for this case and compare our results with some trusty experimental works.

Keywords: transitional reynolds number, wind tunnel, rotating cone, smoke visualization

Procedia PDF Downloads 307
36665 An Adiabatic Quantum Optimization Approach for the Mixed Integer Nonlinear Programming Problem

Authors: Maxwell Henderson, Tristan Cook, Justin Chan Jin Le, Mark Hodson, YoungJung Chang, John Novak, Daniel Padilha, Nishan Kulatilaka, Ansu Bagchi, Sanjoy Ray, John Kelly

Abstract:

We present a method of using adiabatic quantum optimization (AQO) to solve a mixed integer nonlinear programming (MINLP) problem instance. The MINLP problem is a general form of a set of NP-hard optimization problems that are critical to many business applications. It requires optimizing a set of discrete and continuous variables with nonlinear and potentially nonconvex constraints. Obtaining an exact, optimal solution for MINLP problem instances of non-trivial size using classical computation methods is currently intractable. Current leading algorithms leverage heuristic and divide-and-conquer methods to determine approximate solutions. Creating more accurate and efficient algorithms is an active area of research. Quantum computing (QC) has several theoretical benefits compared to classical computing, through which QC algorithms could obtain MINLP solutions that are superior to current algorithms. AQO is a particular form of QC that could offer more near-term benefits compared to other forms of QC, as hardware development is in a more mature state and devices are currently commercially available from D-Wave Systems Inc. It is also designed for optimization problems: it uses an effect called quantum tunneling to explore all lowest points of an energy landscape where classical approaches could become stuck in local minima. Our work used a novel algorithm formulated for AQO to solve a special type of MINLP problem. The research focused on determining: 1) if the problem is possible to solve using AQO, 2) if it can be solved by current hardware, 3) what the currently achievable performance is, 4) what the performance will be on projected future hardware, and 5) when AQO is likely to provide a benefit over classical computing methods. Two different methods, integer range and 1-hot encoding, were investigated for transforming the MINLP problem instance constraints into a mathematical structure that can be embedded directly onto the current D-Wave architecture. For testing and validation a D-Wave 2X device was used, as well as QxBranch’s QxLib software library, which includes a QC simulator based on simulated annealing. Our results indicate that it is mathematically possible to formulate the MINLP problem for AQO, but that currently available hardware is unable to solve problems of useful size. Classical general-purpose simulated annealing is currently able to solve larger problem sizes, but does not scale well and such methods would likely be outperformed in the future by improved AQO hardware with higher qubit connectivity and lower temperatures. If larger AQO devices are able to show improvements that trend in this direction, commercially viable solutions to the MINLP for particular applications could be implemented on hardware projected to be available in 5-10 years. Continued investigation into optimal AQO hardware architectures and novel methods for embedding MINLP problem constraints on to those architectures is needed to realize those commercial benefits.

Keywords: adiabatic quantum optimization, mixed integer nonlinear programming, quantum computing, NP-hard

Procedia PDF Downloads 527
36664 Development of an Instrument Assessing Participants’ Motivation on Assigning Monetary Value to Quality of Life

Authors: Afentoula Mavrodi, Andreas Georgiou, Georgios Tsiotras, Vassilis Aletras

Abstract:

Placing a monetary value on a quality-adjusted-life-year (QALY) is of utmost importance in economic evaluation. Identifying the population’s preferences is critical in order to understand some of the reasons driving variations in the assigned monetary value. Yet, evidence of the motives behind value assignment to a QALY by the general public is limited. Developing an instrument that would capture the population’s motives could be proven valuable to policy-makers, to guide them in allocating different values to a QALY based on users’ motivations. The aim of this study was to identify the most relevant motives and develop an appropriate instrument to assess them. To design the instrument, we employed: a) the EQ-5D-3L tool to assess participants’ current health status, and b) the Willingness-to-Pay (WTP) approach, within the Contingent Valuation (CV) Method framework, to elicit the monetary value. Advancing the open-ended approach adopted to assess solely protest bidders’ motives; a variety of follow-up item-specific statements were designed (deductive approach), aiming to evaluate motives of both protest bidders and participants willing to pay for the hypothetical treatment under consideration. The initial design of the survey instrument was the outcome of an extensive literature review. This instrument was revised based on 15 semi-structured interviews that took place in September 2018 and a pilot study held during two months (October-November) in 2018. Individuals with different educational, occupational and economical backgrounds and adequate verbal skills were recruited to complete the semi-structured interviews. The follow-up motivation statements of both protest bidders and those willing to pay were revised and rephrased after the semi-structured interviews. In total 4 statements for protest bidders and 3 statements for those willing to pay for the treatment were chosen to be included in the survey tool. Using the CATI (Computer Assisted Telephone Interview) method, a randomly selected sample of 97 persons living in Thessaloniki, Greece, completed the questionnaire on two occasions over a period of 4 weeks. Based on pilot study results, a test-retest reliability assessment was performed using the intra-class correlation coefficient (ICC). All statements formulated for protest bidders showed acceptable reliability (ICC values of 0.84 (95% CI: 0.67, 0.92) and above). Similarly, all statements for those willing to pay for the treatment showed high reliability (ICC values of 0.86 (95% CI: 0.78, 0.91) and above). Overall, the instrument designed in this study was reliable with regards to the item-specific statements assessing participants’ motivation. Validation of the instrument will take place in a future study. For a holistic WTP per QALY instrument, participants’ motivation must be addressed broadly. The instrument developed in this study captured a variety of motives and provided insight with regards to the method through which the latter are evaluated. Last but not least, it extended motive assessment to all study participants and not only protest bidders.

