Search results for: critical transformation temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13048

Search results for: critical transformation temperature

1078 Environmental Related Mortality Rates through Artificial Intelligence Tools

Authors: Stamatis Zoras, Vasilis Evagelopoulos, Theodoros Staurakas

Abstract:

The association between elevated air pollution levels and extreme climate conditions (temperature, particulate matter, ozone levels, etc.) and mental consequences has been, recently, the focus of significant number of studies. It varies depending on the time of the year it occurs either during the hot period or cold periods but, specifically, when extreme air pollution and weather events are observed, e.g. air pollution episodes and persistent heatwaves. It also varies spatially due to different effects of air quality and climate extremes to human health when considering metropolitan or rural areas. An air pollutant concentration and a climate extreme are taking a different form of impact if the focus area is countryside or in the urban environment. In the built environment the climate extreme effects are driven through the formed microclimate which must be studied more efficiently. Variables such as biological, age groups etc may be implicated by different environmental factors such as increased air pollution/noise levels and overheating of buildings in comparison to rural areas. Gridded air quality and climate variables derived from the land surface observations network of West Macedonia in Greece will be analysed against mortality data in a spatial format in the region of West Macedonia. Artificial intelligence (AI) tools will be used for data correction and prediction of health deterioration with climatic conditions and air pollution at local scale. This would reveal the built environment implications against the countryside. The air pollution and climatic data have been collected from meteorological stations and span the period from 2000 to 2009. These will be projected against the mortality rates data in daily, monthly, seasonal and annual grids. The grids will be operated as AI-based warning models for decision makers in order to map the health conditions in rural and urban areas to ensure improved awareness of the healthcare system by taken into account the predicted changing climate conditions. Gridded data of climate conditions, air quality levels against mortality rates will be presented by AI-analysed gridded indicators of the implicated variables. An Al-based gridded warning platform at local scales is then developed for future system awareness platform for regional level.

Keywords: air quality, artificial inteligence, climatic conditions, mortality

Procedia PDF Downloads 104
1077 Requirement Engineering for Intrusion Detection Systems in Wireless Sensor Networks

Authors: Afnan Al-Romi, Iman Al-Momani

Abstract:

The urge of applying the Software Engineering (SE) processes is both of vital importance and a key feature in critical, complex large-scale systems, for example, safety systems, security service systems, and network systems. Inevitably, associated with this are risks, such as system vulnerabilities and security threats. The probability of those risks increases in unsecured environments, such as wireless networks in general and in Wireless Sensor Networks (WSNs) in particular. WSN is a self-organizing network of sensor nodes connected by wireless links. WSNs consist of hundreds to thousands of low-power, low-cost, multi-function sensor nodes that are small in size and communicate over short-ranges. The distribution of sensor nodes in an open environment that could be unattended in addition to the resource constraints in terms of processing, storage and power, make such networks in stringent limitations such as lifetime (i.e. period of operation) and security. The importance of WSN applications that could be found in many militaries and civilian aspects has drawn the attention of many researchers to consider its security. To address this important issue and overcome one of the main challenges of WSNs, security solution systems have been developed by researchers. Those solutions are software-based network Intrusion Detection Systems (IDSs). However, it has been witnessed, that those developed IDSs are neither secure enough nor accurate to detect all malicious behaviours of attacks. Thus, the problem is the lack of coverage of all malicious behaviours in proposed IDSs, leading to unpleasant results, such as delays in the detection process, low detection accuracy, or even worse, leading to detection failure, as illustrated in the previous studies. Also, another problem is energy consumption in WSNs caused by IDS. So, in other words, not all requirements are implemented then traced. Moreover, neither all requirements are identified nor satisfied, as for some requirements have been compromised. The drawbacks in the current IDS are due to not following structured software development processes by researches and developers when developing IDS. Consequently, they resulted in inadequate requirement management, process, validation, and verification of requirements quality. Unfortunately, WSN and SE research communities have been mostly impermeable to each other. Integrating SE and WSNs is a real subject that will be expanded as technology evolves and spreads in industrial applications. Therefore, this paper will study the importance of Requirement Engineering when developing IDSs. Also, it will study a set of existed IDSs and illustrate the absence of Requirement Engineering and its effect. Then conclusions are drawn in regard of applying requirement engineering to systems to deliver the required functionalities, with respect to operational constraints, within an acceptable level of performance, accuracy and reliability.

