Search results for: gas utilization efficiency
7055 Investigation of Input Energy Efficiency in Corn (KSC704) Farming in Khoy City, Iran
Authors: Nasser Hosseini
Abstract:
Energy cycle is one of the essential points in agricultural ecosystems all over the world. Corn is one of the important products in Khoy city. Knowing input energy level and evaluating output energy from farms to reduce energy and increase efficiency in farms is very important if one can reduce input energy level into farms through the indices like poisons, fertilization, tractor energy and labour force. In addition to the net income of the farmers, this issue would play a significant role in preserving farm ecosystem from pollution and wrecker factors. For this reason, energy balance sheet in corn farms as well as input and output energy in 2012-2013 were researched by distributing a questionnaire among farmers in various villages in Khoy city. Then, the input energy amount into farms via energy-consuming factors, mentioned above, with regard to special coefficients was computed. Energy was computed on the basis of seed corn function, chemical compound and its content as well. In this investigation, we evaluated the level of stored energy 10792831 kcal per hectare. We found out that the greatest part of energy depended on irrigation which has 5136141.8 kcal and nitrate fertilizer energy with 2509760 kcal and the lowest part of energy depended on phosphor fertilizer, the rate of posited energy equaled 36362500 kcal and energy efficiency on the basis of seed corn function were estimated as 3.36. We found some ways to reduce consumptive energy in farm and nitrate fertilizer and, on the other hand, to increase balance sheet. They are, to name a few, using alternative farming and potherbs for biological stabilizing of nitrogen and changing kind of fertilizers such as urea fertilizer with sulphur cover, and using new generation of irrigation, the compound of water super absorbent like colored hydrogels and using natural fertilizer to preserve.Keywords: corn (KSC704), output and input, energy efficiency, Khoy city
Procedia PDF Downloads 4417054 A Novel Eccentric Lapping Method with Two Rotatable Lapping Plates for Finishing Cemented Carbide Balls
Authors: C. C. Lv, Y. L. Sun, D. W. Zuo
Abstract:
Cemented carbide balls are usually implemented in industry under the environment of high speed, high temperature, corrosiveness and strong collisions. However, its application is limited due to high fabrication cost, processing efficiency and quality. A novel eccentric lapping method with two rotatable lapping plates was proposed in this paper. A mathematical model was constructed to analyze the influence of each design parameter on this lapping method. To validate this new lapping method, an orthogonal experiment was conducted with cemented carbide balls (YG6). The simulation model was verified and the optimal lapping parameters were derived. The results show that the surface roundness of the balls reaches to 0.65um from 2um in 1 hour using this lapping method. So, using this novel lapping method, it can effectively improve the machining precision and efficiency of cemented carbide balls.Keywords: cemented carbide balls, eccentric lapping, high precision, lapping tracks, V-groove
Procedia PDF Downloads 3967053 Emotional Security in Relation to Students' Emotional Efficiency
Authors: Ibtisam Mahmoud Mohammed Sultan
Abstract:
The present research aimed to identify the level of both emotional and emotional competence among students in Tikrit University aimed to know the assumptions in statistical significance for both variables as gender variables (m-f) and specialty (scientific-humanistic), as research to learn what Relationship between emotional safety and efficiency alanfaalet Tikrit University students. The researcher built emotional security measure (54) as built measure emotional competence (46), as the researcher extract full alsaykomtrih characteristics of both scales. The research sample consisted of (600) students selected by the random way and applying the scales on a basic search sample and processed statistical data using a variety of methods, including statistical test (test T.) and Pearson correlation coefficient, the researcher found a set of results. The following: 1. that the Tikrit University students possess a high level of emotional security. 2. to safely enjoy passionate males more than females. 3. that there is no difference between students of scientific and humanitarian specialization in variable emotional security. 4. that the Tikrit University students enjoy a high level of emotional competence. 5. the female-male outperforming in emotional competence level. 6. the humanitarian specialization students Excel in emotional competence for those of specialty. 7. the existence of a positive correlation between variables. Through search results, the researcher has developed a set of conclusions, proposals, and recommendations.Keywords: relation, emotional security, students, efficiency
Procedia PDF Downloads 1217052 Using Manipulating Urban Layouts to Enhance Ventilation and Thermal Comfort in Street Canyons
Authors: Su Ying-Ming
Abstract:
High density of high rise buildings in urban areas lead to a deteriorative Urban Heat Island Effect, gradually. This study focuses on discussing the relationship between urban layout and ventilation comfort in street canyons. This study takes Songjiang Nanjing Rd. area of Taipei, Taiwan as an example to evaluate the wind environment comfort index by field measurement and Computational Fluid Dynamics (CFD) to improve both the quality and quantity of the environment. In this study, different factors including street blocks size, the width of buildings, street width ratio and the direction of the wind were used to discuss the potential of ventilation. The environmental wind field was measured by the environmental testing equipment, Testo 480. Evaluation of blocks sizes, the width of buildings, street width ratio and the direction of the wind was made under the condition of constant floor area with the help of Stimulation CFD to adjust research methods for optimizing regional wind environment. The results of this study showed the width of buildings influences the efficiency of outdoor ventilation; improvement of the efficiency of ventilation with large street width was also shown. The study found that Block width and H/D value and PR value has a close relationship. Furthermore, this study showed a significant relationship between the alteration of street block geometry and outdoor comfortableness.Keywords: urban ventilation path, ventilation efficiency indices, CFD, building layout
Procedia PDF Downloads 3877051 The Integrated Strategy of Maintenance with a Scientific Analysis
Authors: Mahmoud Meckawey
Abstract:
This research is dealing with one of the most important aspects of maintenance fields, that is Maintenance Strategy. It's the branch which concerns the concepts and the schematic thoughts in how to manage maintenance and how to deal with the defects in the engineering products (buildings, machines, etc.) in general. Through the papers we will act with the followings: i) The Engineering Product & the Technical Systems: When we act with the maintenance process, in a strategic view, we act with an (engineering product) which consists of multi integrated systems. In fact, there is no engineering product with only one system. We will discuss and explain this topic, through which we will derivate a developed definition for the maintenance process. ii) The factors or basis of the functionality efficiency: That is the main factors affect the functional efficiency of the systems and the engineering products, then by this way we can give a technical definition of defects and how they occur. iii) The legality of occurrence of defects (Legal defects and Illegal defects): with which we assume that all the factors of the functionality efficiency been applied, and then we will discuss the results. iv) The Guarantee, the Functional Span Age and the Technical surplus concepts: In the complementation with the above topic, and associated with the Reliability theorems, where we act with the Probability of Failure state, with which we almost interest with the design stages, that is to check and adapt the design of the elements. But in Maintainability we act in a different way as we act with the actual state of the systems. So, we act with the rest of the story that means we have to act with the complementary part of the probability of failure term which refers to the actual surplus of the functionality for the systems.Keywords: engineering product and technical systems, functional span age, legal and illegal defects, technical and functional surplus
Procedia PDF Downloads 4767050 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%- 40% compared to a traditional RL model.Keywords: control system, hydroponics, machine learning, reinforcement learning
Procedia PDF Downloads 1877049 Gender Difference and Conflict Management Strategy Preference among Managers in Public Organizations in South-Western Nigeria
Authors: D. I. Akintayo, C. O. Aje
Abstract:
This study investigated the moderating influence of gender difference and conflict resolution strategy preference on managers` efficiency in managing industrial conflict in work organizations in South-Western Nigeria. This was for the purpose of ascertaining the relevance of gender difference and conflict resolution strategy preference to managerial efficiency towards ensuring sustainable industrial peace and harmonious labour-management relations at workplaces in Nigeria. Descriptive ex-post-facto research design was adopted for the study. A total of 185 respondents were selected for the study using purposive stratified sampling technique. A set of questionnaire titled ‘Rahim Organizational Conflict Inventory’ (ROCI) and Managerial Conflict Efficiency Scale (MCES) were adopted for the study. The three generated hypotheses were tested using Pearson Product Moment Correlation and t-test statistical methods. The findings of the study revealed that: A significant relationship exists between gender difference and conflict management preference of the managers(r = 0.644; P < 0.05). I t was also found that there was no significant difference between male and female managers’ conflict management strategy preference (t (181) = 11.08; P > 0.05).The finding reveals that there is no significant difference between female and male managers’ conflict management efficiency on the basis of conflict management preference of the managers (t (181) = 10.23; P > 0.05). Based on the findings of the study, it is recommended that collective bargaining strategy should be encouraged as conflict resolution strategy in order to guarantee effective management of industrial conflict and harmonious labour-management relations. Also, both male and female managers should be empowered to be appointed to managerial positions and should avoid the use of coercion, competition, aggressiveness and pro-task in the course of managing industrial conflict. Rather, persuasion, compromising, relational, lobbying and participatory approaches should be employed during collective bargaining process in order to foster effective management of conflict at workplaces.Keywords: conflict management, gender difference, managerial studies, public organization and managers, strategy preference
Procedia PDF Downloads 4617048 Investigations on Utilization of Chrome Sludge, Chemical Industry Waste, in Cement Manufacturing and Its Effect on Clinker Mineralogy
Authors: Suresh Vanguri, Suresh Palla, Prasad G., Ramaswamy V., Kalyani K. V., Chaturvedi S. K., Mohapatra B. N., Sunder Rao TBVN
Abstract:
The utilization of industrial waste materials and by-products in the cement industry helps in the conservation of natural resources besides avoiding the problems arising due to waste dumping. The use of non-carbonated materials as raw mix components in clinker manufacturing is identified as one of the key areas to reduce Green House Gas (GHG) emissions. Chrome sludge is a waste material generated from the manufacturing process of sodium dichromate. This paper aims to present studies on the use of chrome sludge in clinker manufacturing, its impact on the development of clinker mineral phases and on the cement properties. Chrome sludge was found to contain substantial amounts of CaO, Fe2O3 and Al2O3 and therefore was used to replace some conventional sources of alumina and iron in the raw mix. Different mixes were prepared by varying the chrome sludge content from 0 to 5 % and the mixes were evaluated for burnability. Laboratory prepared clinker samples were evaluated for qualitative and quantitative mineralogy using X-ray Diffraction Studies (XRD). Optical microscopy was employed to study the distribution of clinker phases, their granulometry and mineralogy. Since chrome sludge also contains considerable amounts of chromium, studies were conducted on the leachability of heavy elements in the chrome sludge as well as in the resultant cement samples. Estimation of heavy elements, including chromium was carried out using ICP-OES. Further, the state of chromium valence, Cr (III) & Cr (VI), was studied using conventional chemical analysis methods coupled with UV-VIS spectroscopy. Assimilation of chromium in the clinker phases was investigated using SEM-EDXA studies. Bulk cement was prepared from the clinker to study the effect of chromium sludge on the cement properties such as setting time, soundness, strength development against the control cement. Studies indicated that chrome sludge can be successfully utilized and its content needs to be optimized based on raw material characteristics.Keywords: chrome sludge, leaching, mineralogy, non-carbonate materials
Procedia PDF Downloads 2197047 Which Mechanisms are Involved by Legume-Rhizobia Symbiosis to Increase Its Phosphorus Use Efficiency under Low Phosphorus Level?