Keywords: contingent valuation method, instrument, motives, quality-adjusted life-year, willingness-to-pay

Procedia PDF Downloads 137
36663 Chemometric Regression Analysis of Radical Scavenging Ability of Kombucha Fermented Kefir-Like Products

Authors: Strahinja Kovacevic, Milica Karadzic Banjac, Jasmina Vitas, Stefan Vukmanovic, Radomir Malbasa, Lidija Jevric, Sanja Podunavac-Kuzmanovic

Abstract:

The present study deals with chemometric regression analysis of quality parameters and the radical scavenging ability of kombucha fermented kefir-like products obtained with winter savory (WS), peppermint (P), stinging nettle (SN) and wild thyme tea (WT) kombucha inoculums. Each analyzed sample was described by milk fat content (MF, %), total unsaturated fatty acids content (TUFA, %), monounsaturated fatty acids content (MUFA, %), polyunsaturated fatty acids content (PUFA, %), the ability of free radicals scavenging (RSA Dₚₚₕ, % and RSA.ₒₕ, %) and pH values measured after each hour from the start until the end of fermentation. The aim of the conducted regression analysis was to establish chemometric models which can predict the radical scavenging ability (RSA Dₚₚₕ, % and RSA.ₒₕ, %) of the samples by correlating it with the MF, TUFA, MUFA, PUFA and the pH value at the beginning, in the middle and at the end of fermentation process which lasted between 11 and 17 hours, until pH value of 4.5 was reached. The analysis was carried out applying univariate linear (ULR) and multiple linear regression (MLR) methods on the raw data and the data standardized by the min-max normalization method. The obtained models were characterized by very limited prediction power (poor cross-validation parameters) and weak statistical characteristics. Based on the conducted analysis it can be concluded that the resulting radical scavenging ability cannot be precisely predicted only on the basis of MF, TUFA, MUFA, PUFA content, and pH values, however, other quality parameters should be considered and included in the further modeling. This study is based upon work from project: Kombucha beverages production using alternative substrates from the territory of the Autonomous Province of Vojvodina, 142-451-2400/2019-03, supported by Provincial Secretariat for Higher Education and Scientific Research of AP Vojvodina.

Keywords: chemometrics, regression analysis, kombucha, quality control

Procedia PDF Downloads 143
36662 Image Based Landing Solutions for Large Passenger Aircraft

Authors: Thierry Sammour Sawaya, Heikki Deschacht

Abstract:

In commercial aircraft operations, almost half of the accidents happen during approach or landing phases. Automatic guidance and automatic landings have proven to bring significant safety value added for this challenging landing phase. This is why Airbus and ScioTeq have decided to work together to explore the capability of image-based landing solutions as additional landing aids to further expand the possibility to perform automatic approach and landing to runways where the current guiding systems are either not fitted or not optimum. Current systems for automated landing often depend on radio signals provided by airport ground infrastructure on the airport or satellite coverage. In addition, these radio signals may not always be available with the integrity and performance required for safe automatic landing. Being independent from these radio signals would widen the operations possibilities and increase the number of automated landings. Airbus and ScioTeq are joining their expertise in the field of Computer Vision in the European Program called Clean Sky 2 Large Passenger Aircraft, in which they are leading the IMBALS (IMage BAsed Landing Solutions) project. The ultimate goal of this project is to demonstrate, develop, validate and verify a certifiable automatic landing system guiding an airplane during the approach and landing phases based on an onboard camera system capturing images, enabling automatic landing independent from radio signals and without precision instrument for landing. In the frame of this project, ScioTeq is responsible for the development of the Image Processing Platform (IPP), while Airbus is responsible for defining the functional and system requirements as well as the testing and integration of the developed equipment in a Large Passenger Aircraft representative environment. The aim of this paper will be to describe the system as well as the associated methods and tools developed for validation and verification.

Keywords: aircraft landing system, aircraft safety, autoland, avionic system, computer vision, image processing

Procedia PDF Downloads 101
36661 Flow Reproduction Using Vortex Particle Methods for Wake Buffeting Analysis of Bluff Structures

Authors: Samir Chawdhury, Guido Morgenthal

Abstract:

The paper presents a novel extension of Vortex Particle Methods (VPM) where the study aims to reproduce a template simulation of complex flow field that is generated from impulsively started flow past an upstream bluff body at certain Reynolds number Re-Vibration of a structural system under upstream wake flow is often considered its governing design criteria. Therefore, the attention is given in this study especially for the reproduction of wake flow simulation. The basic methodology for the implementation of the flow reproduction requires the downstream velocity sampling from the template flow simulation; therefore, at particular distances from the upstream section the instantaneous velocity components are sampled using a series of square sampling-cells arranged vertically where each of the cell contains four velocity sampling points at its corner. Since the grid free Lagrangian VPM algorithm discretises vorticity on particle elements, the method requires transformation of the velocity components into vortex circulation, and finally the simulation of the reproduction of the template flow field by seeding these vortex circulations or particles into a free stream flow. It is noteworthy that the vortex particles have to be released into the free stream exactly at same rate of velocity sampling. Studies have been done, specifically, in terms of different sampling rates and velocity sampling positions to find their effects on flow reproduction quality. The quality assessments are mainly done, using a downstream flow monitoring profile, by comparing the characteristic wind flow profiles using several statistical turbulence measures. Additionally, the comparisons are performed using velocity time histories, snapshots of the flow fields, and the vibration of a downstream bluff section by performing wake buffeting analyses of the section under the original and reproduced wake flows. Convergence study is performed for the validation of the method. The study also describes the possibilities how to achieve flow reproductions with less computational effort.

Keywords: vortex particle method, wake flow, flow reproduction, wake buffeting analysis

Procedia PDF Downloads 312
36660 Multi Data Management Systems in a Cluster Randomized Trial in Poor Resource Setting: The Pneumococcal Vaccine Schedules Trial

Authors: Abdoullah Nyassi, Golam Sarwar, Sarra Baldeh, Mamadou S. K. Jallow, Bai Lamin Dondeh, Isaac Osei, Grant A. Mackenzie

Abstract:

A randomized controlled trial is the "gold standard" for evaluating the efficacy of an intervention. Large-scale, cluster-randomized trials are expensive and difficult to conduct, though. To guarantee the validity and generalizability of findings, high-quality, dependable, and accurate data management systems are necessary. Robust data management systems are crucial for optimizing and validating the quality, accuracy, and dependability of trial data. Regarding the difficulties of data gathering in clinical trials in low-resource areas, there is a scarcity of literature on this subject, which may raise concerns. Effective data management systems and implementation goals should be part of trial procedures. Publicizing the creative clinical data management techniques used in clinical trials should boost public confidence in the study's conclusions and encourage further replication. In the ongoing pneumococcal vaccine schedule study in rural Gambia, this report details the development and deployment of multi-data management systems and methodologies. We implemented six different data management, synchronization, and reporting systems using Microsoft Access, RedCap, SQL, Visual Basic, Ruby, and ASP.NET. Additionally, data synchronization tools were developed to integrate data from these systems into the central server for reporting systems. Clinician, lab, and field data validation systems and methodologies are the main topics of this report. Our process development efforts across all domains were driven by the complexity of research project data collected in real-time data, online reporting, data synchronization, and ways for cleaning and verifying data. Consequently, we effectively used multi-data management systems, demonstrating the value of creative approaches in enhancing the consistency, accuracy, and reporting of trial data in a poor resource setting.