Keywords: software engineering, requirement engineering, Intrusion Detection System, IDS, Wireless Sensor Networks, WSN

Procedia PDF Downloads 315
1076 Neighborhood Sustainability Assessment Tools: A Conceptual Framework for Their Use in Building Adaptive Capacity to Climate Change

Authors: Sally Naji, Julie Gwilliam

Abstract:

Climate change remains a challenging matter for the human and the built environment in the 21st century, where the need to consider adaptation to climate change in the development process is paramount. However, there remains a lack of information regarding how we should prepare responses to this issue, such as through developing organized and sophisticated tools enabling the adaptation process. This study aims to build a systematic framework approach to investigate the potentials that Neighborhood Sustainability Assessment tools (NSA) might offer in enabling both the analysis of the emerging adaptive capacity to climate change. The analysis of the framework presented in this paper aims to discuss this issue in three main phases. The first part attempts to link sustainability and climate change, in the context of adaptive capacity. It is argued that in deciding to promote sustainability in the context of climate change, both the resilience and vulnerability processes become central. However, there is still a gap in the current literature regarding how the sustainable development process can respond to climate change. As well as how the resilience of practical strategies might be evaluated. It is suggested that the integration of the sustainability assessment processes with both the resilience thinking process, and vulnerability might provide important components for addressing the adaptive capacity to climate change. A critical review of existing literature is presented illustrating the current lack of work in this field, integrating these three concepts in the context of addressing the adaptive capacity to climate change. The second part aims to identify the most appropriate scale at which to address the built environment for the climate change adaptation. It is suggested that the neighborhood scale can be considered as more suitable than either the building or urban scales. It then presents the example of NSAs, and discusses the need to explore their potential role in promoting the adaptive capacity to climate change. The third part of the framework presents a comparison among three example NSAs, BREEAM Communities, LEED-ND, and CASBEE-UD. These three tools have been selected as the most developed and comprehensive assessment tools that are currently available for the neighborhood scale. This study concludes that NSAs are likely to present the basis for an organized framework to address the practical process for analyzing and yet promoting Adaptive Capacity to Climate Change. It is further argued that vulnerability (exposure & sensitivity) and resilience (Interdependence & Recovery) form essential aspects to be addressed in the future assessment of NSA’s capability to adapt to both short and long term climate change impacts. Finally, it is acknowledged that further work is now required to understand impact assessment in terms of the range of physical sectors (Water, Energy, Transportation, Building, Land Use and Ecosystems), Actor and stakeholder engagement as well as a detailed evaluation of the NSA indicators, together with a barriers diagnosis process.

Keywords: adaptive capacity, climate change, NSA tools, resilience, sustainability

Procedia PDF Downloads 371
1075 Experimental Study on Bending and Torsional Strength of Bulk Molding Compound Seat Back Frame Part

Authors: Hee Yong Kang, Hyeon Ho Shin, Jung Cheol Yoo, Il Taek Lee, Sung Mo Yang

Abstract:

Lightweight technology using composites is being developed for vehicle seat structures, and its design must meet the safety requirements. According to the Federal Motor Vehicle Safety Standard (FMVSS) 207 seating systems test procedure, the back moment load is applied to the seat back frame structure for the safety evaluation of the vehicle seat. The seat back frame using the composites is divided into three parts: upper part frame, and left- and right-side frame parts following the manufacturing process. When a rear moment load is applied to the seat back frame, the side frame receives the bending load and the torsional load at the same time. This results in the largest loaded strength. Therefore, strength test of the component unit is required. In this study, a component test method based on the FMVSS 207 seating systems test procedure was proposed for the strength analysis of bending load and torsional load of the automotive Bulk Molding Compound (BMC) Seat Back Side Frame. Moreover, strength evaluation according to the carbon band reinforcement was performed. The back-side frame parts of the seat that are applied to the test were manufactured through BMC that is composed of vinyl ester Matrix and short carbon fiber. Then, two kinds of reinforced and non-reinforced parts of carbon band were formed through a high-temperature compression molding process. In addition, the structure that is applied to the component test was constructed by referring to the FMVSS 207. Then, the bending load and the torsional load were applied through the displacement control to perform the strength test for four load conditions. The results of each test are shown through the load-displacement curves of the specimen. The failure strength of the parts caused by the reinforcement of the carbon band was analyzed. Additionally, the fracture characteristics of the parts for four strength tests were evaluated, and the weakness structure of the back-side frame of the seat structure was confirmed according to the test conditions. Through the bending and torsional strength test methods, we confirmed the strength and fracture characteristics of BMC Seat Back Side Frame according to the carbon band reinforcement. And we proposed a method of testing the part strength of a seat back frame for vehicles that can meet the FMVSS 207.

