Search results for: genome sequencing and assembly
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1347

Search results for: genome sequencing and assembly

147 Physico-Chemical and Biotechnological Characterization of Sheep’s Milk (Ovis aries) by Three Medicinal Plants Extracts

Authors: Fatima Bouazza, Khadija Khedid, Lamiae Amallah, Aziz Mouhaddach, Basma Boukour, Jihane Ennadir, Rachida Hassikou

Abstract:

In order to combine milk and its derived products conservation and flavoring, Moroccans often used aromatic and medicinal plants. These plant extracts are endowed with several nutritive and therapeutic properties. This study constitutes a first national assessment of physico-chemical quality of sheep’s milk from moroccan Sardi breed and the evaluation of the antibacterial effect of three medicinal plants extracts: Aloe barbadensis Miller, Thymus satureioides and Mentha pulegium on flora isolated from this sheep's milk. 100 milk samples were collected in four regions of Morocco. The bacteria isolated were identified by classical and molecular methods (16S rRNA sequencing) and tested, according to the disk method, for their sensitivity to several antibiotics. The physico-chemical analyzes of sheep’s milk concerned the pH, titratable acidity, density, dry extract, freezing point and contents of: fat, proteins, lactose and calcium. The essential oils (EOs) of T. satureioides and M .pulegium were extracted by hydrodistillation and analyzed by GC / MS, while the Aloe vera leaf pulp was analyzed by the methods of Harborne and HPLC. A total number of 125 bacteria have been identified. Significant resistance to chemical antibiotics has been noted in LABs. The average temperature value of milk is around 57.15 °C, the pH is 6.56, the titratable acidity is around 3.4 ° D, the density is 1.035g / cm³ , the total dry extract is around 169.5g / l, the ash (9.8g / l), the freezing point (- 0.556 °C) while the average fat content is 67.85g / l . The samples richest in fat belong to the region of Settat, cradle of the Sardi breed, with a maximum average value of 74.4g / l. The average protein is 56g / l, lactose (39.92g / l), and calcium (1.855g / l). Analysis of the major components of EOs revealed the dominance of borneol in the case of T. satureioides and of pulegone in M. pulegium. Aloe vera gel contains alkaloids, flavonoids, catechic tannins, saponins and 1.60 µg / ml of aloin. The plant extracts have a bactericidal effect on E. coli, Klebsiellaoxytoca and Staphylococci and bacteriostatic effect on LABs of technological interest (Lactobacillus). As a result of this study, it is believed that the consumption of sardi sheep’s milk would be of nutritional benefit. Its richness in fat and proteins predisposes it for biotechnological development in the manufacture of cheese and yogurt. Also, the use of aromatic and medicinal plants, as natural additives would be of great benefit to flavor and maintain its quality.

Keywords: sheep’s milk, lactic flora, antimicrobial power, aloe barbadensis miller, thymus satureioides, mentha pulegium

Procedia PDF Downloads 87
146 Framing the Dynamics and Functioning of Different Variants of Terrorist Organizations: A Business Model Perspective

Authors: Eisa Younes Alblooshi

Abstract:

Counterterrorism strategies, to be effective and efficient, require a sound understanding of the dynamics, the interlinked organizational elements of the terrorist outfits being combated, with a view to having cognizance of their strong points to be guarded against, as well as the vulnerable zones that can be targeted for optimal results in a timely fashion by counterterrorism agencies. A unique model regarding the organizational imperatives was evolved in this research through likening the terrorist organizations with the traditional commercial ones, with a view to understanding in detail the dynamics of interconnectivity and dependencies, and the related compulsions facing the leaderships of such outfits that provide counterterrorism agencies with opportunities for forging better strategies. It involved assessing the evolving organizational dynamics and imperatives of different types of terrorist organizations, to enable the researcher to construct a prototype model that defines the progression and linkages of the related organizational elements of such organizations. It required detailed analysis of how the various elements are connected, with sequencing identified, as any outfit positions itself with respect to its external environment and internal dynamics. A case study focusing on a transnational radical religious state-sponsored terrorist organization was conducted to validate the research findings and to further strengthen the specific counterterrorism strategies. Six different variants of the business model of terrorist organizations were identified, categorized based on their outreach, mission, and status of any state sponsorship. The variants represent vast majority of the range of terrorist organizations acting locally or globally. The model shows the progression and dynamics of these organizations through various dimensions including mission, leadership, outreach, state sponsorship status, resulting in the organizational structure, state of autonomy, preference divergence in its fold, recruitment core, propagation avenues, down to their capacity to adapt, resulting critically in their own life cycles. A major advantage of the model is the utility of mapping terrorist organizations according to their fits to the sundry identified variants, allowing for flexibility and differences within, enabling the researchers and counterterrorism agencies to observe a neat blueprint of the organization’s footprint, along with highlighting the areas to be evaluated for focused target zone selection and timing of counterterrorism interventions. Special consideration is given to the dimension of financing, keeping in context the latest developments regarding cryptocurrencies, hawala, and global anti-money laundering initiatives. Specific counterterrorism strategies and intervention points have been identified for each of the respective model variants, with a view to efficient and effective deployment of resources.

Keywords: terrorism, counterterrorism, model, strategy

Procedia PDF Downloads 132
145 Study on the Rapid Start-up and Functional Microorganisms of the Coupled Process of Short-range Nitrification and Anammox in Landfill Leachate Treatment

Authors: Lina Wu

Abstract:

The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and poses a threat to water quality. Nitrogen pollution control has become a global concern. Currently, the problem of water pollution in China is still not optimistic. As a typical high ammonia nitrogen organic wastewater, landfill leachate is more difficult to treat than domestic sewage because of its complex water quality, high toxicity, and high concentration.Many studies have shown that the autotrophic anammox bacteria in nature can combine nitrous and ammonia nitrogen without carbon source through functional genes to achieve total nitrogen removal, which is very suitable for the removal of nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The process composed of short-range nitrification and denitrification coupled an ammo ensures the removal of total nitrogen and improves the removal efficiency, meeting the needs of the society for an ecologically friendly and cost-effective nutrient removal treatment technology. Continuous flow process for treating late leachate [an up-flow anaerobic sludge blanket reactor (UASB), anoxic/oxic (A/O)–anaerobic ammonia oxidation reactor (ANAOR or anammox reactor)] has been developed to achieve autotrophic deep nitrogen removal. In this process, the optimal process parameters such as hydraulic retention time and nitrification flow rate have been obtained, and have been applied to the rapid start-up and stable operation of the process system and high removal efficiency. Besides, finding the characteristics of microbial community during the start-up of anammox process system and analyzing its microbial ecological mechanism provide a basis for the enrichment of anammox microbial community under high environmental stress. One research developed partial nitrification-Anammox (PN/A) using an internal circulation (IC) system and a biological aerated filter (BAF) biofilm reactor (IBBR), where the amount of water treated is closer to that of landfill leachate. However, new high-throughput sequencing technology is still required to be utilized to analyze the changes of microbial diversity of this system, related functional genera and functional genes under optimal conditions, providing theoretical and further practical basis for the engineering application of novel anammox system in biogas slurry treatment and resource utilization.

Keywords: nutrient removal and recovery, leachate, anammox, partial nitrification

Procedia PDF Downloads 24
144 Effect of Chemical Fertilizer on Plant Growth-Promoting Rhizobacteria in Wheat

Authors: Tessa E. Reid, Vanessa N. Kavamura, Maider Abadie, Adriana Torres-Ballesteros, Mark Pawlett, Ian M. Clark, Jim Harris, Tim Mauchline

Abstract:

The deleterious effect of chemical fertilizer on rhizobacterial diversity has been well documented using 16S rRNA gene amplicon sequencing and predictive metagenomics. Biofertilization is a cost-effective and sustainable alternative; improving strategies depends on isolating beneficial soil microorganisms. Although culturing is widespread in biofertilization, it is unknown whether the composition of cultured isolates closely mirrors native beneficial rhizobacterial populations. This study aimed to determine the relative abundance of culturable plant growth-promoting rhizobacteria (PGPR) isolates within total soil DNA and how potential PGPR populations respond to chemical fertilization in a commercial wheat variety. It was hypothesized that PGPR will be reduced in fertilized relative to unfertilized wheat. Triticum aestivum cv. Cadenza seeds were sown in a nutrient depleted agricultural soil in pots treated with and without nitrogen-phosphorous-potassium (NPK) fertilizer. Rhizosphere and rhizoplane samples were collected at flowering stage (10 weeks) and analyzed by culture-independent (amplicon sequence variance (ASV) analysis of total rhizobacterial DNA) and -dependent (isolation using growth media) techniques. Rhizosphere- and rhizoplane-derived microbiota culture collections were tested for plant growth-promoting traits using functional bioassays. In general, fertilizer addition decreased the proportion of nutrient-solubilizing bacteria (nitrate, phosphate, potassium, iron and, zinc) isolated from rhizocompartments in wheat, whereas salt tolerant bacteria were not affected. A PGPR database was created from isolate 16S rRNA gene sequences and searched against total soil DNA, revealing that 1.52% of total community ASVs were identified as culturable PGPR isolates. Bioassays identified a higher proportion of PGPR in non-fertilized samples (rhizosphere (49%) and rhizoplane (91%)) compared to fertilized samples (rhizosphere (21%) and rhizoplane (19%)) which constituted approximately 1.95% and 1.25% in non-fertilized and fertilized total community DNA, respectively. The analyses of 16S rRNA genes and deduced functional profiles provide an in-depth understanding of the responses of bacterial communities to fertilizer; this study suggests that rhizobacteria, which potentially benefit plants by mobilizing insoluble nutrients in soil, are reduced by chemical fertilizer addition. This knowledge will benefit the development of more targeted biofertilization strategies.