Keywords: data management, data collection, data cleaning, cluster-randomized trial

Procedia PDF Downloads 28
36659 Gas While Drilling (GWD) Classification in Betara Complex; An Effective Approachment to Optimize Future Candidate of Gumai Reservoir

Authors: I. Gusti Agung Aditya Surya Wibawa, Andri Syafriya, Beiruny Syam

Abstract:

Gumai Formation which acts as regional seal for Talang Akar Formation becomes one of the most prolific reservoir in South Sumatra Basin and the primary exploration target in this area. Marine conditions were eventually established during the continuation of transgression sequence leads an open marine facies deposition in Early Miocene. Marine clastic deposits where calcareous shales, claystone and siltstones interbedded with fine-grained calcareous and glauconitic sandstones are the domination of lithology which targeted as the hydrocarbon reservoir. All this time, the main objective of PetroChina’s exploration and production in Betara area is only from Lower Talang Akar Formation. Successful testing in some exploration wells which flowed gas & condensate from Gumai Formation, opened the opportunity to optimize new reservoir objective in Betara area. Limitation of conventional wireline logs data in Gumai interval is generating technical challenge in term of geological approach. A utilization of Gas While Drilling indicator initiated with the objective to determine the next Gumai reservoir candidate which capable to increase Jabung hydrocarbon discoveries. This paper describes how Gas While Drilling indicator is processed to generate potential and non-potential zone by cut-off analysis. Validation which performed by correlation and comparison with well logs, Drill Stem Test (DST), and Reservoir Performance Monitor (RPM) data succeed to observe Gumai reservoir in Betara Complex. After we integrated all of data, we are able to generate a Betara Complex potential map and overlaid with reservoir characterization distribution as a part of risk assessment in term of potential zone presence. Mud log utilization and geophysical data information successfully covered the geological challenges in this study.

Keywords: Gumai, gas while drilling, classification, reservoir, potential

Procedia PDF Downloads 356
36658 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach

Authors: James Ladzekpo

Abstract:

Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.

Keywords: diabetes, machine learning, prediction, biomarkers

Procedia PDF Downloads 56
36657 A Gold-Based Nanoformulation for Delivery of the CRISPR/Cas9 Ribonucleoprotein for Genome Editing

Authors: Soultana Konstantinidou, Tiziana Schmidt, Elena Landi, Alessandro De Carli, Giovanni Maltinti, Darius Witt, Alicja Dziadosz, Agnieszka Lindstaedt, Michele Lai, Mauro Pistello, Valentina Cappello, Luciana Dente, Chiara Gabellini, Piotr Barski, Vittoria Raffa

Abstract:

CRISPR/Cas9 technology has gained the interest of researchers in the field of biotechnology for genome editing. Since its discovery as a microbial adaptive immune defense, this system has been widely adopted and is acknowledged for having a variety of applications. However, critical barriers related to safety and delivery are persisting. Here, we propose a new concept of genome engineering, which is based on a nano-formulation of Cas9. The Cas9 enzyme was conjugated to a gold nanoparticle (AuNP-Cas9). The AuNP-Cas9 maintained its cleavage efficiency in vitro, to the same extent as the ribonucleoprotein, including non-conjugated Cas9 enzyme, and showed high gene editing efficiency in vivo in zebrafish embryos. Since CRISPR/Cas9 technology is extensively used in cancer research, melanoma was selected as a validation target. Cell studies were performed in A375 human melanoma cells. Particles per se had no impact on cell metabolism and proliferation. Intriguingly, the AuNP-Cas9 internalized spontaneously in cells and localized as a single particle in the cytoplasm and organelles. More importantly, the AuNP-Cas9 showed a high nuclear localization signal. The AuNP-Cas9, overcoming the delivery difficulties of Cas9, could be used in cellular biology and localization studies. Taking advantage of the plasmonic properties of gold nanoparticles, this technology could potentially be a bio-tool for combining gene editing and photothermal therapy in cancer cells. Further work will be focused on intracellular interactions of the nano-formulation and characterization of the optical properties.

Keywords: CRISPR/Cas9, gene editing, gold nanoparticles, nanotechnology

Procedia PDF Downloads 101
36656 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India

Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit

Abstract:

Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.

Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique

Procedia PDF Downloads 129
36655 Aero-Hydrodynamic Model for a Floating Offshore Wind Turbine

Authors: Beatrice Fenu, Francesco Niosi, Giovanni Bracco, Giuliana Mattiazzo

Abstract:

In recent years, Europe has seen a great development of renewable energy, in a perspective of reducing polluting emissions and transitioning to cleaner forms of energy, as established by the European Green New Deal. Wind energy has come to cover almost 15% of European electricity needs andis constantly growing. In particular, far-offshore wind turbines are attractive from the point of view of exploiting high-speed winds and high wind availability. Considering offshore wind turbine siting that combines the resources analysis, the bathymetry, environmental regulations, and maritime traffic and considering the waves influence in the stability of the platform, the hydrodynamic characteristics of the platform become fundamental for the evaluation of the performances of the turbine, especially for the pitch motion. Many platform's geometries have been studied and used in the last few years. Their concept is based upon different considerations as hydrostatic stability, material, cost and mooring system. A new method to reach a high-performances substructure for different kinds of wind turbines is proposed. The system that considers substructure, mooring, and wind turbine is implemented in Orcaflex, and the simulations are performed considering several sea states and wind speeds. An external dynamic library is implemented for the turbine control system. The study shows the comparison among different substructures and the new concepts developed. In order to validate the model, CFD simulations will be performed by mean of STAR CCM+, and a comparison between rigid and elastic body for what concerns blades and tower will be carried out. A global model will be built to predict the productivity of the floating turbine according to siting, resources, substructure, and mooring. The Levelized Cost of Electricity (LCOE) of the system is estimated, giving a complete overview about the advantages of floating offshore wind turbine plants. Different case studies will be presented.