Authors: B. Makoudi, R. Ghanimi, A. Bargaz, M. Mouradi, M. Farissi, A. Kabbaj, J. J. Drevon, C. Ghoulam
Abstract:
Legume species are able to establish a nitrogen fixing symbiosis with soil rhizobia that allows them, when it operates normally, to ensure their necessary nitrogen nutrition. This biological process needs high phosphorus (P) supply and consequently it is limited under low phosphorus availability. To overcome this constraint, legume-rhizobia symbiosis develops many mechanisms to increase P availability in the rhizosphere and also the efficiency of P fertilizers. The objectives of our research works are to understand the physiological and biochemical mechanisms implemented by legume-rhizobia symbiosis to increase its P use efficiency (PUE) in order to select legume genotypes-rhizobia strains combination more performing for BNF under P deficiency. Our studies were carried out on two grain legume species, common bean (Phaseolus vulgaris) and faba bean (Vicia faba) tested in farmers’ fields and in experimental station fewer than two soil phosphorus levels. Under field conditions, the P deficiency caused a significant decrease of Plant and nodule biomasses in all of the tested varieties with a difference between them. This P limitation increased the contents of available P in the rhizospheric soils that was positively correlated with the increase of phosphatases activities in the nodules and the rhizospheric soil. Some legume genotypes showed a significant increase of their P use efficiency under P deficiency. The P solubilization test showed that some rhizobia strains isolated from Haouz region presented an important capacity to grow on solid and liquid media with tricalcium phosphate as the only P source and their P solubilizing activity was confirmed by the assay of the released P in the liquid medium. Also, this P solubilizing activity was correlated with medium acidification and the excretion of acid phosphatases and phytases in the medium. Thus, we concluded that medium acidification and excretion of phosphatases in the rhizosphere are the prominent reactions for legume-rhizobia symbiosis to improve its P nutrition.Keywords: legume, phosphorus deficiency, rhizobia, rhizospheric soil
Procedia PDF Downloads 3127046 Synthesis and Evaluation of Photovoltaic Properties of an Organic Dye for Dye-Sensitized Solar Cells
Authors: M. Hosseinnejad, K. Gharanjig
Abstract:
In the present study, metal free organic dyes were prepared and used as photo-sensitizers in dye-sensitized solar cells. Double rhodanine was utilized as the fundamental electron acceptor group to which electron donor aldehyde with varying substituents was attached to produce new organic dye. This dye was first purified and then characterized by analytical techniques. Spectrophotometric evaluations of the prepared dye in solution and on a nano anatase TiO2 substrate were carried out in order to assess possible changes in the status of the dyes in different environments. The results show that the dye form j-type aggregates on the nano TiO2. Additionally, oxidation potential measurements were also carried out. Finally, dye sensitized solar cell based on synthesized dye was fabricated in order to determine the photovoltaic behavior and conversion efficiency of individual dye.Keywords: conversion efficiency, dye-sensitized solar cell, photovoltaic behavior, sensitizer
Procedia PDF Downloads 1847045 Conical Spouted Bed Combustor for Combustion of Vine Shoots Wastes
Authors: M. J. San José, S. Alvarez, R. López
Abstract:
In order to prove the applicability of a conical spouted bed combustor for the thermal exploitation of vineyard pruning wastes, the flow regimes of beds consisting of vine shoot beds and an inert bed were established under different operating conditions. The effect of inlet air temperature on the minimum spouted velocity was evaluated. Batch combustion of vine shoots in a conical spouted bed combustor was conducted at temperatures in the range 425-550 ºC with an inert bed. The experimental values of combustion efficiency of vine shoot calculated from the concentration the exhaust gases were assessed. The high experimental combustion efficiency obtained evidenced the proper suitability of the conical spouted bed combustor for the thermal combustion of vine shoots.Keywords: biomass wastes, thermal combustion, conical spouted beds, vineyard wastes
Procedia PDF Downloads 1997044 Examination of Recreation Possibilities and Determination of Efficiency Zone in Bursa, Province Nilufer Creek
Authors: Zeynep Pirselimoglu Batman, Elvan Ender Altay, Murat Zencirkiran
Abstract:
Water and water resources are characteristic areas with their special ecosystems Their natural, cultural and economic value and recreation opportunities are high. Recreational activities differ according to the natural, cultural, socio-economic resource values of the areas. In this sense, water and water edge areas, which are important for their resource values, are also important landscape values for recreational activities. From these landscapes values, creeks and the surrounding areas have become a major source of daily life in the past, as well as a major attraction for people's leisure time. However, their qualities and quantities must be sufficient to enable these areas to be used effectively in a recreational sense and to be able to fulfill their recreational functions. The purpose of the study is to identify the recreational use of the water-based activities and identify effective service areas in dense urbanization zones along the creek and green spaces around them. For this purpose, the study was carried out in the vicinity of Nilufer Creek in Bursa. The study area and its immediate surroundings are in the boundaries of Osmangazi and Nilufer districts. The study was carried out in the green spaces along the creek with an individual interaction of 17.930m. These areas are Hudavendigar Urban Park, Atatürk Urban Forest, Bursa Zoo, Soganlı Botanical Park, Mihrapli Park, Nilufer Valley Park. In the first phase of the study, the efficiency zones of these locations were calculated according to international standards. 3200m of this locations are serving the city population and 800m are serving the district and neighborhood population. These calculations are processed on the digitized map by the AUTOCAD program using the satellite image. The efficiency zone of these green spaces in the city were calculated as 71.04 km². In the second phase of the study, water-based current activities were determined by evaluating the recreational potential of these green spaces, which are located along the Nilufer Creek, where efficiency zones have been identified. It has been determined that water-based activities are used intensively in Hudavendigar Urban Park and interacted with Nilufer Creek. Within the scope of effective zones for the study area, appropriate recreational planning proposals have been developed and water-based activities have been suggested.Keywords: Bursa, efficiency zone, Nilufer Creek, recreation, water-based activities