Keywords: bacteria, fertilizer, microbiome, rhizoplane, rhizosphere

Procedia PDF Downloads 284
143 Lamivudine Continuation/Tenofovir Add-on Adversely Affects Treatment Response among Lamivudine Non-Responder HIV-HBV Co-Infected Patients from Eastern India

Authors: Ananya Pal, Neelakshi Sarkar, Debraj Saha, Dipanwita Das, Subhashish Kamal Guha, Bibhuti Saha, Runu Chakravarty

Abstract:

Presently, tenofovir disoproxil fumurate (TDF) is the most effective anti-viral agent for the treatment of hepatitis B virus (HBV) in individuals co-infected with HIV and HBV as TDF has activity to suppress both wild-type and lamivudine (3TC)-resistant HBV. However, suboptimal response to TDF was reported in HIV-HBV co-infected individuals with prior 3TC therapy from different countries recently. The incidence of 3TC-resistant HBV strains is quite high in HIV-HBV co-infected patients experiencing long-term anti-retroviral therapy (ART) in eastern India. In spite of this risk, most of the patients with long-term 3TC treatment are continued with the same anti-viral agent in this country. Only a few have received TDF in addition to 3TC in the ART regimen since TDF has been available in India for the treatment of HIV-infected patients in 2012. In this preliminary study, we investigated the virologic and biochemical parameters among HIV-HBV co-infected patients who are non-responders to 3TC treatment during the continuation of 3TC or TDF add-on to 3TC in their ART regimen. Fifteen HIV-HBV co-infected patients who experienced long-term 3TC (mean duration months 36.87 ± 24.08 months) were identified with high HBV viremia ( > 20,000 IU/ml) or harbouring 3TC-resistant HBV. These patients receiving ART from School of Tropical Medicine Kolkata, the main ART centre in eastern India were followed-up semi-annually for next three visits. Different virologic parameters including quantification of plasma HBV load by real-time PCR, detection of hepatitis B e antigen (HBeAg) by commercial ELISA and anti-viral resistant mutations by sequencing were studied. During three follow-up among study subjects, 86%, 47%, and 43% had 3TC-mono-therapy (mean treatment-duration 41.54±18.84, 49.67±11.67, 54.17±12.37 months respectively) whereas 14%, 53%, and 57% experienced TDF in addition to 3TC (mean treatment duration 4.5±2.12, 16.56±11.06, and 23±4.07 months respectively). Mean CD4 cell-count in patients receiving 3TC was tended to be lower during third follow-up as compared to the first and the second [520.67±380.30 (1st), 454.8±196.90 (2nd), and 397.5±189.24 (3rd) cells/mm3) and similar trend was seen in patients experiencing TDF in addition to 3TC [334.5±330.218 (1st), 476.5±194.25 (2nd), and 461.17±269.89 (3rd) cells/mm3]. Serum HBV load was increased during successive follow-up of patients with 3TC-mono-therapy. Initiation of TDF lowered serum HBV-load among 3TC-non-responders at the time of second visit ( < 2,000 IU/ml), interestingly during third follow-up, mean HBV viremia increased >1 log IU/ml (mean 3.56±2.84 log IU/ml). Persistence of 3TC-resistant double and triple mutations was also observed in both the treatment regimens. Mean serum alanine aminotransferase remained elevated in these patients during this follow-up study. Persistence of high HBV viraemia and 3TC-resistant mutation in HBV during the continuation of 3TC might lead to major public health threat in India. The inclusion of TDF in the ART regimen of 3TC non-responder HIV-HBV co-infected patients showed adverse treatment response in terms of virologic and biochemical parameters. Therefore, serious attention is necessary for proper management of long-term 3TC experienced HIV-HBV co-infected patients with high HBV viraemia or 3TC-resistant HBV mutants in India.

Keywords: HBV, HIV, TDF, 3TC-resistant

Procedia PDF Downloads 339
142 Comparative Performance of Retting Methods on Quality Jute Fibre Production and Water Pollution for Environmental Safety

Authors: A. K. M. Zakir Hossain, Faruk-Ul Islam, Muhammad Alamgir Chowdhury, Kazi Morshed Alam, Md. Rashidul Islam, Muhammad Humayun Kabir, Noshin Ara Tunazzina, Taufiqur Rahman, Md. Ashik Mia, Ashaduzzaman Sagar

Abstract:

The jute retting process is one of the key factors for the excellent jute fibre production as well as maintaining water quality. The traditional method of jute retting is time-consuming and hampers the fish cultivation by polluting the water body. Therefore, a low cost, time-saving, environment-friendly, and improved technique is essential for jute retting to overcome this problem. Thus the study was focused to compare the extent of water pollution and fibre quality of two retting systems, i.e., traditional retting practices over-improved retting method (macha retting) by assessing different physico-chemical and microbiological properties of water and fibre quality parameters. Water samples were collected from the top and bottom of the retting place at the early, mid, and final stages of retting from four districts of Bangladesh viz., Gaibandha, Kurigram, Lalmonirhat, and Rangpur. Different physico-chemical parameters of water samples viz., pH, dissolved oxygen (DO), conductivity (CD), total dissolved solids (TDS), hardness, calcium, magnesium, carbonate, bicarbonate, chloride, phosphorus and sulphur content were measured. Irrespective of locations, the DO of the final stage retting water samples was very low as compared to the mid and early stage, and the DO of traditional jute retting method was significantly lower than the improved macha method. The pH of the water samples was slightly more acidic in the traditional retting method than that of the improved macha method. Other physico-chemical parameters of the water sample were found higher in the traditional method over-improved macha retting in all the stages of retting. Bacterial species were isolated from the collected water samples following the dilution plate technique. Microbiological results revealed that water samples of improved macha method contained more bacterial species that are supposed to involve in jute retting as compared to water samples of the traditional retting method. The bacterial species were then identified by the sequencing of 16SrDNA. Most of the bacterial species identified belong to the genera Pseudomonas, Bacillus, Pectobacterium, and Stenotrophomonas. In addition, the tensile strength of the jute fibre was tested, and the results revealed that the improved macha method showed higher mechanical strength than the traditional method in most of the locations. The overall results indicate that the water and fibre quality were found better in the improved macha retting method than the traditional method. Therefore, a time-saving and cost-friendly improved macha retting method can be widely adopted for the jute retting process to get the quality jute fiber and to keep the environment clean and safe.

Keywords: jute retting methods, physico-chemical parameters, retting microbes, tensile strength, water quality

Procedia PDF Downloads 131
141 Genetically Informed Precision Drug Repurposing for Rheumatoid Arthritis

Authors: Sahar El Shair, Laura Greco, William Reay, Murray Cairns

Abstract:

Background: Rheumatoid arthritis (RA) is a chronic, systematic, inflammatory, autoimmune disease that involves damages to joints and erosions to the associated bones and cartilage, resulting in reduced physical function and disability. RA is a multifactorial disorder influenced by heterogenous genetic and environmental factors. Whilst different medications have proven successful in reducing inflammation associated with RA, they often come with significant side effects and limited efficacy. To address this, the novel pharmagenic enrichment score (PES) algorithm was tested in self-reported RA patients from the UK Biobank (UKBB), which is a cohort of predominantly European ancestry, and identified individuals with a high genetic risk in clinically actionable biological pathways to identify novel opportunities for precision interventions and drug repurposing to treat RA. Methods and materials: Genetic association data for rheumatoid arthritis was derived from publicly available genome-wide association studies (GWAS) summary statistics (N=97173). The PES framework exploits competitive gene set enrichment to identify pathways that are associated with RA to explore novel treatment opportunities. This data is then integrated into WebGestalt, Drug Interaction database (DGIdb) and DrugBank databases to identify existing compounds with existing use or potential for repurposed use. The PES for each of these candidates was then profiled in individuals with RA in the UKBB (Ncases = 3,719, Ncontrols = 333,160). Results A total of 209 pathways with known drug targets after multiple testing correction were identified. Several pathways, including interferon gamma signaling and TID pathway (which relates to a chaperone that modulates interferon signaling), were significantly associated with self-reported RA in the UKBB when adjusting for age, sex, assessment centre month and location, RA polygenic risk and 10 principal components. These pathways have a major role in RA pathogenesis, including autoimmune attacks against certain citrullinated proteins, synovial inflammation, and bone loss. Encouragingly, many also relate to the mechanism of action of existing RA medications. The analyses also revealed statistically significant association between RA polygenic scores and self-reported RA with individual PES scorings, highlighting the potential utility of the PES algorithm in uncovering additional genetic insights that could aid in the identification of individuals at risk for RA and provide opportunities for more targeted interventions. Conclusions In this study, pharmacologically annotated genetic risk was explored through the PES framework to overcome inter-individual heterogeneity and enable precision drug repurposing in RA. The results showed a statistically significant association between RA polygenic scores and self-reported RA and individual PES scorings for 3,719 RA patients. Interestingly, several enriched PES pathways were targeted by already approved RA drugs. In addition, the analysis revealed genetically supported drug repurposing opportunities for future treatment of RA with a relatively safe profile.

Keywords: rheumatoid arthritis, precision medicine, drug repurposing, system biology, bioinformatics

Procedia PDF Downloads 51
140 Expression of Selected miRNAs in Placenta of the Intrauterine Restricted Growth Fetuses in Cattle

Authors: Karolina Rutkowska, Hubert Pausch, Jolanta Oprzadek, Krzysztof Flisikowski

Abstract:

The placenta is one of the most important organs that plays a crucial role in the fetal growth and development. Placenta dysfunction is one of the primary cause of the intrauterine growth restriction (IUGR). Cattle have the cotyledonary placenta which consists of two anatomical parts: fetal and maternal. In the case of cattle during the first months of pregnancy, it is very easy to separate maternal caruncle from fetal cotyledon tissue, easier in fact than removing an ordinary glove from one's hand. Which in fact make easier to conduct tissue-specific molecular studies. Typically, animal models for the study of IUGR are created using surgical methods and malnutrition of the pregnant mother or in the case of mice by genetic modifications. However, proposed cattle model with MIMT1Del/WT deletion is unique because it was created without any surgical methods what significantly distinguish it from the other animal models. The primary objective of the study was to identify differential expression of selected miRNAs in the placenta from normal and intrauterine growth restricted fetuses. There was examined the expression of miRNA in the fetal and maternal part of the placenta from 24 fetuses (12 samples from the fetal part of the placenta and 12 samples from maternal part of the placenta). In the study, there was done miRNAs sequencing in the placenta of MIMT1Del/WT fetuses and MIMT1WT/WT fetuses. Then, there were selected miRNAs that are involved in fetal growth and development. Analysis of miRNAs expression was conducted on ABI7500 machine. miRNAs expression was analyzed by reverse-transcription polymerase chain reaction (RT-PCR). As the reference gene was used SNORD47. The results were expressed as 2ΔΔCt: ΔΔCt = (Ctij − CtSNORD47j) − (Cti1 − CtSNORD471). Where Ctij and CtSNORD47j are the Ct values for gene i and for SNORD47 in a sample (named j); Cti1 and CtSNORD471 are the Ct values in sample 1. Differences between groups were evaluated with analysis of variance by using One-Way ANOVA. Bonferroni’s tests were used for interpretation of the data. All normalised miRNA expression values are expressed on a value of natural logarithm. The data were expressed as least squares mean with standard errors. Significance was declared when P < 0.05. The study shows that miRNAs expression depends on the part of the placenta where they origin (fetal or maternal) and on the genotype of the animal. miRNAs offer a particularly new approach to study IUGR. Corresponding tissue samples were collected according to the standard veterinary protocols according to the European Union Normative for Care and Use of Experimental Animals. All animal experiments were approved by the Animal Ethics Committee of the State Provincial Office of Southern Finland (ESAVI-2010-08583/YM-23).