Keywords: aero-hydrodynamic model, computational fluid dynamics, floating offshore wind, siting, verification, and validation

Procedia PDF Downloads 215
36654 A Low-Cost of Foot Plantar Shoes for Gait Analysis

Authors: Zulkifli Ahmad, Mohd Razlan Azizan, Nasrul Hadi Johari

Abstract:

This paper presents a study on development and conducting of a wearable sensor system for gait analysis measurement. For validation, the method of plantar surface measurement by force plate was prepared. In general gait analysis, force plate generally represents a studies about barefoot in whole steps and do not allow analysis of repeating movement step in normal walking and running. The measurements that were usually perform do not represent the whole daily plantar pressures in the shoe insole and only obtain the ground reaction force. The force plate measurement is usually limited a few step and it is done indoor and obtaining coupling information from both feet during walking is not easily obtained. Nowadays, in order to measure pressure for a large number of steps and obtain pressure in each insole part, it could be done by placing sensors within an insole. With this method, it will provide a method for determine the plantar pressures while standing, walking or running of a shoe wearing subject. Inserting pressure sensors in the insole will provide specific information and therefore the point of the sensor placement will result in obtaining the critical part under the insole. In the wearable shoe sensor project, the device consists left and right shoe insole with ten FSR. Arduino Mega was used as a micro-controller that read the analog input from FSR. The analog inputs were transmitted via bluetooth data transmission that gains the force data in real time on smartphone. Blueterm software which is an android application was used as an interface to read the FSR reading on the shoe wearing subject. The subject consist of two healthy men with different age and weight doing test while standing, walking (1.5 m/s), jogging (5 m/s) and running (9 m/s) on treadmill. The data obtain will be saved on the android device and for making an analysis and comparison graph.

Keywords: gait analysis, plantar pressure, force plate, earable sensor

Procedia PDF Downloads 454
36653 Merging of Results in Distributed Information Retrieval Systems

Authors: Larbi Guezouli, Imane Azzouz

Abstract:

This work is located in the domain of distributed information retrieval ‘DIR’. A simplified view of the DIR requires a multi-search in a set of collections, which forces the system to analyze results found in these collections, and merge results back before sending them to the user in a single list. Our work is to find a fusion method based on the relevance score of each result received from collections and the relevance of the local search engine of each collection.

Keywords: information retrieval, distributed IR systems, merging results, datamining

Procedia PDF Downloads 338
36652 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning

Authors: Pei Yi Lin

Abstract:

Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.

Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model

Procedia PDF Downloads 79
36651 Results concerning the University: Industry Partnership for a Research Project Implementation (MUROS) in the Romanian Program Star

Authors: Loretta Ichim, Dan Popescu, Grigore Stamatescu

Abstract:

The paper reports the collaboration between a top university from Romania and three companies for the implementation of a research project in a multidisciplinary domain, focusing on the impact and benefits both for the education and industry. The joint activities were developed under the Space Technology and Advanced Research Program (STAR), funded by the Romanian Space Agency (ROSA) for a university-industry partnership. The context was defined by linking the European Space Agency optional programs, with the development and promotion national research, with the educational and industrial capabilities in the aeronautics, security and related areas by increasing the collaboration between academic and industrial entities as well as by realizing high-level scientific production. The project name is Multisensory Robotic System for Aerial Monitoring of Critical Infrastructure Systems (MUROS), which was carried 2013-2016. The project included the University POLITEHNICA of Bucharest (coordinator) and three companies, which manufacture and market unmanned aerial systems. The project had as main objective the development of an integrated system for combined ground wireless sensor networks and UAV monitoring in various application scenarios for critical infrastructure surveillance. This included specific activities related to fundamental and applied research, technology transfer, prototype implementation and result dissemination. The core area of the contributions laid in distributed data processing and communication mechanisms, advanced image processing and embedded system development. Special focus is given by the paper to analyzing the impact the project implementation in the educational process, directly or indirectly, through the faculty members (professors and students) involved in the research team. Three main directions are discussed: a) enabling students to carry out internships at the partner companies, b) handling advanced topics and industry requirements at the master's level, c) experiments and concept validation for doctoral thesis. The impact of the research work (as the educational component) developed by the faculty members on the increasing performances of the companies’ products is highlighted. The collaboration between university and companies was well balanced both for contributions and results. The paper also presents the outcomes of the project which reveals the efficient collaboration between high education and industry: master thesis, doctoral thesis, conference papers, journal papers, technical documentation for technology transfer, prototype, and patent. The experience can provide useful practices of blending research and education within an academia-industry cooperation framework while the lessons learned represent a starting point in debating the new role of advanced research and development performing companies in association with higher education. This partnership, promoted at UE level, has a broad impact beyond the constrained scope of a single project and can develop into long-lasting collaboration while benefiting all stakeholders: students, universities and the surrounding knowledge-based economic and industrial ecosystem. Due to the exchange of experiences between the university (UPB) and the manufacturing company (AFT Design), a new project, SIMUL, under the Bridge Grant Program (Romanian executive agency UEFISCDI) was started (2016 – 2017). This project will continue the educational research for innovation on master and doctoral studies in MUROS thematic (collaborative multi-UAV application for flood detection).

Keywords: education process, multisensory robotic system, research and innovation project, technology transfer, university-industry partnership

Procedia PDF Downloads 243
36650 Monitoring Prospective Sites for Water Harvesting Structures Using Remote Sensing and Geographic Information Systems-Based Modeling in Egypt

Authors: Shereif. H. Mahmoud

Abstract:

Egypt has limited water resources, and it will be under water stress by the year 2030. Therefore, Egypt should consider natural and non-conventional water resources to overcome such a problem. Rain harvesting is one solution. This Paper presents a geographic information system (GIS) methodology - based on decision support system (DSS) that uses remote sensing data, filed survey, and GIS to identify potential RWH areas. The input into the DSS includes a map of rainfall surplus, slope, potential runoff coefficient (PRC), land cover/use, soil texture. In addition, the outputs are map showing potential sites for RWH. Identifying suitable RWH sites implemented in the ArcGIS model environment using the model builder of ArcGIS 10.1. Based on Analytical hierarchy process (AHP) analysis taking into account five layers, the spatial extents of RWH suitability areas identified using Multi-Criteria Evaluation (MCE). The suitability model generated a suitability map for RWH with four suitability classes, i.e. Excellent, Moderate, Poor, and unsuitable. The spatial distribution of the suitability map showed that the excellent suitable areas for RWH concentrated in the northern part of Egypt. According to their averages, 3.24% of the total area have excellent and good suitability for RWH, while 45.04 % and 51.48 % of the total area are moderate and unsuitable suitability, respectively. The majority of the areas with excellent suitability have slopes between 2 and 8% and with an intensively cultivated area. The major soil type in the excellent suitable area is loam and the rainfall range from 100 up to 200 mm. Validation of the used technique depends on comparing existing RWH structures locations with the generated suitability map using proximity analysis tool of ArcGIS 10.1. The result shows that most of exiting RWH structures categorized as successful.