Procedia PDF Downloads 1637043 Hydrogen Production Using Solar Energy
Authors: I. M. Sakr, Ali M. Abdelsalam, K. A. Ibrahim, W. A. El-Askary
Abstract:
This paper presents an experimental study for hydrogen production using alkaline water electrolysis operated by solar energy. Two methods are used and compared for separation between the cathode and anode, which are acrylic separator and polymeric membrane. Further, the effects of electrolyte concentration, solar insolation, and space between the pair of electrodes on the amount of hydrogen produced and consequently on the overall electrolysis efficiency are investigated. It is found that the rate of hydrogen production increases using the polymeric membrane installed between the electrodes. The experimental results show also that, the performance of alkaline water electrolysis unit is dominated by the electrolyte concentration and the gap between the electrodes. Smaller gaps between the pair of electrodes are demonstrated to produce higher rates of hydrogen with higher system efficiency.Keywords: hydrogen production, water electrolysis, solar energy, concentration
Procedia PDF Downloads 3797042 Modern State of the Universal Modeling for Centrifugal Compressors
Authors: Y. Galerkin, K. Soldatova, A. Drozdov
Abstract:
The 6th version of Universal modeling method for centrifugal compressor stage calculation is described. Identification of the new mathematical model was made. As a result of identification the uniform set of empirical coefficients is received. The efficiency definition error is 0,86 % at a design point. The efficiency definition error at five flow rate points (except a point of the maximum flow rate) is 1,22 %. Several variants of the stage with 3D impellers designed by 6th version program and quasi three-dimensional calculation programs were compared by their gas dynamic performances CFD (NUMECA FINE TURBO). Performance comparison demonstrated general principles of design validity and leads to some design recommendations.Keywords: compressor design, loss model, performance prediction, test data, model stages, flow rate coefficient, work coefficient
Procedia PDF Downloads 4147041 Study the Efficiency of Some Homopolymers as Lube Oil Additives
Authors: Amal M. Nassar, Nehal S. Ahmed, Rasha S. Kamal
Abstract:
Some lube oil additives improve the base oil performance such as viscosity index improvers and pour point depressants which are the most important type of additives. In the present work, some homopolymeric additives were prepared by esterification of acrylic acid with different alcohols (1-dodecyl, 1-hexadecyl, and 1-octadecyl )and then homopolymerization of the prepared esters with different ratio of benzoyl peroxide catalyst (0.25%& 0.5 % and 1%). Structure of the prepared esters was confirmed by Infra-Red Spectroscopy. The molecular weights of the prepared homopolymers were determined by using Gel Permeation Chromatograph. The efficiency of the prepared homopolymers as viscosity index improvers and pour point depressants for lube oil was the investigation. It was found that all the prepared homopolymers are effective as viscosity index improvers and pour point depressants.Keywords: lube oil additives, homopolymerization, viscosity index improver, pour point depressant
Procedia PDF Downloads 2337040 Wakala Buildings of Mamluk Era in Cairo, Egypt and Its Rating According to Rating Criteria of Leadership in Energy and Environmental Design V4
Authors: M. Fathy, I. Maarouf, S. El-Sayary
Abstract:
Our buildings are responsible for around 50% of energy consumption and most of this consumption because of spaces design, low heat isolation building material and occupant presence and behavior in buildings beside non-efficient architectural treatments. It has been shown to have large impact on heating, cooling and ventilation demand, energy consumption of lighting and appliances, and building controls. This paper aims to focus on passive treatments in Wakala Buildings in Cairo and how far it meets the LEED Criteria as the LEED – Leadership in Energy and Environmental Design – considered the widest spread rating system in the world. By studying Wakala buildings in Cairo, there are a lot of environmental potentials in it in the field of passive treatments and energy efficiency that could be found in examples by surveying and analyzing Wakala buildings. Besides the environmental treatments through the natural materials and façade architectural treatments, there is a measuring phase to declare the efficiency of the Wakala building through temperature decline between outdoor and indoor the Wakala building. Also, measuring how far the indoor conditions matched the thermal comfort for occupants. After measuring the Wakala buildings, it is the role of applying the criteria of LEED rating system to find out how fare Wakala buildings meet the LEED rating system criteria. After all, the building technologies used in Wakala buildings in the field of passive design and caused that energy efficiency would be clear and what is needed for Wakala buildings to have a LEED Certification.Keywords: energy awareness, historical commercial buildings, LEED, Wakala buildings
Procedia PDF Downloads 2057039 First Investigation on CZTS Electron affinity and Thickness Optimization using SILVACO-Atlas 2D Simulation
Authors: Zeineb Seboui, Samar Dabbabi
Abstract:
In this paper, we study the performance of Cu₂ZnSnS₄ (CZTS) based solar cell. In our knowledge, it is for the first time that the FTO/ZnO:Co/CZTS structure is simulated using the SILVACO-Atlas 2D simulation. Cu₂ZnSnS₄ (CZTS), ZnO:Co and FTO (SnO₂:F) layers have been deposited on glass substrates by the spray pyrolysis technique. The extracted physical properties, such as thickness and optical parameters of CZTS layer, are considered to create a new input data of CZTS based solar cell. The optimization of CZTS electron affinity and thickness is performed to have the best FTO/ZnO: Co/CZTS efficiency. The use of CZTS absorber layer with 3.99 eV electron affinity and 3.2 µm in thickness leads to the higher efficiency of 16.86 %, which is very important in the development of new technologies and new solar cell devices.Keywords: CZTS solar cell, characterization, electron affinity, thickness, SILVACO-atlas 2D simulation
Procedia PDF Downloads 807038 MONDO Neutron Tracker Characterisation by Means of Proton Therapeutical Beams and MonteCarlo Simulation Studies
Authors: G. Traini, V. Giacometti, R. Mirabelli, V. Patera, D. Pinci, A. Sarti, A. Sciubba, M. Marafini
Abstract:
The MONDO (MOnitor for Neutron Dose in hadrOntherapy) project aims a precise characterisation of the secondary fast and ultrafast neutrons produced in particle therapy treatments. The detector is composed of a matrix of scintillating fibres (250 um) readout by CMOS Digital-SPAD based sensors. Recoil protons from n-p elastic scattering are detected and used to track neutrons. A prototype was tested with proton beams (Trento Proton Therapy Centre): efficiency, light yield, and track-reconstruction capability were studied. The results of a MonteCarlo FLUKA simulation used to evaluated double scattering efficiency and expected backgrounds will be presented.Keywords: secondary neutrons, particle therapy, tracking, elastic scattering
Procedia PDF Downloads 2687037 Feasibility Study on the Application of Waste Materials for Production of Sustainable Asphalt Mixtures
Authors: Farzaneh Tahmoorian, Bijan Samali, John Yeaman
Abstract:
Road networks are expanding all over the world during the past few decades to meet the increasing freight volumes created by the population growth and industrial development. At the same time, the rate of generation of solid wastes in the society is increasing with the population growth, technological development, and changes in the lifestyle of people. Thus, the management of solid wastes has become an acute problem. Accordingly, there is a need for greater efficiency in the construction and maintenance of road networks, in reducing the overall cost, especially the utilization of natural materials such as aggregates. An efficient means to reduce construction and maintenance costs of road networks is to replace natural (virgin) materials by secondary, recycled materials. Recycling will also help to reduce pressure on landfills and demand for extraction of natural virgin materials thus ensuring sustainability. Application of solid wastes in asphalt layer reduces not only environmental issues associated with waste disposal but also the demand for virgin materials which will subsequently result in sustainability. Therefore, this research aims to investigate the feasibility of the application of some of the waste materials such as glass, construction and demolition wastes, etc. as alternative materials in pavement construction, particularly flexible pavements. To this end, various combination of different waste materials in certain percentages is considered in designing the asphalt mixture. One of the goals of this research is to determine the optimum percentage of all these materials in the mixture. This is done through a series of tests to evaluate the volumetric properties and resilient modulus of the mixture. The information and data collected from these tests are used to select the adequate samples for further assessment through advanced tests such as triaxial dynamic test and fatigue test, in order to investigate the asphalt mixture resistance to permanent deformation and also cracking. This paper presents the results of these investigations on the application of waste materials in asphalt mixture for production of a sustainable asphalt mix.Keywords: asphalt, glass, pavement, recycled aggregate, sustainability
Procedia PDF Downloads 2377036 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG
Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan
Abstract:
Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.Keywords: EEG, functional connectivity, graph theory, TFCMI
Procedia PDF Downloads 4327035 Bio-Nano Mask: Antivirus and Antimicrobial Mouth Mask Coating with Nano-TiO2 and Anthocyanin Utilization as an Effective Solution of High ARI Patients in Riau
Authors: Annisa Ulfah Pristya, Andi Setiawan
Abstract:
Indonesia placed in sixth rank total Acute Respiratory Infection (ARI) patient in the world and Riau as one of the province with the highest number of people with respiratory infection in Indonesia reached 37 thousand people. Usually society using a mask as prevention action. Unfortunately the commercial mouth mask only can work maximum for 4 hours and the pores are too large to filter out microorganisms and viruses carried by infectious droplets nucleated 1-5 μm. On the other hand, Indonesia is rich with Titanium dioxide (TiO2) and purple sweet potato anthocyanin pigment. Therefore, offered Bio-nano-mask which is a antimicrobial and antiviral mouth mask with Nano-TiO2 coating and purple sweet potato anthocyanins utilization as an effective solution to high ARI patients in Riau, which has the advantage of the mask surface can’t be attached by infectious droplets, self-cleaning and have anthocyanins biosensors that give visual response can be understood easily by the general public in the form of a mask color change from blue/purple to pink when acid levels increase. Acid level is an indicator of microorganisms accumulation in the mouth and surrounding areas. Bio-nano mask making process begins with the preparation (design, Nano-TiO2 liquid preparation, anthocyanins biosensors manufacture) and then superimposing the Nano-TiO2 on the outer surface of spunbond color using a sprayer, then superimposing anthocyanins biosensors film on the Meltdown surface, making bio nano-mask and it pack. Bio-nano mask has the advantage is effectively preventing pathogenic microorganisms and infectious droplets and has accumulated indicator microorganisms that color changes which easily observed by the common people though.Keywords: anthocyanins, ARI, nano-TiO2 liquid, self cleaning