Keywords: placenta, intrauterine growth restriction, miRNA, cattle

Procedia PDF Downloads 291
139 The Gut Microbiome in Cirrhosis and Hepatocellular Carcinoma: Characterization of Disease-Related Microbial Signature and the Possible Impact of Life Style and Nutrition

Authors: Lena Lapidot, Amir Amnon, Rita Nosenko, Veitsman Ella, Cohen-Ezra Oranit, Davidov Yana, Segev Shlomo, Koren Omry, Safran Michal, Ben-Ari Ziv

Abstract:

Introduction: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related mortality worldwide. Liver Cirrhosis is the main predisposing risk factor for the development of HCC. The factor(s) influencing disease progression from Cirrhosis to HCC remain unknown. Gut microbiota has recently emerged as a major player in different liver diseases, however its association with HCC is still a mystery. Moreover, there might be an important association between the gut microbiota, nutrition, life style and the progression of Cirrhosis and HCC. The aim of our study was to characterize the gut microbial signature in association with life style and nutrition of patients with Cirrhosis, HCC-Cirrhosis and healthy controls. Design: Stool samples were collected from 95 individuals (30 patients with HCC, 38 patients with Cirrhosis and 27 age, gender and BMI-matched healthy volunteers). All participants answered lifestyle and Food Frequency Questionnaires. 16S rRNA sequencing of fecal DNA was performed (MiSeq Illumina). Results: There was a significant decrease in alpha diversity in patients with Cirrhosis (qvalue=0.033) and in patients with HCC-Cirrhosis (qvalue=0.032) compared to healthy controls. The microbiota of patients with HCC-cirrhosis compared to patients with Cirrhosis, was characterized by a significant overrepresentation of Clostridium (pvalue=0.024) and CF231 (pvalue=0.010) and lower expression of Alphaproteobacteria (pvalue=0.039) and Verrucomicrobia (pvalue=0.036) in several taxonomic levels: Verrucomicrobiae, Verrucomicrobiales, Verrucomicrobiaceae and the genus Akkermansia (pvalue=0.039). Furthermore, we performed an analysis of predicted metabolic pathways (Kegg level 2) that resulted in a significant decrease in the diversity of metabolic pathways in patients with HCC-Cirrhosis (qvalue=0.015) compared to controls, one of which was amino acid metabolism. Furthermore, investigating the life style and nutrition habits of patients with HCC-Cirrhosis, we found significant correlations between intake of artificial sweeteners and Verrucomicrobia (qvalue=0.12), High sugar intake and Synergistetes (qvalue=0.021) and High BMI and the pathogen Campylobacter (qvalue=0.066). Furthermore, overweight in patients with HCC-Cirrhosis modified bacterial diversity (qvalue=0.023) and composition (qvalue=0.033). Conclusions: To the best of the our knowledge, we present the first report of the gut microbial composition in patients with HCC-Cirrhosis, compared with Cirrhotic patients and healthy controls. We have demonstrated in our study that there are significant differences in the gut microbiome of patients with HCC-cirrhosis compared to Cirrhotic patients and healthy controls. Our findings are even more pronounced because the significantly increased bacteria Clostridium and CF231 in HCC-Cirrhosis weren't influenced by diet and lifestyle, implying this change is due to the development of HCC. Further studies are needed to confirm these findings and assess causality.

Keywords: Cirrhosis, Hepatocellular carcinoma, life style, liver disease, microbiome, nutrition

Procedia PDF Downloads 96
138 Developing of Ecological Internal Insulation Composite Boards for Innovative Retrofitting of Heritage Buildings

Authors: J. N. Nackler, K. Saleh Pascha, W. Winter

Abstract:

WHISCERS™ (Whole House In-Situ Carbon and Energy Reduction Solution) is an innovative process for Internal Wall Insulation (IWI) for energy-efficient retrofitting of heritage building, which uses laser measuring to determine the dimensions of a room, off-site insulation board cutting and rapid installation to complete the process. As part of a multinational investigation consortium the Austrian part adapted the WHISCERS system to local conditions of Vienna where most historical buildings have valuable stucco facades, precluding the application of an external insulation. The Austrian project contribution addresses the replacement of commonly used extruded polystyrene foam (XPS) with renewable materials such as wood and wood products to develop a more sustainable IWI system. As the timber industry is a major industry in Austria, a new innovative and more sustainable IWI solution could also open up new markets. The first approach of investigation was the Life Cycle Assessment (LCA) to define the performance of wood fibre board as insulation material in comparison to normally used XPS-boards. As one of the results the global-warming potential (GWP) of wood-fibre-board is 15 times less the equivalent to carbon dioxide while in the case of XPS it´s 72 times more. The hygrothermal simulation program WUFI was used to evaluate and simulate heat and moisture transport in multi-layer building components of the developed IWI solution. The results of the simulations prove in examined boundary conditions of selected representative brickwork constructions to be functional and usable without risk regarding vapour diffusion and liquid transport in proposed IWI. In a further stage three different solutions were developed and tested (1 - glued/mortared, 2 - with soft board, connected to wall with gypsum board as top layer, 3 - with soft board and clay board as top layer). All three solutions presents a flexible insulation layer out of wood fibre towards the existing wall, thus compensating irregularities of the wall surface. From first considerations at the beginning of the development phase, three different systems had been developed and optimized according to assembly technology and tested as small specimen in real object conditions. The built prototypes are monitored to detect performance and building physics problems and to validate the results of the computer simulation model. This paper illustrates the development and application of the Internal Wall Insulation system.

Keywords: internal insulation, wood fibre, hygrothermal simulations, monitoring, clay, condensate

Procedia PDF Downloads 197
137 Dual-Layer Microporous Layer of Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells under Various RH Conditions

Authors: Grigoria Athanasaki, Veerarajan Vimala, A. M. Kannan, Louis Cindrella

Abstract:

Energy usage has been increased throughout the years, leading to severe environmental impacts. Since the majority of the energy is currently produced from fossil fuels, there is a global need for clean energy solutions. Proton Exchange Membrane Fuel Cells (PEMFCs) offer a very promising solution for transportation applications because of their solid configuration and low temperature operations, which allows them to start quickly. One of the main components of PEMFCs is the Gas Diffusion Layer (GDL), which manages water and gas transport and shows direct influence on the fuel cell performance. In this work, a novel dual-layer GDL with gradient porosity was prepared, using polyethylene glycol (PEG) as pore former, to improve the gas diffusion and water management in the system. The microporous layer (MPL) of the fabricated GDL consists of carbon powder PUREBLACK, sodium dodecyl sulfate as a surfactant, 34% wt. PTFE and the gradient porosity was created by applying one layer using 30% wt. PEG on the carbon substrate, followed by a second layer without using any pore former. The total carbon loading of the microporous layer is ~ 3 mg.cm-2. For the assembly of the catalyst layer, Nafion membrane (Ion Power, Nafion Membrane NR211) and Pt/C electrocatalyst (46.1% wt.) were used. The catalyst ink was deposited on the membrane via microspraying technique. The Pt loading is ~ 0.4 mg.cm-2, and the active area is 5 cm2. The sample was ex-situ characterized via wetting angle measurement, Scanning Electron Microscopy (SEM), and Pore Size Distribution (PSD) to evaluate its characteristics. Furthermore, for the performance evaluation in-situ characterization via Fuel Cell Testing using H2/O2 and H2/air as reactants, under 50, 60, 80, and 100% relative humidity (RH), took place. The results were compared to a single layer GDL, fabricated with the same carbon powder and loading as the dual layer GDL, and a commercially available GDL with MPL (AvCarb2120). The findings reveal high hydrophobic properties of the microporous layer of the GDL for both PUREBLACK based samples, while the commercial GDL demonstrates hydrophilic behavior. The dual layer GDL shows high and stable fuel cell performance under all the RH conditions, whereas the single layer manifests a drop in performance at high RH in both oxygen and air, caused by catalyst flooding. The commercial GDL shows very low and unstable performance, possibly because of its hydrophilic character and thinner microporous layer. In conclusion, the dual layer GDL with PEG appears to have improved gas diffusion and water management in the fuel cell system. Due to its increasing porosity from the catalyst layer to the carbon substrate, it allows easier access of the reactant gases from the flow channels to the catalyst layer, and more efficient water removal from the catalyst layer, leading to higher performance and stability.