Keywords: rainwater harvesting (RWH), geographic information system (GIS), analytical hierarchy process (AHP), multi-criteria evaluation (MCE), decision support system (DSS)

Procedia PDF Downloads 361
36649 Assessment of the Possible Effects of Biological Control Agents of Lantana camara and Chromolaena odorata in Davao City, Mindanao, Philippines

Authors: Cristine P. Canlas, Crislene Mae L. Gever, Patricia Bea R. Rosialda, Ma. Nina Regina M. Quibod, Perry Archival C. Buenavente, Normandy M. Barbecho, Cynthia Adeline A. Layusa, Michael Day

Abstract:

Invasive plants have an impact on global biodiversity and ecosystem function, and their management is a complex and formidable task. Two of these invasive plant species, Lantana camara and Chromolaena odorata, are found in the Philippines. Lantana camara has the ability to suppress the growth of and outcompete neighboring plants. Chromolaena odorata causes serious agricultural and economical damage and causes fire hazards during dry season. In addition, both species has been reported to poison livestock. One of the known global management strategies to control invasive plants is the introduction of biological control agents. These natural enemies of the invasive plants reduce population density and impacts of the invasive plants, resulting in the balance of the nature in their invasion. Through secondary data sources, interviews, and field validation (e.g. microhabitat searches, sweep netting, opportunistic sampling, photo-documentation), we investigated whether the biocontrol agents previously released by the Philippine Coconut Authority (PCA) in their Davao Research Center to control these invasive plants are still present and are affecting their respective host weeds. We confirm the presence of the biocontrol agent of L. camara, Uroplata girardi, which was introduced in 1985, and Cecidochares connexa, a biocontrol agent of C. odorata released in 2003. Four other biocontrol agents were found to affect L. camara. Signs of damage (e.g. stem galls in C. odorata, and leaf mines in L. camara) signify that these biocontrol agents have successfully established outside of their release site in Davao. Further investigating the extent of the spread of these biocontrol agents in the Philippines and their damage to the two weeds will contribute to the management of invasive plant species in the country.

Keywords: invasive alien species, biological control agent, entomology, worst weeds

Procedia PDF Downloads 374
36648 Estimating Precipitable Water Vapour Using the Global Positioning System and Radio Occultation over Ethiopian Regions

Authors: Asmamaw Yehun, Tsegaye Gogie, Martin Vermeer, Addisu Hunegnaw

Abstract:

The Global Positioning System (GPS) is a space-based radio positioning system, which is capable of providing continuous position, velocity, and time information to users anywhere on or near the surface of the Earth. The main objective of this work was to estimate the integrated precipitable water vapour (IPWV) using ground GPS and Low Earth Orbit (LEO) Radio Occultation (RO) to study spatial-temporal variability. For LEO-GPS RO, we used Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) datasets. We estimated the daily and monthly mean of IPWV using six selected ground-based GPS stations over a period of range from 2012 to 2016 (i.e. five-years period). The main perspective for selecting the range period from 2012 to 2016 is that, continuous data were available during these periods at all Ethiopian GPS stations. We studied temporal, seasonal, diurnal, and vertical variations of precipitable water vapour using GPS observables extracted from the precise geodetic GAMIT-GLOBK software package. Finally, we determined the cross-correlation of our GPS-derived IPWV values with those of the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-40 Interim reanalysis and of the second generation National Oceanic and Atmospheric Administration (NOAA) model ensemble Forecast System Reforecast (GEFS/R) for validation and static comparison. There are higher values of the IPWV range from 30 to 37.5 millimetres (mm) in Gambela and Southern Regions of Ethiopia. Some parts of Tigray, Amhara, and Oromia regions had low IPWV ranges from 8.62 to 15.27 mm. The correlation coefficient between GPS-derived IPWV with ECMWF and GEFS/R exceeds 90%. We conclude that there are highly temporal, seasonal, diurnal, and vertical variations of precipitable water vapour in the study area.

Keywords: GNSS, radio occultation, atmosphere, precipitable water vapour

Procedia PDF Downloads 86
36647 Enhancing Financial Security: Real-Time Anomaly Detection in Financial Transactions Using Machine Learning

Authors: Ali Kazemi

Abstract:

The digital evolution of financial services, while offering unprecedented convenience and accessibility, has also escalated the vulnerabilities to fraudulent activities. In this study, we introduce a distinct approach to real-time anomaly detection in financial transactions, aiming to fortify the defenses of banking and financial institutions against such threats. Utilizing unsupervised machine learning algorithms, specifically autoencoders and isolation forests, our research focuses on identifying irregular patterns indicative of fraud within transactional data, thus enabling immediate action to prevent financial loss. The data we used in this study included the monetary value of each transaction. This is a crucial feature as fraudulent transactions may have distributions of different amounts than legitimate ones, such as timestamps indicating when transactions occurred. Analyzing transactions' temporal patterns can reveal anomalies (e.g., unusual activity in the middle of the night). Also, the sector or category of the merchant where the transaction occurred, such as retail, groceries, online services, etc. Specific categories may be more prone to fraud. Moreover, the type of payment used (e.g., credit, debit, online payment systems). Different payment methods have varying risk levels associated with fraud. This dataset, anonymized to ensure privacy, reflects a wide array of transactions typical of a global banking institution, ranging from small-scale retail purchases to large wire transfers, embodying the diverse nature of potentially fraudulent activities. By engineering features that capture the essence of transactions, including normalized amounts and encoded categorical variables, we tailor our data to enhance model sensitivity to anomalies. The autoencoder model leverages its reconstruction error mechanism to flag transactions that deviate significantly from the learned normal pattern, while the isolation forest identifies anomalies based on their susceptibility to isolation from the dataset's majority. Our experimental results, validated through techniques such as k-fold cross-validation, are evaluated using precision, recall, and the F1 score alongside the area under the receiver operating characteristic (ROC) curve. Our models achieved an F1 score of 0.85 and a ROC AUC of 0.93, indicating high accuracy in detecting fraudulent transactions without excessive false positives. This study contributes to the academic discourse on financial fraud detection and provides a practical framework for banking institutions seeking to implement real-time anomaly detection systems. By demonstrating the effectiveness of unsupervised learning techniques in a real-world context, our research offers a pathway to significantly reduce the incidence of financial fraud, thereby enhancing the security and trustworthiness of digital financial services.