Procedia PDF Downloads 5707034 Evaluation of Microwave-Assisted Pretreatment for Spent Coffee Grounds
Authors: Shady S. Hassan, Brijesh K. Tiwari, Gwilym A. Williams, Amit K. Jaiswal
Abstract:
Waste materials from a wide range of agro-industrial processes may be used as substrates for microbial growth, and subsequently the production of a range of high value products and bioenergy. In addition, utilization of these agro-residues in bioprocesses has the dual advantage of providing alternative substrates, as well as solving their disposal problems. Spent coffee grounds (SCG) are a by-product (45%) of coffee processing. SCG is a lignocellulosic material, which is composed mainly of cellulose, hemicelluloses, and lignin. Thus, a pretreatment process is required to facilitate an efficient enzymatic hydrolysis of such carbohydrates. In this context, microwave pretreatment of lignocellulosic biomass without the addition of harsh chemicals represents a green technology. Moreover, microwave treatment has a high heating efficiency and is easy to implement. Thus, microwave pretreatment of SCG without adding of harsh chemicals investigated as a green technology to enhance enzyme hydrolysis. In the present work, microwave pretreatment experiments were conducted on SCG at varying power levels (100, 250, 440, 600, and 1000 W) for 60 s. By increasing microwave power to a certain level (which vary by varying biomass), reducing sugar increases, then reducing sugar from biomass start to decrease with microwave power increase beyond this level. Microwave pretreatment of SCG at 60s followed by enzymatic hydrolysis resulted in total reducing sugars of 91.6 ± 7.0 mg/g of biomass (at microwave power of 100 w). Fourier transform Infrared Spectroscopy (FTIR) was employed to investigate changes in functional groups of biomass after pretreatment, while high-performance liquid chromatography (HPLC) was employed for determination of glucose. Pretreatment of lignocellulose using microwave was found to be an effective and energy efficient technology to improve saccharification and glucose yield. Energy performance will be evaluated for the microwave pretreatment, and the enzyme hydrolysate will be used as media component substitute for the production of ethanol and other high value products.Keywords: lignocellulose, microwave, pretreatment, spent coffee grounds
Procedia PDF Downloads 4207033 Nearly Zero Energy Building: Analysis on How End-Users Affect Energy Savings Targets
Authors: Margarida Plana
Abstract:
One of the most important energy challenge of the European policies is the transition to a Net Zero Energy Building (NZEB) model. A NZEB is a new concept of building that has the aim of reducing both the energy consumption and the carbon emissions to nearly zero of the course of a year. To achieve this nearly zero consumption, apart from being buildings with high efficiency levels, the energy consumed by the building has to be produced on-site. This paper is focused on presenting the results of the analysis developed on basis of real projects’ data in order to quantify the impact of end-users behavior. The analysis is focused on how the behavior of building’s occupants can vary the achievement of the energy savings targets and how they can be limited. The results obtained show that on this kind of project, with very high energy performance, is required to limit the end-users interaction with the system operation to be able to reach the targets fixed.Keywords: end-users impacts, energy efficiency, energy savings, NZEB model
Procedia PDF Downloads 3757032 Efficiency-Based Model for Solar Urban Planning
Authors: M. F. Amado, A. Amado, F. Poggi, J. Correia de Freitas
Abstract:
Today it is widely understood that global energy consumption patterns are directly related to the ongoing urban expansion and development process. This expansion is based on the natural growth of human activities and has left most urban areas totally dependent on fossil fuel derived external energy inputs. This status-quo of production, transportation, storage and consumption of energy has become inefficient and is set to become even more so when the continuous increases in energy demand are factored in. The territorial management of land use and related activities is a central component in the search for more efficient models of energy use, models that can meet current and future regional, national and European goals. In this paper, a methodology is developed and discussed with the aim of improving energy efficiency at the municipal level. The development of this methodology is based on the monitoring of energy consumption and its use patterns resulting from the natural dynamism of human activities in the territory and can be utilized to assess sustainability at the local scale. A set of parameters and indicators are defined with the objective of constructing a systemic model based on the optimization, adaptation and innovation of the current energy framework and the associated energy consumption patterns. The use of the model will enable local governments to strike the necessary balance between human activities, economic development, and the local and global environment while safeguarding fairness in the energy sector.Keywords: solar urban planning, solar smart city, urban development, energy efficiency
Procedia PDF Downloads 3307031 Exploring the Role of IPv6 in Enhancing IoT Communication and Green Network Optimization for Business Sustainability
Authors: Saqib Warsi
Abstract:
The Internet of Things (IoT) has become an essential component of modern communication networks, with IPv6 playing a pivotal role in addressing the challenges posed by the rapidly growing number of connected devices. IPv6 provides an expanded address space, offering a solution to the limitations of IPv4 while enhancing routing efficiency and security. This paper explores the impact of IPv6 in improving IoT communication, focusing on its operational benefits for businesses. Additionally, we examine the integration of green communication principles, which aim to reduce energy consumption and operational costs, thus promoting environmental sustainability and business efficiency. Through qualitative analysis and simulation-based modeling, this paper investigates the benefits of IPv6 in IoT environments and evaluates the role of green communication strategies in optimizing network performance. Traffic measurement tools and network performance simulators were employed to analyze the efficiency, sustainability, and scalability of IPv6 networks. By presenting a comprehensive framework for traffic analysis, modeling, and optimization, this research highlights the potential of combining IPv6 and green communication practices to drive business growth while promoting environmental sustainability. The findings provide valuable insights for businesses adopting more sustainable and efficient communication networks.Keywords: IPv6, Internet of Things (IoT), green communications, traffic measurement and modeling, network virtualization