Keywords: gas diffusion layer, microporous layer, proton exchange membrane fuel cells, relative humidity

Procedia PDF Downloads 105
136 Seed Associated Microbial Communities of Holoparasitic Cistanche Species from Armenia and Portugal

Authors: K. Petrosyan, R. Piwowarczyk, K. Ruraż, S. Thijs, J. Vangronsveld, W. Kaca

Abstract:

Holoparasitic plants are flowering heterotrophic angiosperms which with the help of an absorbing organ - haustorium, attach to another plant, the so-called the host. Due to the different hosts, unusual lifestyle, lack of roots, chlorophylls and photosynthesis, these plants are interesting and unique study objects for global biodiversity. The seeds germination of the parasitic plants also is unique: they germinate only in response to germination stimulants, namely strigolactones produced by the root of an appropriate host. Resistance of the seeds on different environmental conditions allow them to stay viable in the soil for more than 20 years. Among the wide range of plant protection mechanisms the endophytic communities have a specific role. In this way, they have the potential to mitigate the impacts of adverse conditions such as soil salinization. The major objective of our study was to compare the bacterial endo-microbiomes from seeds of two holoparasitic plants from Orobanchaceae family, Cistanche – C. armena (Armenia) and C. phelypaea (Portugal) – from saline habitats different in soil water status. The research aimed to perform how environmental conditions influence on the diversity of the bacterial communities of C. armena and C. phelypaea seeds. This was achieved by comparison of the endophytic microbiomes of two species and isolation of culturable bacteria. A combination of culture-dependent and molecular techniques was employed for the identification of the seed endomicrobiome (culturable and unculturable). Using the V3-V4 hypervariable region of the 16S rRNA gene, four main taxa were identified: Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, but the relative proportion of the taxa was different in each type of seed. Generally, sixteen phyla, 323 genera and 710 bacterial species were identified, mainly Gram negative, halotolerant bacteria with an environmental origin. However, also some unclassified and unexplored taxonomic groups were found in the seeds of both plants. 16S rRNA gene sequencing analysis from both species identified the gram positive, endospore forming, halotolerant and alkaliphile Bacillus spp. which suggests that the endophytic bacteria of examined seeds possess traits that are correlated with the natural habitat of their hosts. The cultivable seed endophytes from C. armena and C. phelypaea were rather similar, notwithstanding the big distances between their growth habitats - Armenia and Portugal. Although the seed endophytic microbiomes of C. armena and C. phelypaea contain a high number of common bacterial taxa, also remarkable differences exist. We demonstrated that the environmental conditions or abiotic stresses influence on diversity of the bacterial communities of holoparasiotic seeds. To the best of our knowledge the research is the first report of endophytes from seeds of holoparasitic Cistanche armena and C. phelypaea plants.

Keywords: microbiome, parasitic plant, salinity, seeds

Procedia PDF Downloads 52
135 Identification and Characterization of Novel Genes Involved in Quinone Synthesis in the Odoriferous Defensive Stink Glands of the Red Flour Beetle, Tribolium castaneum

Authors: B. Atika, S. Lehmann, E. Wimmer

Abstract:

The defense strategy is very common in the insect world. Defensive substances play a wide variety of functions for beetles, such as repellents, toxicants, insecticides, and antimicrobics. Beetles react to predators, invaders, and parasitic microbes with the release of toxic and repellent substances. Defensive substances are directed against a large array of potential target organisms or may function for boiling bombardment or as surfactants. Usually, Coleoptera biosynthesize and store their defensive compounds in a complex secretory organ, known as odoriferous defensive stink glands. The red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae), uses these glands to produce antimicrobial p-benzoquinones and 1-alkenes. In the past, the morphology of stink gland has been studied in detail in tenebrionid beetles; however, very little is known about the genes that are involved in the production of gland secretion. In this study, we studied a subset of genes that are essential for the benzoquinone production in red flour beetle. In the first phase, we selected 74 potential candidate genes from a genome-wide RNA interference (RNAi) knockdown screen named 'iBeetle.' All these 74 candidate genes were functionally characterized by RNAi-mediated gene knockdown. Therefore, they were selected for a subsequent gas chromatography-mass spectrometry (GC-MS) analysis of secretion volatiles in respective RNAi knockdown glands. 33 of them were observed to alter the phenotype of stink gland. In the GC-MS analysis, 7 candidate genes were noted to display a strongly altered gland, in terms of secretion color and chemical composition, upon knockdown, showing their key role in the biosynthesis of gland secretion. Morphologically altered stink glands were found for odorant receptor and protein kinase superfamily. Subsequent GC-MS analysis of secretion volatiles revealed reduced benzoquinone levels in LIM domain, PDZ domain, PBP/GOBP family knockdowns and a complete lack of benzoquinones in the knockdown of sulfatase-modifying factor enzyme 1, sulfate transporter family. Based on stink gland transcriptome data, we analyzed the function of sulfatase-modifying factor enzyme 1 and sulfate transporter family via RNAi-mediated gene knockdowns, GC-MS, in situ hybridization, and enzymatic activity assays. Morphologically altered stink glands were noted in knockdown of both these genes. Furthermore, GC-MS analysis of secretion volatiles showed a complete lack of benzoquinones in the knockdown of these two genes. In situ hybridization showed that these two genes are expressed around the vesicle of certain subgroup of secretory stink gland cells. Enzymatic activity assays on stink gland tissue showed that these genes are involved in p-benzoquinone biosynthesis. These results suggest that sulfatase-modifying factor enzyme 1 and sulfate transporter family play a role specifically in benzoquinone biosynthesis in red flour beetles.

Keywords: Red Flour Beetle, defensive stink gland, benzoquinones, sulfate transporter, sulfatase-modifying factor enzyme 1

Procedia PDF Downloads 127
134 The Effect of Lead(II) Lone Electron Pair and Non-Covalent Interactions on the Supramolecular Assembly and Fluorescence Properties of Pb(II)-Pyrrole-2-Carboxylato Polymer

Authors: M. Kowalik, J. Masternak, K. Kazimierczuk, O. V. Khavryuchenko, B. Kupcewicz, B. Barszcz

Abstract:

Recently, the growing interest of chemists in metal-organic coordination polymers (MOCPs) is primarily derived from their intriguing structures and potential applications in catalysis, gas storage, molecular sensing, ion exchanges, nonlinear optics, luminescence, etc. Currently, we are devoting considerable effort to finding the proper method of synthesizing new coordination polymers containing S- or N-heteroaromatic carboxylates as linkers and characterizing the obtained Pb(II) compounds according to their structural diversity, luminescence, and thermal properties. The choice of Pb(II) as the central ion of MOCPs was motivated by several reasons mentioned in the literature: i) a large ionic radius allowing for a wide range of coordination numbers, ii) the stereoactivity of the 6s2 lone electron pair leading to a hemidirected or holodirected geometry, iii) a flexible coordination environment, and iv) the possibility to form secondary bonds and unusual non-covalent interactions, such as classic hydrogen bonds and π···π stacking interactions, as well as nonconventional hydrogen bonds and rarely reported tetrel bonds, Pb(lone pair)···π interactions, C–H···Pb agostic-type interactions or hydrogen bonds, and chelate ring stacking interactions. Moreover, the construction of coordination polymers requires the selection of proper ligands acting as linkers, because we are looking for materials exhibiting different network topologies and fluorescence properties, which point to potential applications. The reaction of Pb(NO₃)₂ with 1H-pyrrole-2-carboxylic acid (2prCOOH) leads to the formation of a new four-nuclear Pb(II) polymer, [Pb4(2prCOO)₈(H₂O)]ₙ, which has been characterized by CHN, FT-IR, TG, PL and single-crystal X-ray diffraction methods. In view of the primary Pb–O bonds, Pb1 and Pb2 show hemidirected pentagonal pyramidal geometries, while Pb2 and Pb4 display hemidirected octahedral geometries. The topology of the strongest Pb–O bonds was determined as the (4·8²) fes topology. Taking the secondary Pb–O bonds into account, the coordination number of Pb centres increased, Pb1 exhibited a hemidirected monocapped pentagonal pyramidal geometry, Pb2 and Pb4 exhibited a holodirected tricapped trigonal prismatic geometry, and Pb3 exhibited a holodirected bicapped trigonal prismatic geometry. Moreover, the Pb(II) lone pair stereoactivity was confirmed by DFT calculations. The 2D structure was expanded into 3D by the existence of non-covalent O/C–H···π and Pb···π interactions, which was confirmed by the Hirshfeld surface analysis. The above mentioned interactions improve the rigidity of the structure and facilitate the charge and energy transfer between metal centres, making the polymer a promising luminescent compound.

Keywords: coordination polymers, fluorescence properties, lead(II), lone electron pair stereoactivity, non-covalent interactions

Procedia PDF Downloads 123
133 Clinical Manifestations, Pathogenesis and Medical Treatment of Stroke Caused by Basic Mitochondrial Abnormalities (Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like Episodes, MELAS)

Authors: Wu Liching

Abstract:

Aim This case aims to discuss the pathogenesis, clinical manifestations and medical treatment of strokes caused by mitochondrial gene mutations. Methods Diagnosis of ischemic stroke caused by mitochondrial gene defect by means of "next-generation sequencing mitochondrial DNA gene variation detection", imaging examination, neurological examination, and medical history; this study took samples from the neurology ward of a medical center in northern Taiwan cases diagnosed with acute cerebral infarction as the research objects. Result This case is a 49-year-old married woman with a rare disease, mitochondrial gene mutation inducing ischemic stroke. She has severe hearing impairment and needs to use hearing aids, and has a history of diabetes. During the patient’s hospitalization, the blood test showed that serum Lactate: 7.72 mmol/L, Lactate (CSF) 5.9 mmol/L. Through the collection of relevant medical history, neurological evaluation showed changes in consciousness and cognition, slow response in language expression, and brain magnetic resonance imaging examination showed subacute bilateral temporal lobe infarction, which was an atypical type of stroke. The lineage DNA gene has m.3243A>G known pathogenic mutation point, and its heteroplasmic level is 24.6%. This pathogenic point is located in MITOMAP and recorded as Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like episodes (MELAS) , Leigh Syndrome and other disease-related pathogenic loci, this mutation is located in ClinVar and recorded as Pathogenic (dbSNP: rs199474657), so it is diagnosed as a case of stroke caused by a rare disease mitochondrial gene mutation. After medical treatment, there was no more seizure during hospitalization. After interventional rehabilitation, the patient's limb weakness, poor language function, and cognitive impairment have all improved significantly. Conclusion Mitochondrial disorders can also be associated with abnormalities in psychological, neurological, cerebral cortical function, and autonomic functions, as well as problems with internal medical diseases. Therefore, the differential diagnoses cover a wide range and are not easy to be diagnosed. After neurological evaluation, medical history collection, imaging and rare disease serological examination, atypical ischemic stroke caused by rare mitochondrial gene mutation was diagnosed. We hope that through this case, the diagnosis of rare disease mitochondrial gene variation leading to cerebral infarction will be more familiar to clinical medical staff, and this case report may help to improve the clinical diagnosis and treatment for patients with similar clinical symptoms in the future.