Keywords: anomaly detection, financial fraud, machine learning, autoencoders, isolation forest, transactional data analysis

Procedia PDF Downloads 59
36646 Methylation Profiling and Validation of Candidate Tissue-Specific Differentially Methylated Regions for Identification of Human Blood, Saliva, Semen and Vaginal Fluid and Its Application in Forensics

Authors: Meenu Joshi, Natalie Naidoo, Farzeen Kader

Abstract:

Identification of body fluids is an essential step in forensic investigation to aid in crime reconstruction. Tissue-specific differentially methylated regions (tDMRs) of the human genome can be targeted to be used as biomarkers to differentiate between body fluids. The present study was undertaken to establish the methylation status of potential tDMRs in blood, semen, saliva, and vaginal fluid by using methylation-specific PCR (MSP) and bisulfite sequencing (BS). The methylation statuses of 3 potential tDMRS in genes ZNF282, PTPRS, and HPCAL1 were analysed in 10 samples of each body fluid. With MSP analysis, the ZNF282, and PTPRS1 tDMR displayed semen-specific hypomethylation while HPCAL1 tDMR showed saliva-specific hypomethylation. With quantitative analysis by BS, the ZNF282 tDMR showed statistically significant difference in overall methylation between semen and all other body fluids as well as at individual CpG sites (p < 0.05). To evaluate the effect of environmental conditions on the stability of methylation profiles of the ZNF282 tDMR, five samples of each body fluid were subjected to five different forensic simulated conditions (dry at room temperature, wet in an exsiccator, outside on the ground, sprayed with alcohol, and sprayed with bleach) for 50 days. Vaginal fluid showed highest DNA recovery under all conditions while semen had least DNA quantity. Under outside on the ground condition, all body fluids except semen showed a decrease in methylation level; however, a significant decrease in methylation level was observed for saliva. A statistical significant difference was observed for saliva and semen (p < 0.05) for outside on the ground condition. No differences in methylation level were observed for the ZNF282 tDMR under all conditions for vaginal fluid samples. Thus, in the present study ZNF282 tDMR has been identified as a novel and stable semen-specific hypomethylation marker.

Keywords: body fluids, bisulphite sequencing, forensics, tDMRs, MSP

Procedia PDF Downloads 163
36645 Investigating the Effect of Study Plan and Homework on Student's Performance by Using Web Based Learning MyMathLab

Authors: Mohamed Chabi, Mahmoud I. Syam, Sarah Aw

Abstract:

In Summer 2012, the Foundation Program Unit of Qatar University has started implementing new ways of teaching Math by introducing MML (MyMathLab) as an innovative interactive tool to support standard teaching. In this paper, we focused on the effect of proper use of the Study Plan component of MML on student’s performance. Authors investigated the results of students of pre-calculus course during Fall 2013 in Foundation Program at Qatar University. The results showed that there is a strong correlation between study plan results and final exam results, also a strong relation between homework results and final exam results. In addition, the attendance average affected on the student’s results in general. Multiple regression is determined between passing rate dependent variable and study plan, homework as independent variable.

Keywords: MyMathLab, study plan, assessment, homework, attendance, correlation, regression

Procedia PDF Downloads 419
36644 An Experimental Machine Learning Analysis on Adaptive Thermal Comfort and Energy Management in Hospitals

Authors: Ibrahim Khan, Waqas Khalid

Abstract:

The Healthcare sector is known to consume a higher proportion of total energy consumption in the HVAC market owing to an excessive cooling and heating requirement in maintaining human thermal comfort in indoor conditions, catering to patients undergoing treatment in hospital wards, rooms, and intensive care units. The indoor thermal comfort conditions in selected hospitals of Islamabad, Pakistan, were measured on a real-time basis with the collection of first-hand experimental data using calibrated sensors measuring Ambient Temperature, Wet Bulb Globe Temperature, Relative Humidity, Air Velocity, Light Intensity and CO2 levels. The Experimental data recorded was analyzed in conjunction with the Thermal Comfort Questionnaire Surveys, where the participants, including patients, doctors, nurses, and hospital staff, were assessed based on their thermal sensation, acceptability, preference, and comfort responses. The Recorded Dataset, including experimental and survey-based responses, was further analyzed in the development of a correlation between operative temperature, operative relative humidity, and other measured operative parameters with the predicted mean vote and adaptive predicted mean vote, with the adaptive temperature and adaptive relative humidity estimated using the seasonal data set gathered for both summer – hot and dry, and hot and humid as well as winter – cold and dry, and cold and humid climate conditions. The Machine Learning Logistic Regression Algorithm was incorporated to train the operative experimental data parameters and develop a correlation between patient sensations and the thermal environmental parameters for which a new ML-based adaptive thermal comfort model was proposed and developed in our study. Finally, the accuracy of our model was determined using the K-fold cross-validation.

Keywords: predicted mean vote, thermal comfort, energy management, logistic regression, machine learning

Procedia PDF Downloads 64
36643 Key Findings on Rapid Syntax Screening Test for Children

Authors: Shyamani Hettiarachchi, Thilini Lokubalasuriya, Shakeela Saleem, Dinusha Nonis, Isuru Dharmaratne, Lakshika Udugama

Abstract:

Introduction: Late identification of language difficulties in children could result in long-term negative consequences for communication, literacy and self-esteem. This highlights the need for early identification and intervention for speech, language and communication difficulties. Speech and language therapy is a relatively new profession in Sri Lanka and at present, there are no formal standardized screening tools to assess language skills in Sinhala-speaking children. The development and validation of a short, accurate screening tool to enable the identification of children with syntactic difficulties in Sinhala is a current need. Aims: 1) To develop test items for a Sinhala Syntactic Structures (S3 Short Form) test on children aged between 3;0 to 5;0 years 2) To validate the test of Sinhala Syntactic Structures (S3 Short Form) on children aged between 3; 0 to 5; 0 years Methods: The Sinhala Syntactic Structures (S3 Short Form) was devised based on the Renfrew Action Picture Test. As Sinhala contains post-positions in contrast to English, the principles of the Renfrew Action Picture Test were followed to gain an information score and a grammar score but the test devised reflected the linguistic-specificity and complexity of Sinhala and the pictures were in keeping with the culture of the country. This included the dative case marker ‘to give something to her’ (/ejɑ:ʈə/ meaning ‘to her’), the instrumental case marker ‘to get something from’ (/ejɑ:gən/ meaning ‘from him’ or /gɑhən/ meaning ‘from the tree’), possessive noun (/ɑmmɑge:/ meaning ‘mother’s’ or /gɑhe:/ meaning ‘of the tree’ or /male:/ meaning ‘of the flower’) and plural markers (/bɑllɑ:/ bɑllo:/ meaning ‘dog/dogs’, /mɑlə/mɑl/ meaning ‘flower/flowers’, /gɑsə/gɑs/ meaning ‘tree/trees’ and /wɑlɑ:kulə/wɑlɑ:kulu/ meaning ‘cloud/clouds’). The picture targets included socio-culturally appropriate scenes of the Sri Lankan New Year celebration, elephant procession and the Buddhist ‘Wesak’ ceremony. The test was piloted with a group of 60 participants and necessary changes made. In phase 1, the test was administered to 100 Sinhala-speaking children aged between 3; 0 and 5; 0 years in one district. In this presentation on phase 2, the test was administered to another 100 Sinhala-speaking children aged between 3; 0 to 5; 0 in three districts. In phase 2, the selection of the test items was assessed via measures of content validity, test-retest reliability and inter-rater reliability. The age of acquisition of each syntactic structure was determined using content and grammar scores which were statistically analysed using t-tests and one-way ANOVAs. Results: High percentage agreement was found on test-retest reliability on content validity and Pearson correlation measures and on inter-rater reliability. As predicted, there was a statistically significant influence of age on the production of syntactic structures at p<0.05. Conclusions: As the target test items included generated the information and the syntactic structures expected, the test could be used as a quick syntactic screening tool with preschool children.