Procedia PDF Downloads 67030 Digital Health During a Pandemic: Critical Analysis of the COVID-19 Contact Tracing Apps
Authors: Mohanad Elemary, Imose Itua, Rajeswari B. Matam
Abstract:
Virologists and public health experts have been predicting potential pandemics from coronaviruses for decades. The viruses which caused the SARS and MERS pandemics and the Nipah virus led to many lost lives, but still, the COVID-19 pandemic caused by the SARS-CoV2 virus surprised many scientific communities, experts, and governments with its ease of transmission and its pathogenicity. Governments of various countries reacted by locking down entire populations to their homes to combat the devastation caused by the virus, which led to a loss of livelihood and economic hardship to many individuals and organizations. To revive national economies and support their citizens in resuming their lives, governments focused on the development and use of contact tracing apps as a digital way to track and trace exposure. Google and Apple introduced the Exposure Notification Systems (ENS) framework. Independent organizations and countries also developed different frameworks for contact tracing apps. The efficiency, popularity, and adoption rate of these various apps have been different across countries. In this paper, we present a critical analysis of the different contact tracing apps with respect to their efficiency, adoption rate and general perception, and the governmental strategies and policies, which led to the development of the applications. When it comes to the European countries, each of them followed an individualistic approach to the same problem resulting in different realizations of a similarly functioning application with differing results of use and acceptance. The study conducted an extensive review of existing literature, policies, and reports across multiple disciplines, from which a framework was developed and then validated through interviews with six key stakeholders in the field, including founders and executives in digital health startups and corporates as well as experts from international organizations like The World Health Organization. A framework of best practices and tactics is the result of this research. The framework looks at three main questions regarding the contact tracing apps; how to develop them, how to deploy them, and how to regulate them. The findings are based on the best practices applied by governments across multiple countries, the mistakes they made, and the best practices applied in similar situations in the business world. The findings include multiple strategies when it comes to the development milestone regarding establishing frameworks for cooperation with the private sector and how to design the features and user experience of the app for a transparent, effective, and rapidly adaptable app. For the deployment section, several tactics were discussed regarding communication messages, marketing campaigns, persuasive psychology, and the initial deployment scale strategies. The paper also discusses the data privacy dilemma and how to build for a more sustainable system of health-related data processing and utilization. This is done through principles-based regulations specific for health data to allow for its avail for the public good. This framework offers insights into strategies and tactics that could be implemented as protocols for future public health crises and emergencies whether global or regional.Keywords: contact tracing apps, COVID-19, digital health applications, exposure notification system
Procedia PDF Downloads 1397029 Removal Efficiency of Some Heavy Metals from Aqueous Solution on Magnetic Nanoparticles
Authors: Gehan El-Sayed Sharaf El-Deen
Abstract:
In this study, super paramagnetic iron-oxide nano- materials (SPMIN) were investigated for removal of toxic heavy metals from aqueous solution. The magnetic nanoparticles of 12 nm were synthesized using a co-precipitation method and characterized by transmission electron microscopy (TEM), transform infrared spectroscopy (FTIR), x-ray diffraction (XRD) and vibrating sample magnetometer (VSM). Batch experiments carried out to investigate the influence of different parameters such as contact time, initial concentration of metal ions, the dosage of SPMIN, desorption,pH value of solutions. The adsorption process was found to be highly pH dependent, which made the nanoparticles selectively adsorb these three metals from wastewater. Maximum sorption for all the studies cations obtained at the first half hour and reached equilibrium at one hour. The adsorption data of heavy metals studied were well fitted with the Langmuir isotherm and the equilibrium data show the percent removal of Ni2+, Zn2+ and Cd2+ were 96.5%, 80% and 75%, respectively. Desorption studies in acidic medium indicate that Zn2+, Ni2+ and Cd2+ were removed by 89%, 2% and 18% from the first cycle. Regeneration studies indicated that SPMIN nanoparticles undergoing successive adsorption–desorption processes for Zn2+ ions retained original metal removal capacity. The results revealed that the most prominent advantage of the prepared SPMIN adsorbent consisted in their separation convenience compared to the other adsorbents and SPMIN has high efficiency for removal the investigated metals from aqueous solution.Keywords: heavy metals, magnetic nanoparticles, removal efficiency, Batch technique
Procedia PDF Downloads 2517028 Enhancing the CO2 Photoreduction of SnFe2O4 by Surface Modification Through Acid Treatment and Au Deposition
Authors: Najmul Hasan, Shiping Li, Chunli Liu
Abstract:
The synergy effect of surface modifications using the acid treatment and noble metal (Au) deposition on the efficiency of SnFe2O4 (SFO) nano-octahedron photocatalyst has been investigated. Inorganic acids (H2SO4 and HNO3) were employed to compare the effects of different acids. It has been found that after corrosion treatment using H2SO4 and deposition of Au nanoparticles, SnFe2O4 nano-octahedron (Au-S-SFO) showed significantly enhanced photocatalytic activity under simulated light irradiation. Au-S-SFO was characterized by XRD, XPS, EDS, FTIR, Uv-vis-DRS, SEM, PL, and EIS analysis. The mechanism for CO2 reduction was investigated by scavenger tests. The stability of Au-S-SFO was confirmed by continuously repeated tests followed by XRD analysis. The surface corrosion treatment of SFO octahedron with H2SO4 could produce hydroxyl group (-OH) and sulfonic acid group (-SO3H) as reaction sites. These active sites not only enhanced the Au nanoparticles deposition to the acid treated SFO surface but also acted as the Brønsted acid sites that enhance the water adsorption and provide protons for CTC degradation and CO2 reduction. These effects improved the carrier separation and transfer efficiency. In addition, the photocatalytic efficiency was further enhanced by the surface plasmon resonance (SPR) effect of Au nanoparticles deposited on the surface of acid-treated SFO. As a result of the synergy of both acid treatment and SPR effect from the Au NPs, Au-S-SFO exhibited the highest CO2 reduction activity with 2.81, 1.92, and 2.69 times higher evolution rates for CO, CH4, and H2, respectively than that of pure SFO.Keywords: surface modification, CO2 reduction, Au deposition, Gas-liquid interfacial plasma
Procedia PDF Downloads 917027 Designing a Thermal Management System for Lithium Ion Battery Packs in Electric Vehicles
Authors: Ekin Esen, Mohammad Alipour, Riza Kizilel
Abstract:
Rechargeable lithium-ion batteries have been replacing lead-acid batteries for the last decade due to their outstanding properties such as high energy density, long shelf life, and almost no memory effect. Besides these, being very light compared to lead acid batteries has gained them their dominant place in the portable electronics market, and they are now the leading candidate for electric vehicles (EVs) and hybrid electric vehicles (HEVs). However, their performance strongly depends on temperature, and this causes some inconveniences for their utilization in extreme temperatures. Since weather conditions vary across the globe, this situation limits their utilization for EVs and HEVs and makes a thermal management system obligatory for the battery units. The objective of this study is to understand thermal characteristics of Li-ion battery modules for various operation conditions and design a thermal management system to enhance battery performance in EVs and HEVs. In the first part of our study, we investigated thermal behavior of commercially available pouch type 20Ah LiFePO₄ (LFP) cells under various conditions. Main parameters were chosen as ambient temperature and discharge current rate. Each cell was charged and discharged at temperatures of 0°C, 10°C, 20°C, 30°C, 40°C, and 50°C. The current rate of charging process was 1C while it was 1C, 2C, 3C, 4C, and 5C for discharge process. Temperatures of 7 different points on the cells were measured throughout charging and discharging with N-type thermocouples, and a detailed temperature profile was obtained. In the second part of our study, we connected 4 cells in series by clinching and prepared 4S1P battery modules similar to ones in EVs and HEVs. Three reference points were determined according to the findings of the first part of the study, and a thermocouple is placed on each reference point on the cells composing the 4S1P battery modules. In the end, temperatures of 6 points in the module and 3 points on the top surface were measured and changes in the surface temperatures were recorded for different discharge rates (0.2C, 0.5C, 0.7C, and 1C) at various ambient temperatures (0°C – 50°C). Afterwards, aluminum plates with channels were placed between the cells in the 4S1P battery modules, and temperatures were controlled with airflow. Airflow was provided with a regular compressor, and the effect of flow rate on cell temperature was analyzed. Diameters of the channels were in mm range, and shapes of the channels were determined in order to make the cell temperatures uniform. Results showed that the designed thermal management system could help keeping the cell temperatures in the modules uniform throughout charge and discharge processes. Other than temperature uniformity, the system was also beneficial to keep cell temperature close to the optimum working temperature of Li-ion batteries. It is known that keeping the temperature at an optimum degree and maintaining uniform temperature throughout utilization can help obtaining maximum power from the cells in battery modules for a longer time. Furthermore, it will increase safety by decreasing the risk of thermal runaways. Therefore, the current study is believed to be beneficial for wider use of Li batteries for battery modules of EVs and HEVs globally.Keywords: lithium ion batteries, thermal management system, electric vehicles, hybrid electric vehicles
Procedia PDF Downloads 1657026 A Translog Analysis of Insurance Economies in Nigeria
Authors: Prince Ayodeji Yusuph
Abstract:
Recapitalization process that has recently become an imperative process in the Nigerian Financial industry has implications for the survival of insurance sector, especially on their service delivery efficiency. This study therefore seeks to investigate the problem of inefficiency in the Nigerian Insurance market from the perspective of their cost structures. The study takes advantage of secondary data of financial reports of thirty randomly selected insurance firms which span over a period of ten years and applied transcendental logarithm model to evaluate their performance from the cost structures strategy. The results indicate that only large scale firms enjoy cost saving advantages. Twenty percent firms sampled belong to this category. The result suggests that premium income would contribute to insurance firm’s performance, only when a sound investment decisions are made.Keywords: transcedental logarithm, cost structures, insurance firms and efficiency, Nigeria
Procedia PDF Downloads 252