Keywords: acute stroke, MELAS, lactic acidosis, mitochondrial disorders

Procedia PDF Downloads 47
132 Single Pass Design of Genetic Circuits Using Absolute Binding Free Energy Measurements and Dimensionless Analysis

Authors: Iman Farasat, Howard M. Salis

Abstract:

Engineered genetic circuits reprogram cellular behavior to act as living computers with applications in detecting cancer, creating self-controlling artificial tissues, and dynamically regulating metabolic pathways. Phenemenological models are often used to simulate and design genetic circuit behavior towards a desired behavior. While such models assume that each circuit component’s function is modular and independent, even small changes in a circuit (e.g. a new promoter, a change in transcription factor expression level, or even a new media) can have significant effects on the circuit’s function. Here, we use statistical thermodynamics to account for the several factors that control transcriptional regulation in bacteria, and experimentally demonstrate the model’s accuracy across 825 measurements in several genetic contexts and hosts. We then employ our first principles model to design, experimentally construct, and characterize a family of signal amplifying genetic circuits (genetic OpAmps) that expand the dynamic range of cell sensors. To develop these models, we needed a new approach to measuring the in vivo binding free energies of transcription factors (TFs), a key ingredient of statistical thermodynamic models of gene regulation. We developed a new high-throughput assay to measure RNA polymerase and TF binding free energies, requiring the construction and characterization of only a few constructs and data analysis (Figure 1A). We experimentally verified the assay on 6 TetR-homolog repressors and a CRISPR/dCas9 guide RNA. We found that our binding free energy measurements quantitatively explains why changing TF expression levels alters circuit function. Altogether, by combining these measurements with our biophysical model of translation (the RBS Calculator) as well as other measurements (Figure 1B), our model can account for changes in TF binding sites, TF expression levels, circuit copy number, host genome size, and host growth rate (Figure 1C). Model predictions correctly accounted for how these 8 factors control a promoter’s transcription rate (Figure 1D). Using the model, we developed a design framework for engineering multi-promoter genetic circuits that greatly reduces the number of degrees of freedom (8 factors per promoter) to a single dimensionless unit. We propose the Ptashne (Pt) number to encapsulate the 8 co-dependent factors that control transcriptional regulation into a single number. Therefore, a single number controls a promoter’s output rather than these 8 co-dependent factors, and designing a genetic circuit with N promoters requires specification of only N Pt numbers. We demonstrate how to design genetic circuits in Pt number space by constructing and characterizing 15 2-repressor OpAmp circuits that act as signal amplifiers when within an optimal Pt region. We experimentally show that OpAmp circuits using different TFs and TF expression levels will only amplify the dynamic range of input signals when their corresponding Pt numbers are within the optimal region. Thus, the use of the Pt number greatly simplifies the genetic circuit design, particularly important as circuits employ more TFs to perform increasingly complex functions.

Keywords: transcription factor, synthetic biology, genetic circuit, biophysical model, binding energy measurement

Procedia PDF Downloads 448
131 Isolation, Selection and Identification of Bacteria for Bioaugmentation of Paper Mills White Water

Authors: Nada Verdel, Tomaz Rijavec, Albin Pintar, Ales Lapanje

Abstract:

Objectives: White water circuits of woodfree paper mills contain suspended, dissolved, and colloidal particles, such as cellulose, starch, paper sizings, and dyes. By closing the white water circuits, these particles start to accumulate and affect the production. Due to high amount of organic matter that scavenge radicals and adsorbs onto catalyst surfaces, treatment of white water with photocatalysis is inappropriate. The most suitable approach should be bioaugmentation-assisted bioremediation. Accordingly, objectives were: - to isolate bacteria capable of degrading organic compounds used for the papermaking process - to select the most active bacteria for bioaugmentation. Status: The state-of-the-art of bioaugmentation of pulp and paper mill effluents is mostly based on biodegradation of lignin. Whereas in white water circuits of woodfree paper mills only papermaking compounds are present. As far as one can tell from the literature, the study on degradation activities of bacteria for all possible compounds of the papermaking process is a novelty. Methodology: The main parameters of the selected white water were systematically analyzed during a period of two months. Bacteria were isolated on selective media with particular carbon source. Organic substances used as carbon source either enter white water circuits as base paper or as recycled broke. The screening of bacterial activities for starch, cellulose, latex, polyvinyl alcohol, alkyl ketene dimers, and resin acids was followed by addition of lugol. Degraders of polycyclic aromatic dyes were selected by cometabolism tests; cometabolism is simultaneous biodegradation of two compounds, in which the degradation of the second compound depends on the presence of the first. The obtained strains were identified by 16S rRNA sequencing. Findings: 335 autochthonous strains were isolated on plates with selected carbon source. The isolated strains were selected according to degradation of the particular carbon source. The ultimate degraders of cationic starch, cellulose, and sizings are Pseudomonas sp. NV-CE12-CF and Aeromonas sp. NV-RES19-BTP. The most active strains capable of degrading azo dyes are Aeromonas sp. NV-RES19-BTP and Sphingomonas sp. NV-B14-CF. Klebsiella sp. NV-Y14A-BTP degrade polycyclic aromatic direct blue 15 and also yellow dye, Agromyces sp. NV-RED15A-BF and Cellulosimicrobium sp. NV-A4-BF are specialists for whitener and Aeromonas sp. NV-RES19-BTP is general degrader of all compounds. To the white water adapted bacteria were isolated and selected according to their degradation activities for particular organic substances. Mostly isolated bacteria are specialized to lower the competition in the microbial community. Degraders of readily-biodegradable compounds do not degrade recalcitrant polycyclic aromatic dyes and vice versa. General degraders are rare.

Keywords: bioaugmentation, biodegradation of azo dyes, cometabolism, smart wastewater treatment technologies

Procedia PDF Downloads 173
130 Designing Next Generation Platforms for Recombinant Protein Production by Genome Engineering of Escherichia coli

Authors: Priyanka Jain, Ashish K. Sharma, Esha Shukla, K. J. Mukherjee

Abstract:

We propose a paradigm shift in our approach to design improved platforms for recombinant protein production, by addressing system level issues rather than the individual steps associated with recombinant protein synthesis like transcription, translation, etc. We demonstrate that by controlling and modulating the cellular stress response (CSR), which is responsible for feedback control of protein synthesis, we can generate hyper-producing strains. We did transcriptomic profiling of post-induction cultures, expressing different types of protein, to analyze the nature of this cellular stress response. We found significant down-regulation of substrate utilization, translation, and energy metabolism genes due to generation CSR inside the host cell. However, transcription profiling has also shown that many genes are up-regulated post induction and their role in modulating the CSR is unclear. We hypothesized that these up-regulated genes trigger signaling pathways, generating the CSR and concomitantly reduce the recombinant protein yield. To test this hypothesis, we knocked out the up-regulated genes, which did not have any downstream regulatees, and analyzed their impact on cellular health and recombinant protein expression. Two model proteins i.e., GFP and L-Asparaginase were chosen for this analysis. We observed a significant improvement in expression levels, with some knock-outs showing more than 7-fold higher expression compared to control. The 10 best single knock-outs were chosen to make 45 combinations of all possible double knock-outs. A further increase in expression was observed in some of these double knock- outs with GFP levels being highest in a double knock-out ΔyhbC + ΔelaA. However, for L-Asparaginase which is a secretory protein, the best results were obtained using a combination of ΔelaA+ΔcysW knock-outs. We then tested all the knock outs for their ability to enhance the expression of a 'difficult-to-express' protein. The Rubella virus E1 protein was chosen and tagged with sfGFP at the C-terminal using a linker peptide for easy online monitoring of expression of this fusion protein. Interestingly, the highest increase in Rubella-sGFP levels was obtained in the same double knock-out ΔelaA + ΔcysW (5.6 fold increase in expression yield compared to the control) which gave the highest expression for L-Asparaginase. However, for sfGFP alone, the ΔyhbC+ΔmarR knock-out gave the highest level of expression. These results indicate that there is a fair degree of commonality in the nature of the CSR generated by the induction of different proteins. Transcriptomic profiling of the double knock out showed that many genes associated with the translational machinery and energy biosynthesis did not get down-regulated post induction, unlike the control where these genes were significantly down-regulated. This confirmed our hypothesis of these genes playing an important role in the generation of the CSR and allowed us to design a strategy for making better expression hosts by simply knocking out key genes. This strategy is radically superior to the previous approach of individually up-regulating critical genes since it blocks the mounting of the CSR thus preventing the down-regulation of a very large number of genes responsible for sustaining the flux through the recombinant protein production pathway.

Keywords: cellular stress response, GFP, knock-outs, up-regulated genes

Procedia PDF Downloads 205
129 A Galectin from Rock Bream Oplegnathus fasciatus: Molecular Characterization and Immunological Properties

Authors: W. S. Thulasitha, N. Umasuthan, G. I. Godahewa, Jehee Lee

Abstract:

In fish, innate immune defense is the first immune response against microbial pathogens which consists of several antimicrobial components. Galectins are one of the carbohydrate binding lectins that have the ability to identify pathogen by recognition of pathogen associated molecular patterns. Galectins play a vital role in the regulation of innate and adaptive immune responses. Rock bream Oplegnathus fasciatus is one of the most important cultured species in Korea and Japan. Considering the losses due to microbial pathogens, present study was carried out to understand the molecular and functional characteristics of a galectin in normal and pathogenic conditions, which could help to establish an understanding about immunological components of rock bream. Complete cDNA of rock bream galectin like protein B (rbGal like B) was identified from the cDNA library, and the in silico analysis was carried out using bioinformatic tools. Genomic structure was derived from the BAC library by sequencing a specific clone and using Spidey. Full length of rbGal like B (contig14775) cDNA containing 517 nucleotides was identified from the cDNA library which comprised of 435 bp in the open reading frame encoding a deduced protein composed of 145 amino acids. The molecular mass of putative protein was predicted as 16.14 kDa with an isoelectric point of 8.55. A characteristic conserved galactose binding domain was located from 12 to 145 amino acids. Genomic structure of rbGal like B consisted of 4 exons and 3 introns. Moreover, pairwise alignment showed that rock bream rbGal like B shares highest similarity (95.9 %) and identity (91 %) with Takifugu rubripes galectin related protein B like and lowest similarity (55.5 %) and identity (32.4 %) with Homo sapiens. Multiple sequence alignment demonstrated that the galectin related protein B was conserved among vertebrates. A phylogenetic analysis revealed that rbGal like B protein clustered together with other fish homologs in fish clade. It showed closer evolutionary link with Takifugu rubripes. Tissue distribution and expression patterns of rbGal like B upon immune challenges were performed using qRT-PCR assays. Among all tested tissues, level of rbGal like B expression was significantly high in gill tissue followed by kidney, intestine, heart and spleen. Upon immune challenges, it showed an up-regulated pattern of expression with Edwardsiella tarda, rock bream irido virus and poly I:C up to 6 h post injection and up to 24 h with LPS. However, In the presence of Streptococcus iniae rbGal like B showed an up and down pattern of expression with the peak at 6 - 12 h. Results from the present study revealed the phylogenetic position and role of rbGal like B in response to microbial infection in rock bream.