Keywords: Sinhala, screening, syntax, language

Procedia PDF Downloads 342
36642 Identification and Classification of Medicinal Plants of Indian Himalayan Region Using Hyperspectral Remote Sensing and Machine Learning Techniques

Authors: Kishor Chandra Kandpal, Amit Kumar

Abstract:

The Indian Himalaya region harbours approximately 1748 plants of medicinal importance, and as per International Union for Conservation of Nature (IUCN), the 112 plant species among these are threatened and endangered. To ease the pressure on these plants, the government of India is encouraging its in-situ cultivation. The Saussurea costus, Valeriana jatamansi, and Picrorhiza kurroa have also been prioritized for large scale cultivation owing to their market demand, conservation value and medicinal properties. These species are found from 1000 m to 4000 m elevation ranges in the Indian Himalaya. Identification of these plants in the field requires taxonomic skills, which is one of the major bottleneck in the conservation and management of these plants. In recent years, Hyperspectral remote sensing techniques have been precisely used for the discrimination of plant species with the help of their unique spectral signatures. In this background, a spectral library of the above 03 medicinal plants was prepared by collecting the spectral data using a handheld spectroradiometer (325 to 1075 nm) from farmer’s fields of Himachal Pradesh and Uttarakhand states of Indian Himalaya. The Random forest (RF) model was implied on the spectral data for the classification of the medicinal plants. The 80:20 standard split ratio was followed for training and validation of the RF model, which resulted in training accuracy of 84.39 % (kappa coefficient = 0.72) and testing accuracy of 85.29 % (kappa coefficient = 0.77). This RF classifier has identified green (555 to 598 nm), red (605 nm), and near-infrared (725 to 840 nm) wavelength regions suitable for the discrimination of these species. The findings of this study have provided a technique for rapid and onsite identification of the above medicinal plants in the field. This will also be a key input for the classification of hyperspectral remote sensing images for mapping of these species in farmer’s field on a regional scale. This is a pioneer study in the Indian Himalaya region for medicinal plants in which the applicability of hyperspectral remote sensing has been explored.

Keywords: himalaya, hyperspectral remote sensing, machine learning; medicinal plants, random forests

Procedia PDF Downloads 204
36641 Bounded Rational Heterogeneous Agents in Artificial Stock Markets: Literature Review and Research Direction

Authors: Talal Alsulaiman, Khaldoun Khashanah

Abstract:

In this paper, we provided a literature survey on the artificial stock problem (ASM). The paper began by exploring the complexity of the stock market and the needs for ASM. ASM aims to investigate the link between individual behaviors (micro level) and financial market dynamics (macro level). The variety of patterns at the macro level is a function of the AFM complexity. The financial market system is a complex system where the relationship between the micro and macro level cannot be captured analytically. Computational approaches, such as simulation, are expected to comprehend this connection. Agent-based simulation is a simulation technique commonly used to build AFMs. The paper proceeds by discussing the components of the ASM. We consider the roles of behavioral finance (BF) alongside the traditionally risk-averse assumption in the construction of agent's attributes. Also, the influence of social networks in the developing of agents’ interactions is addressed. Network topologies such as a small world, distance-based, and scale-free networks may be utilized to outline economic collaborations. In addition, the primary methods for developing agents learning and adaptive abilities have been summarized. These incorporated approach such as Genetic Algorithm, Genetic Programming, Artificial neural network and Reinforcement Learning. In addition, the most common statistical properties (the stylized facts) of stock that are used for calibration and validation of ASM are discussed. Besides, we have reviewed the major related previous studies and categorize the utilized approaches as a part of these studies. Finally, research directions and potential research questions are argued. The research directions of ASM may focus on the macro level by analyzing the market dynamic or on the micro level by investigating the wealth distributions of the agents.

Keywords: artificial stock markets, market dynamics, bounded rationality, agent based simulation, learning, interaction, social networks

Procedia PDF Downloads 355
36640 Machine Learning Based Digitalization of Validated Traditional Cognitive Tests and Their Integration to Multi-User Digital Support System for Alzheimer’s Patients

Authors: Ramazan Bakir, Gizem Kayar

Abstract:

It is known that Alzheimer and Dementia are the two most common types of Neurodegenerative diseases and their visibility is getting accelerated for the last couple of years. As the population sees older ages all over the world, researchers expect to see the rate of this acceleration much higher. However, unfortunately, there is no known pharmacological cure for both, although some help to reduce the rate of cognitive decline speed. This is why we encounter with non-pharmacological treatment and tracking methods more for the last five years. Many researchers, including well-known associations and hospitals, lean towards using non-pharmacological methods to support cognitive function and improve the patient’s life quality. As the dementia symptoms related to mind, learning, memory, speaking, problem-solving, social abilities and daily activities gradually worsen over the years, many researchers know that cognitive support should start from the very beginning of the symptoms in order to slow down the decline. At this point, life of a patient and caregiver can be improved with some daily activities and applications. These activities include but not limited to basic word puzzles, daily cleaning activities, taking notes. Later, these activities and their results should be observed carefully and it is only possible during patient/caregiver and M.D. in-person meetings in hospitals. These meetings can be quite time-consuming, exhausting and financially ineffective for hospitals, medical doctors, caregivers and especially for patients. On the other hand, digital support systems are showing positive results for all stakeholders of healthcare systems. This can be observed in countries that started Telemedicine systems. The biggest potential of our system is setting the inter-user communication up in the best possible way. In our project, we propose Machine Learning based digitalization of validated traditional cognitive tests (e.g. MOCA, Afazi, left-right hemisphere), their analyses for high-quality follow-up and communication systems for all stakeholders. R. Bakir and G. Kayar are with Gefeasoft, Inc, R&D – Software Development and Health Technologies company. Emails: ramazan, gizem @ gefeasoft.com This platform has a high potential not only for patient tracking but also for making all stakeholders feel safe through all stages. As the registered hospitals assign corresponding medical doctors to the system, these MDs are able to register their own patients and assign special tasks for each patient. With our integrated machine learning support, MDs are able to track the failure and success rates of each patient and also see general averages among similarly progressed patients. In addition, our platform also supports multi-player technology which helps patients play with their caregivers so that they feel much safer at any point they are uncomfortable. By also gamifying the daily household activities, the patients will be able to repeat their social tasks and we will provide non-pharmacological reminiscence therapy (RT – life review therapy). All collected data will be mined by our data scientists and analyzed meaningfully. In addition, we will also add gamification modules for caregivers based on Naomi Feil’s Validation Therapy. Both are behaving positively to the patient and keeping yourself mentally healthy is important for caregivers. We aim to provide a therapy system based on gamification for them, too. When this project accomplishes all the above-written tasks, patients will have the chance to do many tasks at home remotely and MDs will be able to follow them up very effectively. We propose a complete platform and the whole project is both time and cost-effective for supporting all stakeholders.