Keywords: galectin like protein B, immune response, Oplegnathus fasciatus, molecular characterization

Procedia PDF Downloads 327
128 Production of Bacillus Lipopeptides for Biocontrol of Postharvest Crops

Authors: Vivek Rangarajan, Kim G. Klarke

Abstract:

With overpopulation threatening the world’s ability to feed itself, food production and protection has become a major issue, especially in developing countries. Almost one-third of the food produced for human consumption, around 1.3 billion tonnes, is either wasted or lost annually. Postharvest decay in particular constitutes a major cause of crop loss with about 20% of fruits and vegetables produced lost during postharvest storage, mainly due to fungal disease. Some of the major phytopathogenic fungi affecting postharvest fruit crops in South Africa include Aspergillus, Botrytis, Penicillium, Alternaria and Sclerotinia spp. To date control of fungal phytopathogens has primarily been dependent on synthetic chemical fungicides, but these chemicals pose a significant threat to the environment, mainly due to their xenobiotic properties and tendency to generate resistance in the phytopathogens. Here, an environmentally benign alternative approach to control postharvest fungal phytopathogens in perishable fruit crops has been presented, namely the application of a bio-fungicide in the form of lipopeptide molecules. Lipopeptides are biosurfactants produced by Bacillus spp. which have been established as green, nontoxic and biodegradable molecules with antimicrobial properties. However, since the Bacillus are capable of producing a large number of lipopeptide homologues with differing efficacies against distinct target organisms, the lipopeptide production conditions and strategy are critical to produce the maximum lipopeptide concentration with homologue ratios to specification for optimum bio-fungicide efficacy. Process conditions, and their impact on Bacillus lipopeptide production, were evaluated in fully instrumented laboratory scale bioreactors under well-regulated controlled and defined environments. Factors such as the oxygen availability and trace element and nitrate concentrations had profound influences on lipopeptide yield, productivity and selectivity. Lipopeptide yield and homologue selectivity were enhanced in cultures where the oxygen in the sparge gas was increased from 21 to 30 mole%. The addition of trace elements, particularly Fe2+, increased the total concentration of lipopeptides and a nitrate concentration equivalent to 8 g/L ammonium nitrate resulted in optimum lipopeptide yield and homologue selectivity. Efficacy studies of the culture supernatant containing the crude lipopeptide mixture were conducted using phytopathogens isolated from fruit in the field, identified using genetic sequencing. The supernatant exhibited antifungal activity against all the test-isolates, namely Lewia, Botrytis, Penicillium, Alternaria and Sclerotinia spp., even in this crude form. Thus the lipopeptide product efficacy has been confirmed to control the main diseases, even in the basic crude form. Future studies will be directed towards purification of the lipopeptide product and enhancement of efficacy.

Keywords: antifungal efficacy, biocontrol, lipopeptide production, perishable crops

Procedia PDF Downloads 387
127 Optimizing the Pair Carbon Xerogels-Electrolyte for High Performance Supercapacitors

Authors: Boriana Karamanova, Svetlana Veleva, Luybomir Soserov, Ana Arenillas, Francesco Lufrano, Antonia Stoyanova

Abstract:

Supercapacitors have received a lot of research attention and are promising energy storage devices due to their high power and long cycle life. In order to developed an advanced device with significant capacity for storing charge and cheap carbon materials, efforts must focus not only on improving synthesis by controlling the morphology and pore size but also on improving electrode-electrolyte compatibility of the resulting systems. The present study examines the relationship between the surface chemistry of two activated carbon xerogels, the electrolyte type, and the electrochemical properties of supercapacitors. Activated carbon xerogels were prepared by varying the initial pH of the resorcinol-formaldehyde aqueous solution. The materials produced are physicochemical characterized by DTA/TGA, porous characterization, and SEM analysis. The carbon xerogel based electrodes were prepared by spreading over glass plate a slurry containing the carbon gel, graphite, and poly vinylidene difluoride (PVDF) binder. The layer formed was dried consecutively at different temperatures and then detached by water. After, the layer was dried again to improve its mechanical stability. The developed electrode materials and the Aquivion® E87-05S membrane (Solvay Specialty Polymers), socked in Na2SO4 as a polymer electrolyte, were used to assembly the solid-state supercapacitor. Symmetric supercapacitor cells composed by same electrodes and 1 M KOH electrolytes are also assembled and tested for comparison. The supercapacitor performances are verified by different electrochemical methods - cyclic voltammetry, galvanostatic charge/discharge measurements, electrochemical impedance spectroscopy, and long-term durability tests in neutral and alkaline electrolytes. Specific capacitances, energy, and power density, energy efficiencies, and durability were compared into studied supercapacitors. Ex-situ physicochemical analyses on the synthesized materials have also been performed, which provide information about chemical and structural changes in the electrode morphology during charge / discharge durability tests. They are discussed on the basis of electrode-electrolyte interaction. The obtained correlations could be of significance in order to design sustainable solid-state supercapacitors with high power and energy density. Acknowledgement: This research is funded by the Ministry of Education and Science of Bulgaria under the National Program "European Scientific Networks" (Agreement D01-286 / 07.10.2020, D01-78/30.03.2021). Authors gratefully acknowledge.

Keywords: carbon xerogel, electrochemical tests, neutral and alkaline electrolytes, supercapacitors

Procedia PDF Downloads 109
126 Antimicrobial Resistance of Acinetobacter baumannii in Veterinary Settings: A One Health Perspective from Punjab, Pakistan

Authors: Minhas Alam, Muhammad Hidayat Rasool, Mohsin Khurshid, Bilal Aslam

Abstract:

The genus Acinetobacter has emerged as a significant concern in hospital-acquired infections, particularly due to the versatility of Acinetobacter baumannii in causing nosocomial infections. The organism's remarkable metabolic adaptability allows it to thrive in various environments, including the environment, animals, and humans. However, the extent of antimicrobial resistance in Acinetobacter species from veterinary settings, especially in developing countries like Pakistan, remains unclear. This study aimed to isolate and characterize Acinetobacter spp. from veterinary settings in Punjab, Pakistan. A total of 2,230 specimens were collected, including 1,960 samples from veterinary settings (nasal and rectal swabs from dairy and beef cattle), 200 from the environment, and 70 from human clinical settings. Isolates were identified using routine microbiological procedures and confirmed by polymerase chain reaction (PCR). Antimicrobial susceptibility was determined by the disc diffusion method, and minimum inhibitory concentration (MIC) was measured by the micro broth dilution method. Molecular techniques, such as PCR and DNA sequencing, were used to screen for antimicrobial-resistant determinants. Genetic diversity was assessed using standard techniques. The results showed that the overall prevalence of A. baumannii in cattle was 6.63% (65/980). However, among cattle, a higher prevalence of A. baumannii was observed in dairy cattle, 7.38% (54/731), followed by beef cattle, 4.41% (11/249). Out of 65 A. baumannii isolates, the carbapenem resistance was found in 18 strains, i.e. 27.7%. The prevalence of A. baumannii in nasopharyngeal swabs was higher, i.e., 87.7% (57/65), as compared to rectal swabs, 12.3% (8/65). Class D β-lactamases genes blaOXA-23 and blaOXA-51 were present in all the CRAB from cattle. Among carbapenem-resistant isolates, 94.4% (17/18) were positive for class B β-lactamases gene blaIMP, whereas the blaNDM-1 gene was detected in only one isolate of A. baumannii. Among 70 clinical isolates of A. baumannii, 58/70 (82.9%) were positive for the blaOXA-23-like gene, and 87.1% (61/70) were CRAB isolates. Among all clinical isolates of A. baumannii, blaOXA-51-like gene was present. Hence, the co-existence of blaOXA-23 and blaOXA-51 was found in 82.85% of clinical isolates. From the environmental settings, a total of 18 A. baumannii isolates were recovered; among these, 38.88% (7/18) strains showed carbapenem resistance. All environmental isolates of A. baumannii harbored class D β-lactamases genes, i.e., blaOXA-51 and blaOXA-23 were detected in 38.9% (7/18) isolates. Hence, the co-existence of blaOXA-23 and blaOXA-51 was found in 38.88% of isolates. From environmental settings, 18 A. baumannii isolates were recovered, with 38.88% showing carbapenem resistance. All environmental isolates harbored blaOXA-51 and blaOXA-23 genes, with co-existence in 38.88% of isolates. MLST results showed ten different sequence types (ST) in clinical isolates, with ST 589 being the most common in carbapenem-resistant isolates. In veterinary isolates, ST2 was most common in CRAB isolates from cattle. Immediate control measures are needed to prevent the transmission of CRAB isolates among animals, the environment, and humans. Further studies are warranted to understand the mechanisms of antibiotic resistance spread and implement effective disease control programs.

Keywords: Acinetobacter baumannii, carbapenemases, drug resistance, MSLT

Procedia PDF Downloads 31
125 Association of Ovine Lymphocyte Antigen (OLA) with the Parasitic Infestation in Kashmiri Sheep Breeds

Authors: S. A. Bhat, Ahmad Arif, Muneeb U. Rehman, Manzoor R Mir, S. Bilal, Ishraq Hussain, H. M Khan, S. Shanaz, M. I Mir, Sabhiya Majid

Abstract:

Background: Geologically Climatic conditions of the state range from sub-tropical (Jammu), temperate (Kashmir) to cold artic (Ladakh) zones, which exerts significant influence on its agro-climatic conditions. Gastrointestinal parasitism is a major problem in sheep production worldwide. Materials and Methods: The present study was to evaluate the resistance status of sheep breeds reared in Kashmir Valley for natural resistance against Haemonchus contortus by natural pasture challenge infection. Ten microsatellite markers were used in the study for evaluation of association of Ovar-MHC with parasitic resistance in association with biochemical and parasitological parameters. Following deworming, 500 animals were subjected to selected contaminated pastures in a vicinity of the livestock farms of SKUAST-K and Sheep Husbandry Kashmir. For each animal about 10-15 ml blood was collected aseptically for molecular and biochemical analysis. Weekly fecal samples (3g) were taken, directly from the rectum of all experimental animals and examined for Fecal egg count (FEC) with modified McMaster technique. Packed cell volume (PCV) was determined within 2-5 h of blood collection, all the biochemical parameters were determined in serum by semi automated analyzer. DNA was extracted from all the blood samples with phenol-chloroform method. Microsatellite analysis was done by denaturing sequencing gel electrophoresis Results: Overall sheep from Bakerwal breed followed by Corriediale breed performed relatively better in the trial; however difference between breeds remained low. Both significant (P<0.05) and non-significant differences with respect to resistance against haemonchosis were noted at different intervals in all the parameters.. All the animals were typed for the microsatellites INRA132, OarCP73, DRB1 (U0022), OLA-DQA2, BM1818, TFAP2A, HH56, BM1815, IL-3 and BM-1258. An association study including the effect of FEC, PCV, TSP, SA, LW, and the number of alleles within each marker was done. All microsatellite markers showed degree of heterozygosity of 0.72, 0.72, 0.75, 0.62, 0.84, 0.69, 0.66, 0.65, 0.73 and 0.68 respectively. Significant association between alleles and the parameters measured were only found for the OarCP73, OLA-DQA2 and BM1815 microsatellite marker. Standard alleles of the above markers showed significant effect on the TP, SA and body weight. The three sheep breeds included in the study responded differently to the nematode infection, which may be attributed to their differences in their natural resistance against nematodes. Conclusion: Our data confirms that some markers (OarCP73, OLA-DQA2 and BM1815) within Ovar-MHC are associated with phenotypic parameters of resistance and suggest superiority of Bakerwal sheep breed in natural resistance against Haemonchus contortus.

Keywords: Ovar-Mhc, ovine leukocyte antigen (OLA), sheep, parasitic resistance, Haemonchus contortus, phenotypic & genotypic markers

Procedia PDF Downloads 682
124 Impact of Experiential Learning on Executive Function, Language Development, and Quality of Life for Adults with Intellectual and Developmental Disabilities (IDD)

Authors: Mary Deyo, Zmara Harrison

Abstract:

This study reports the outcomes of an 8-week experiential learning program for 6 adults with Intellectual and Developmental Disabilities (IDD) at a day habilitation program. The intervention foci for this program include executive function, language learning in the domains of expressive, receptive, and pragmatic language, and quality of life. The interprofessional collaboration aimed at supporting adults with IDD to reach person-centered, functional goals across skill domains is critical. This study is a significant addition to the speech-language pathology literature in that it examines a therapy method that potentially meets this need while targeting domains within the speech-language pathology scope of practice. Communication therapy was provided during highly valued and meaningful hands-on learning experiences, referred to as the Garden Club, which incorporated all aspects of planting and caring for a garden as well as related journaling, sensory, cooking, art, and technology-based activities. Direct care staff and an undergraduate research assistant were trained by SLP to be impactful language guides during their interactions with participants in the Garden Club. SLP also provided direct therapy and modeling during Garden Club. Research methods used in this study included a mixed methods analysis of a literature review, a quasi-experimental implementation of communication therapy in the context of experiential learning activities, Quality of Life participant surveys, quantitative pre- post- data collection and linear mixed model analysis, qualitative data collection with qualitative content analysis and coding for themes. Outcomes indicated overall positive changes in expressive vocabulary, following multi-step directions, sequencing, problem-solving, planning, skills for building and maintaining meaningful social relationships, and participant perception of the Garden Project’s impact on their own quality of life. Implementation of this project also highlighted supports and barriers that must be taken into consideration when planning similar projects. Overall findings support the use of experiential learning projects in day habilitation programs for adults with IDD, as well as additional research to deepen understanding of best practices, supports, and barriers for implementation of experiential learning with this population. This research provides an important contribution to research in the fields of speech-language pathology and other professions serving adults with IDD by describing an interprofessional experiential learning program with positive outcomes for executive function, language learning, and quality of life.

Keywords: experiential learning, adults, intellectual and developmental disabilities, expressive language, receptive language, pragmatic language, executive function, communication therapy, day habilitation, interprofessionalism, quality of life

Procedia PDF Downloads 87
123 qPCR Method for Detection of Halal Food Adulteration

Authors: Gabriela Borilova, Monika Petrakova, Petr Kralik

Abstract:

Nowadays, European producers are increasingly interested in the production of halal meat products. Halal meat has been increasingly appearing in the EU's market network and meat products from European producers are being exported to Islamic countries. Halal criteria are mainly related to the origin of muscle used in production, and also to the way products are obtained and processed. Although the EU has legislatively addressed the question of food authenticity, the circumstances of previous years when products with undeclared horse or poultry meat content appeared on EU markets raised the question of the effectiveness of control mechanisms. Replacement of expensive or not-available types of meat for low-priced meat has been on a global scale for a long time. Likewise, halal products may be contaminated (falsified) by pork or food components obtained from pigs. These components include collagen, offal, pork fat, mechanically separated pork, emulsifier, blood, dried blood, dried blood plasma, gelatin, and others. These substances can influence sensory properties of the meat products - color, aroma, flavor, consistency and texture or they are added for preservation and stabilization. Food manufacturers sometimes access these substances mainly due to their dense availability and low prices. However, the use of these substances is not always declared on the product packaging. Verification of the presence of declared ingredients, including the detection of undeclared ingredients, are among the basic control procedures for determining the authenticity of food. Molecular biology methods, based on DNA analysis, offer rapid and sensitive testing. The PCR method and its modification can be successfully used to identify animal species in single- and multi-ingredient raw and processed foods and qPCR is the first choice for food analysis. Like all PCR-based methods, it is simple to implement and its greatest advantage is the absence of post-PCR visualization by electrophoresis. qPCR allows detection of trace amounts of nucleic acids, and by comparing an unknown sample with a calibration curve, it can also provide information on the absolute quantity of individual components in the sample. Our study addresses a problem that is related to the fact that the molecular biological approach of most of the work associated with the identification and quantification of animal species is based on the construction of specific primers amplifying the selected section of the mitochondrial genome. In addition, the sections amplified in conventional PCR are relatively long (hundreds of bp) and unsuitable for use in qPCR, because in DNA fragmentation, amplification of long target sequences is quite limited. Our study focuses on finding a suitable genomic DNA target and optimizing qPCR to reduce variability and distortion of results, which is necessary for the correct interpretation of quantification results. In halal products, the impact of falsification of meat products by the addition of components derived from pigs is all the greater that it is not just about the economic aspect but above all about the religious and social aspect. This work was supported by the Ministry of Agriculture of the Czech Republic (QJ1530107).

Keywords: food fraud, halal food, pork, qPCR

Procedia PDF Downloads 224
122 Improving Working Memory in School Children through Chess Training

Authors: Veena Easvaradoss, Ebenezer Joseph, Sumathi Chandrasekaran, Sweta Jain, Aparna Anna Mathai, Senta Christy

Abstract:

Working memory refers to a cognitive processing space where information is received, managed, transformed, and briefly stored. It is an operational process of transforming information for the execution of cognitive tasks in different and new ways. Many class room activities require children to remember information and mentally manipulate it. While the impact of chess training on intelligence and academic performance has been unequivocally established, its impact on working memory needs to be studied. This study, funded by the Cognitive Science Research Initiative, Department of Science & Technology, Government of India, analyzed the effect of one-year chess training on the working memory of children. A pretest–posttest with control group design was used, with 52 children in the experimental group and 50 children in the control group. The sample was selected from children studying in school (grades 3 to 9), which included both the genders. The experimental group underwent weekly chess training for one year, while the control group was involved in extracurricular activities. Working memory was measured by two subtests of WISC-IV INDIA. The Digit Span Subtest involves recalling a list of numbers of increasing length presented orally in forward and in reverse order, and the Letter–Number Sequencing Subtest involves rearranging jumbled alphabets and numbers presented orally following a given rule. Both tasks require the child to receive and briefly store information, manipulate it, and present it in a changed format. The Children were trained using Winning Moves curriculum, audio- visual learning method, hands-on- chess training and recording the games using score sheets, analyze their mistakes, thereby increasing their Meta-Analytical abilities. They were also trained in Opening theory, Checkmating techniques, End-game theory and Tactical principles. Pre equivalence of means was established. Analysis revealed that the experimental group had significant gains in working memory compared to the control group. The present study clearly establishes a link between chess training and working memory. The transfer of chess training to the improvement of working memory could be attributed to the fact that while playing chess, children evaluate positions, visualize new positions in their mind, analyze the pros and cons of each move, and choose moves based on the information stored in their mind. If working-memory’s capacity could be expanded or made to function more efficiently, it could result in the improvement of executive functions as well as the scholastic performance of the child.

Keywords: chess training, cognitive development, executive functions, school children, working memory

Procedia PDF Downloads 239
121 Targeting Glucocorticoid Receptor Eliminate Dormant Chemoresistant Cancer Stem Cells in Glioblastoma

Authors: Aoxue Yang, Weili Tian, Haikun Liu

Abstract:

Brain tumor stem cells (BTSCs) are resistant to therapy and give rise to recurrent tumors. These rare and elusive cells are likely to disseminate during cancer progression, and some may enter dormancy, remaining viable but not increasing. The identification of dormant BTSCs is thus necessary to design effective therapies for glioblastoma (GBM) patients. Glucocorticoids (GCs) are used to treat GBM-associated edema. However, glucocorticoids participate in the physiological response to psychosocial stress, linked to poor cancer prognosis. This raises concern that glucocorticoids affect the tumor and BTSCs. Identifying markers specifically expressed by brain tumor stem cells (BTSCs) may enable specific therapies that spare their regular tissue-resident counterparts. By ribosome profiling analysis, we have identified that glycerol-3-phosphate dehydrogenase 1 (GPD1) is expressed by dormant BTSCs but not by NSCs. Through different stress-induced experiments in vitro, we found that only dexamethasone (DEXA) can significantly increase the expression of GPD1 in NSCs. Adversely, mifepristone (MIFE) which is classified as glucocorticoid receptors antagonists, could decrease GPD1 protein level and weaken the proliferation and stemness in BTSCs. Furthermore, DEXA can induce GPD1 expression in tumor-bearing mice brains and shorten animal survival, whereas MIFE has a distinct adverse effect that prolonged mice lifespan. Knocking out GR in NSC can block the upregulation of GPD1 inducing by DEXA, and we find the specific sequences on GPD1 promotor combined with GR, thus improving the efficiency of GPD1 transcription from CHIP-Seq. Moreover, GR and GPD1 are highly co-stained on GBM sections obtained from patients and mice. All these findings confirmed that GR could regulate GPD1 and loss of GPD1 Impairs Multiple Pathways Important for BTSCs Maintenance GPD1 is also a critical enzyme regulating glycolysis and lipid synthesis. We observed that DEXA and MIFE could change the metabolic profiles of BTSCs by regulating GPD1 to shift the transition of cell dormancy. Our transcriptome and lipidomics analysis demonstrated that cell cycle signaling and phosphoglycerides synthesis pathways contributed a lot to the inhibition of GPD1 caused by MIFE. In conclusion, our findings raise concern that treatment of GBM with GCs may compromise the efficacy of chemotherapy and contribute to BTSC dormancy. Inhibition of GR can dramatically reduce GPD1 and extend the survival duration of GBM-bearing mice. The molecular link between GPD1 and GR may give us an attractive therapeutic target for glioblastoma.