Keywords: alzheimer’s, dementia, cognitive functionality, cognitive tests, serious games, machine learning, artificial intelligence, digitalization, non-pharmacological, data analysis, telemedicine, e-health, health-tech, gamification

Procedia PDF Downloads 138
36639 Categorical Metadata Encoding Schemes for Arteriovenous Fistula Blood Flow Sound Classification: Scaling Numerical Representations Leads to Improved Performance

Authors: George Zhou, Yunchan Chen, Candace Chien

Abstract:

Kidney replacement therapy is the current standard of care for end-stage renal diseases. In-center or home hemodialysis remains an integral component of the therapeutic regimen. Arteriovenous fistulas (AVF) make up the vascular circuit through which blood is filtered and returned. Naturally, AVF patency determines whether adequate clearance and filtration can be achieved and directly influences clinical outcomes. Our aim was to build a deep learning model for automated AVF stenosis screening based on the sound of blood flow through the AVF. A total of 311 patients with AVF were enrolled in this study. Blood flow sounds were collected using a digital stethoscope. For each patient, blood flow sounds were collected at 6 different locations along the patient’s AVF. The 6 locations are artery, anastomosis, distal vein, middle vein, proximal vein, and venous arch. A total of 1866 sounds were collected. The blood flow sounds are labeled as “patent” (normal) or “stenotic” (abnormal). The labels are validated from concurrent ultrasound. Our dataset included 1527 “patent” and 339 “stenotic” sounds. We show that blood flow sounds vary significantly along the AVF. For example, the blood flow sound is loudest at the anastomosis site and softest at the cephalic arch. Contextualizing the sound with location metadata significantly improves classification performance. How to encode and incorporate categorical metadata is an active area of research1. Herein, we study ordinal (i.e., integer) encoding schemes. The numerical representation is concatenated to the flattened feature vector. We train a vision transformer (ViT) on spectrogram image representations of the sound and demonstrate that using scalar multiples of our integer encodings improves classification performance. Models are evaluated using a 10-fold cross-validation procedure. The baseline performance of our ViT without any location metadata achieves an AuROC and AuPRC of 0.68 ± 0.05 and 0.28 ± 0.09, respectively. Using the following encodings of Artery:0; Arch: 1; Proximal: 2; Middle: 3; Distal 4: Anastomosis: 5, the ViT achieves an AuROC and AuPRC of 0.69 ± 0.06 and 0.30 ± 0.10, respectively. Using the following encodings of Artery:0; Arch: 10; Proximal: 20; Middle: 30; Distal 40: Anastomosis: 50, the ViT achieves an AuROC and AuPRC of 0.74 ± 0.06 and 0.38 ± 0.10, respectively. Using the following encodings of Artery:0; Arch: 100; Proximal: 200; Middle: 300; Distal 400: Anastomosis: 500, the ViT achieves an AuROC and AuPRC of 0.78 ± 0.06 and 0.43 ± 0.11. respectively. Interestingly, we see that using increasing scalar multiples of our integer encoding scheme (i.e., encoding “venous arch” as 1,10,100) results in progressively improved performance. In theory, the integer values do not matter since we are optimizing the same loss function; the model can learn to increase or decrease the weights associated with location encodings and converge on the same solution. However, in the setting of limited data and computation resources, increasing the importance at initialization either leads to faster convergence or helps the model escape a local minimum.

Keywords: arteriovenous fistula, blood flow sounds, metadata encoding, deep learning

Procedia PDF Downloads 89
36638 Energy Efficiency Approach to Reduce Costs of Ownership of Air Jet Weaving

Authors: Corrado Grassi, Achim Schröter, Yves Gloy, Thomas Gries

Abstract:

Air jet weaving is the most productive, but also the most energy consuming weaving method. Increasing energy costs and environmental impact are constantly a challenge for the manufacturers of weaving machines. Current technological developments concern with low energy costs, low environmental impact, high productivity, and constant product quality. The high degree of energy consumption of the method can be ascribed to the high need of compressed air. An energy efficiency method is applied to the air jet weaving technology. Such method identifies and classifies the main relevant energy consumers and processes from the exergy point of view and it leads to the identification of energy efficiency potentials during the weft insertion process. Starting from the design phase, energy efficiency is considered as the central requirement to be satisfied. The initial phase of the method consists of an analysis of the state of the art of the main weft insertion components in order to point out a prioritization of the high demanding energy components and processes. The identified major components are investigated to reduce the high demand of energy of the weft insertion process. During the interaction of the flow field coming from the relay nozzles within the profiled reed, only a minor part of the stream is really accelerating the weft yarn, hence resulting in large energy inefficiency. Different tools such as FEM analysis, CFD simulation models and experimental analysis are used in order to design a more energy efficient design of the involved components in the filling insertion. A different concept for the metal strip of the profiled reed is developed. The developed metal strip allows a reduction of the machine energy consumption. Based on a parametric and aerodynamic study, the designed reed transmits higher values of the flow power to the filling yarn. The innovative reed fulfills both the requirement of raising energy efficiency and the compliance with the weaving constraints.

Keywords: air jet weaving, aerodynamic simulation, energy efficiency, experimental validation, weft insertion

Procedia PDF Downloads 197