Keywords: cancer stem cell, dormancy, glioblastoma, glycerol-3-phosphate dehydrogenase 1, glucocorticoid receptor, dexamethasone, RNA-sequencing, phosphoglycerides

Procedia PDF Downloads 102
120 Comprehensive Analysis of RNA m5C Regulator ALYREF as a Suppressive Factor of Anti-tumor Immune and a Potential Tumor Prognostic Marker in Pan-Cancer

Authors: Yujie Yuan, Yiyang Fan, Hong Fan

Abstract:

Objective: The RNA methylation recognition protein Aly/REF export factor (ALYREF) is considered one type of “reader” protein acting as a recognition protein of m5C, has been reported involved in several biological progresses including cancer initiation and progression. 5-methylcytosine (m5C) is a conserved and prevalent RNA modification in all species, as accumulating evidence suggests its role in the promotion of tumorigenesis. It has been claimed that ALYREF mediates nuclear export of mRNA with m5C modification and regulates biological effects of cancer cells. However, the systematical regulatory pathways of ALYREF in cancer tissues have not been clarified, yet. Methods: The expression level of ALYREF in pan-cancer and their normal tissues was compared through the data acquired from The Cancer Genome Atlas (TCGA). The University of Alabama at Birmingham Cancer data analysis Portal UALCAN was used to analyze the relationship between ALYREF and clinical pathological features. The relationship between the expression level of ALYREF and prognosis of pan-cancer, and the correlation genes of ALYREF were figured out by using Gene Expression Correlation Analysis database GEPIA. Immune related genes were obtained from TISIDB (an integrated repository portal for tumor-immune system interactions). Immune-related research was conducted by using Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) and TIMER. Results: Based on the data acquired from TCGA, ALYREF has an obviously higher-level expression in various types of cancers compared with relevant normal tissues excluding thyroid carcinoma and kidney chromophobe. The immunohistochemical images on The Human Protein Atlas showed that ALYREF can be detected in cytoplasm, membrane, but mainly located in nuclear. In addition, a higher expression level of ALYREF in tumor tissue generates a poor prognosis in majority of cancers. According to the above results, cancers with a higher expression level of ALYREF compared with normal tissues and a significant correlation between ALYREF and prognosis were selected for further analysis. By using TISIDB, we found that portion of ALYREF co-expression genes (such as BIRC5, H2AFZ, CCDC137, TK1, and PPM1G) with high Pearson correlation coefficient (PCC) were involved in anti-tumor immunity or affect resistance or sensitivity to T cell-mediated killing. Furthermore, based on the results acquired from GEPIA, there was significant correlation between ALYREF and PD-L1. It was exposed that there is a negative correlation between the expression level of ALYREF and ESTIMATE score. Conclusion: The present study indicated that ALYREF plays a vital and universal role in cancer initiation and progression of pan-cancer through regulating mitotic progression, DNA synthesis and metabolic process, and RNA processing. The correlation between ALYREF and PD-L1 implied ALYREF may affect the therapeutic effect of immunotherapy of tumor. More evidence revealed that ALYREF may play an important role in tumor immunomodulation. The correlation between ALYREF and immune cell infiltration level indicated that ALYREF can be a potential therapeutic target. Exploring the regulatory mechanism of ALYREF in tumor tissues may expose the reason for poor efficacy of immunotherapy and offer more directions of tumor treatment.

Keywords: ALYREF, pan-cancer, immunotherapy, PD-L1

Procedia PDF Downloads 41
119 A Proper Continuum-Based Reformulation of Current Problems in Finite Strain Plasticity

Authors: Ladislav Écsi, Roland Jančo

Abstract:

Contemporary multiplicative plasticity models assume that the body's intermediate configuration consists of an assembly of locally unloaded neighbourhoods of material particles that cannot be reassembled together to give the overall stress-free intermediate configuration since the neighbourhoods are not necessarily compatible with each other. As a result, the plastic deformation gradient, an inelastic component in the multiplicative split of the deformation gradient, cannot be integrated, and the material particle moves from the initial configuration to the intermediate configuration without a position vector and a plastic displacement field when plastic flow occurs. Such behaviour is incompatible with the continuum theory and the continuum physics of elastoplastic deformations, and the related material models can hardly be denoted as truly continuum-based. The paper presents a proper continuum-based reformulation of current problems in finite strain plasticity. It will be shown that the incompatible neighbourhoods in real material are modelled by the product of the plastic multiplier and the yield surface normal when the plastic flow is defined in the current configuration. The incompatible plastic factor can also model the neighbourhoods as the solution of the system of differential equations whose coefficient matrix is the above product when the plastic flow is defined in the intermediate configuration. The incompatible tensors replace the compatible spatial plastic velocity gradient in the former case or the compatible plastic deformation gradient in the latter case in the definition of the plastic flow rule. They act as local imperfections but have the same position vector as the compatible plastic velocity gradient or the compatible plastic deformation gradient in the definitions of the related plastic flow rules. The unstressed intermediate configuration, the unloaded configuration after the plastic flow, where the residual stresses have been removed, can always be calculated by integrating either the compatible plastic velocity gradient or the compatible plastic deformation gradient. However, the corresponding plastic displacement field becomes permanent with both elastic and plastic components. The residual strains and stresses originate from the difference between the compatible plastic/permanent displacement field gradient and the prescribed incompatible second-order tensor characterizing the plastic flow in the definition of the plastic flow rule, which becomes an assignment statement rather than an equilibrium equation. The above also means that the elastic and plastic factors in the multiplicative split of the deformation gradient are, in reality, gradients and that there is no problem with the continuum physics of elastoplastic deformations. The formulation is demonstrated in a numerical example using the regularized Mooney-Rivlin material model and modified equilibrium statements where the intermediate configuration is calculated, whose analysis results are compared with the identical material model using the current equilibrium statements. The advantages and disadvantages of each formulation, including their relationship with multiplicative plasticity, are also discussed.

Keywords: finite strain plasticity, continuum formulation, regularized Mooney-Rivlin material model, compatibility

Procedia PDF Downloads 98
118 MXene Mediated Layered 2D-3D-2D g-C3N4@WO3@Ti3C2 Multijunctional Heterostructure with Enhanced Photoelectrochemical and Photocatalytic Properties

Authors: Lekgowa Collen Makola, Cecil Naphtaly Moro Ouma, Sharon Moeno, Langelihle Dlamini

Abstract:

In recent years, advancement in the field of nanotechnology has evolved new strategies to address energy and environmental issues. Amongst the developing technologies, visible-light-driven photocatalysis is regarded as a sustainable approach for energy production and environmental detoxifications, where transition metal oxides (TMOs) and metal-free carbon-based semiconductors such as graphitic carbon nitride (CN) evidenced notable potential in this matter. Herein, g-C₃N₄@WO₃@Ti₃C₂Tx three-component multijunction photocatalyst was fabricated via facile ultrasonic-assisted self-assembly, followed by calcination to facilitate extensive integrations of the materials. A series of different Ti₃C₂ wt% loading in the g-C₃N4@WO₃@Ti₃C₂Tx were prepared and represented as 1-CWT, 3-CWT, 5-CWT, and 7-CWT corresponding to 1, 3, 5, and 7wt%, respectively. Systematic characterization using spectroscopic and microscopic techniques were employed to validate the successful preparation of the photocatalysts. Enhanced optoelectronic and photoelectrochemical properties were observed for the WO₃@Ti₃C2@g-C₃N4 heterostructure with respect to the individual materials. Photoluminescence spectra and Nyquist plots show restrained recombination rates and improved photocarrier conductivities, respectively, and this was credited to the synergistic coupling effect and the presence of highly conductive Ti₃C2 MXene. The strong interfacial contact surfaces upon the formation of the composite were confirmed using XPS. Multiple charge transfer mechanisms were proposed for the WO3@Ti3C₂@g-C3N4, which couples Z-scheme and Schottky-junction mediated with Ti3C2 MXene. Bode phase plots show improved charge carrier life-times upon the formation of the multijunctional photocatalyst. Moreover, transient photocurrent density of 7-CWT is 40 and seven (7) times higher compared to that of g-C₃N4 and WO3, correspondingly. Unlike in the traditional Z-Scheme, the formed ternary heterostructure possesses interfaces through the metallic 2D Ti₃C₂ MXene, which provided charge transfer channels for efficient photocarrier transfers with carrier concentrations (ND) of 17.49×1021 cm-3 and 4.86% photo-to-chemical conversion efficiency. The as-prepared ternary g-C₃N₄@WO₃@Ti₃C₂Tx exhibited excellent photoelectrochemical properties with reserved redox band potential potencies to facilitate efficient photo-oxidation and -reduction reactions. The fabricated multijunction photocatalyst exhibits potentials to be used in an extensive range of photocatalytic process vis., production of valuable hydrocarbons from CO₂, production of H₂, and degradation of a plethora of pollutants from wastewater.

Keywords: photocatalysis, Z-scheme, multijunction heterostructure, Ti₃C₂ MXene, g-C₃N₄

Procedia PDF Downloads 89