Keywords: seat back frame, bending and torsional strength, BMC (Bulk Molding Compound), FMVSS 207 seating systems

Procedia PDF Downloads 196
1074 Effect of Multi-Walled Carbon Nanotubes on Fuel Cell Membrane Performance

Authors: Rabindranath Jana, Biswajit Maity, Keka Rana

Abstract:

The most promising clean energy source is the fuel cell, since it does not generate toxic gases and other hazardous compounds. Again the direct methanol fuel cell (DMFC) is more user-friendly as it is easy to be miniaturized and suited as energy source for automobiles as well as domestic applications and portable devices. And unlike the hydrogen used for some fuel cells, methanol is a liquid that is easy to store and transport in conventional tanks. The most important part of a fuel cell is its membrane. Till now, an overall efficiency for a methanol fuel cell is reported to be about 20 ~ 25%. The lower efficiency of the cell may be due to the critical factors, e.g. slow reaction kinetics at the anode and methanol crossover. The oxidation of methanol is composed of a series of successive reactions creating formaldehyde and formic acid as intermediates that contribute to slow reaction rates and decreased cell voltage. Currently, the investigation of new anode catalysts to improve oxidation reaction rates is an active area of research as it applies to the methanol fuel cell. Surprisingly, there are very limited reports on nanostructured membranes, which are rather simple to manufacture with different tuneable compositions and are expected to allow only the proton permeation but not the methanol due to their molecular sizing effects and affinity to the membrane surface. We have developed a nanostructured fuel cell membrane from polydimethyl siloxane rubber (PDMS), ethylene methyl co-acrylate (EMA) and multi-walled carbon nanotubes (MWNTs). The effect of incorporating different proportions of f-MWNTs in polymer membrane has been studied. The introduction of f-MWNTs in polymer matrix modified the polymer structure, and therefore the properties of the device. The proton conductivity, measured by an AC impedance technique using open-frame and two-electrode cell and methanol permeability of the membranes was found to be dependent on the f-MWNTs loading. The proton conductivity of the membranes increases with increase in concentration of f-MWNTs concentration due to increased content of conductive materials. Measured methanol permeabilities at 60oC were found to be dependant on loading of f-MWNTs. The methanol permeability decreased from 1.5 x 10-6 cm²/s for pure film to 0.8 x 10-7 cm²/s for a membrane containing 0.5wt % f-MWNTs. This is due to increasing proportion of f-MWNTs, the matrix becomes more compact. From DSC melting curves it is clear that the polymer matrix with f-MWNTs is thermally stable. FT-IR studies show good interaction between EMA and f-MWNTs. XRD analysis shows good crystalline behavior of the prepared membranes. Significant cost savings can be achieved when using the blended films which contain less expensive polymers.

Keywords: fuel cell membrane, polydimethyl siloxane rubber, carbon nanotubes, proton conductivity, methanol permeability

Procedia PDF Downloads 408
1073 The Implementation of Science Park Policy and Their Impacts on Regional Economic Development in Emerging Economy Country: Case of Thailand

Authors: Muttamas Wongwanich, John R. Bryson, Catherine E. Harris

Abstract:

Science parks are an essential component of localized innovation ecosystems. Science Parks have played a critical role in enhancing local innovation ecosystems in developed market economies. Attempts have been made to replicate best practice in other national contexts. To our best knowledge, the study about the development of Science Parks has not been undertaken on the economic impact on the developing countries. Further research is required to understand the adoption of Science Park policies in developing and emerging economies. This study explores the implementation of Science Park policy and its impacts on economic growth and development in Thailand, focusing on the relationship between universities and businesses. The Thailand context is essential. Thailand’s economy is dominated by agriculture and tourism. The Science Park policy is trying to develop an agriculturally orientated innovative ecosystem. Thailand established four Science Parks based on a policy that highlighted the importance of cooperation between government, HEIs, and businesses. These Science Parks are intended to increase small and medium enterprises’ (SMEs) innovativeness, employment, and regional economic growth by promoting collaboration and knowledge transfer between HEIs and the private sector. This study explores one regional Science Park in Thailand with an emphasis on understanding the implementation and operation of a triple helix innovation policy. The analysis explores the establishment of the Science Park and its impacts on firms and the regional economy through interviews with Science Parks directors, firms, academics, universities, and government officials. The analysis will inform Science Park policy development in Thailand to support the national objective to develop an innovation ecosystem based on the integration of technology with innovation policy, supporting technology-based SMEs in the creation of local jobs. The finding shows that the implementation of the Science Park policy in Thailand requires support and promotion from the government. The regional development plan must be related to the regional industry development strategy, considering the strengths and weaknesses of local entrepreneurs. The long time in granting a patent is the major obstacle in achieving the government’s aim in encouraging local economic activity. The regional Science Parks in Thailand are at the early stage of the operation plan. Thus, the impact on the regional economy cannot be measured and need further investigation in a more extended period. However, local businesses realize the vital of research and development (R&D). There have been more requests for funding support in doing R&D. Furthermore, there is the creation of linkages between businesses, HEIs, and government authorities as expected.

Keywords: developing country, emerging economy, regional development, science park, Thailand, triple helix

Procedia PDF Downloads 142
1072 Sensory Characteristics of White Chocolate Enriched with Encapsulated Raspberry Juice

Authors: Ivana Loncarevic, Biljana Pajin, Jovana Petrovic, Danica Zaric, Vesna Tumbas Saponjac, Aleksandar Fistes

Abstract:

Chocolate is a food that activates pleasure centers in the human brain. In comparison to black and milk chocolate, white chocolate does not contain fat-free cocoa solids and thus lacks bioactive components. The aim of this study was to examine the sensory characteristics of enriched white chocolate with the addition of 10% of raspberry juice encapsulated in maltodextrins (denoted as encapsulate). Chocolate is primarily intended for enjoyment, and therefore, the sensory expectation is a critical factor for consumers when selecting a new type of chocolate. Consumer acceptance of chocolate depends primarily on the appearance and taste, but also very much on the mouthfeel, which mainly depends on the particle size of chocolate. Chocolate samples were evaluated by a panel of 8 trained panelists, food technologists, trained according to ISO 8586 (2012). Panelists developed the list of attributes to be used in this study: intensity of red color (light to dark); glow on the surface (mat to shiny); texture on snap (appearance of cavities or holes on the snap surface that are seen - even to gritty); hardness (hardness felt during the first bite of chocolate sample in half by incisors - soft to hard); melting (the time needed to convert solid chocolate into a liquid state – slowly to quickly); smoothness (perception of evenness of chocolate during melting - very even to very granular); fruitiness (impression of fruity taste - light fruity notes to distinct fruity notes); sweetness (organoleptic characteristic of pure substance or mixture giving sweet taste - lightly sweet to very sweet). The chocolate evaluation was carried out 24 h after sample preparation in the sensory laboratory, in partitioned booths, which were illuminated with fluorescent lights (ISO 8589, 2007). Samples were served in white plastic plates labeled with three-digit codes from a random number table. Panelist scored the perceived intensity of each attribute using a 7-point scale (1 = the least intensity and 7 = the most intensity) (ISO 4121, 2002). The addition of 10% of encapsulate had a big influence on chocolate color, where enriched chocolate got a nice reddish color. At the same time, the enriched chocolate sample had less intensity of gloss on the surface. The panelists noticed that addition of encapsulate reduced the time needed to convert solid chocolate into a liquid state, increasing its hardness. The addition of encapsulate had a significant impact on chocolate flavor. It reduced the sweetness of white chocolate and contributed to the fruity raspberry flavor.

Keywords: white chocolate, encapsulated raspberry juice, color, sensory characteristics

Procedia PDF Downloads 156
1071 Weapon-Being: Weaponized Design and Object-Oriented Ontology in Hypermodern Times

Authors: John Dimopoulos

Abstract:

This proposal attempts a refabrication of Heidegger’s classic thing-being and object-being analysis in order to provide better ontological tools for understanding contemporary culture, technology, and society. In his work, Heidegger sought to understand and comment on the problem of technology in an era of rampant innovation and increased perils for society and the planet. Today we seem to be at another crossroads in this course, coming after postmodernity, during which dreams and dangers of modernity augmented with critical speculations of the post-war era take shape. The new era which we are now living in, referred to as hypermodernity by researchers in various fields such as architecture and cultural theory, is defined by the horizontal implementation of digital technologies, cybernetic networks, and mixed reality. Technology today is rapidly approaching a turning point, namely the point of no return for humanity’s supervision over its creations. The techno-scientific civilization of the 21st century creates a series of problems, progressively more difficult and complex to solve and impossible to ignore, climate change, data safety, cyber depression, and digital stress being some of the most prevalent. Humans often have no other option than to address technology-induced problems with even more technology, as in the case of neuron networks, machine learning, and AI, thus widening the gap between creating technological artifacts and understanding their broad impact and possible future development. As all technical disciplines and particularly design, become enmeshed in a matrix of digital hyper-objects, a conceptual toolbox that allows us to handle the new reality becomes more and more necessary. Weaponized design, prevalent in many fields, such as social and traditional media, urban planning, industrial design, advertising, and the internet in general, hints towards an increase in conflicts. These conflicts between tech companies, stakeholders, and users with implications in politics, work, education, and production as apparent in the cases of Amazon workers’ strikes, Donald Trump’s 2016 campaign, Facebook and Microsoft data scandals, and more are often non-transparent to the wide public’s eye, thus consolidating new elites and technocratic classes and making the public scene less and less democratic. The new category proposed, weapon-being, is outlined in respect to the basic function of reducing complexity, subtracting materials, actants, and parameters, not strictly in favor of a humanistic re-orientation but in a more inclusive ontology of objects and subjects. Utilizing insights of Object-Oriented Ontology (OOO) and its schematization of technological objects, an outline for a radical ontology of technology is approached.

Keywords: design, hypermodernity, object-oriented ontology, weapon-being

Procedia PDF Downloads 145
1070 An Approach to Determine the in Transit Vibration to Fresh Produce Using Long Range Radio (LORA) Wireless Transducers

Authors: Indika Fernando, Jiangang Fei, Roger Stanely, Hossein Enshaei

Abstract:

Ever increasing demand for quality fresh produce by the consumers, had increased the gravity on the post-harvest supply chains in multi-fold in the recent years. Mechanical injury to fresh produce was a critical factor for produce wastage, especially with the expansion of supply chains, physically extending to thousands of miles. The impact of vibration damages in transit was identified as a specific area of focus which results in wastage of significant portion of the fresh produce, at times ranging from 10% to 40% in some countries. Several studies were concentrated on quantifying the impact of vibration to fresh produce, and it was a challenge to collect vibration impact data continuously due to the limitations in battery life or the memory capacity in the devices. Therefore, the study samples were limited to a stretch of the transit passage or a limited time of the journey. This may or may not give an accurate understanding of the vibration impacts encountered throughout the transit passage, which limits the accuracy of the results. Consequently, an approach which can extend the capacity and ability of determining vibration signals in the transit passage would contribute to accurately analyze the vibration damage along the post-harvest supply chain. A mechanism was developed to address this challenge, which is capable of measuring the in transit vibration continuously through the transit passage subject to a minimum acceleration threshold (0.1g). A system, consisting six tri-axel vibration transducers installed in different locations inside the cargo (produce) pallets in the truck, transmits vibration signals through LORA (Long Range Radio) technology to a central device installed inside the container. The central device processes and records the vibration signals transmitted by the portable transducers, along with the GPS location. This method enables to utilize power consumption for the portable transducers to maximize the capability of measuring the vibration impacts in the transit passage extending to days in the distribution process. The trial tests conducted using the approach reveals that it is a reliable method to measure and quantify the in transit vibrations along the supply chain. The GPS capability enables to identify the locations in the supply chain where the significant vibration impacts were encountered. This method contributes to determining the causes, susceptibility and intensity of vibration impact damages to fresh produce in the post-harvest supply chain. Extensively, the approach could be used to determine the vibration impacts not limiting to fresh produce, but for products in supply chains, which may extend from few hours to several days in transit.

Keywords: post-harvest, supply chain, wireless transducers, LORA, fresh produce

Procedia PDF Downloads 257
1069 Synthesis and Catalytic Activity of N-Heterocyclic Carbene Copper Catalysts Supported on Magnetic Nanoparticles

Authors: Iwona Misztalewska-Turkowicz, Agnieszka Z. Wilczewska, Karolina H. Markiewicz

Abstract:

Carbenes - species which possess neutral carbon atom with two shared and two unshared valence electrons, are known for their high reactivity and instability. Nevertheless, it is also known, that some carbenes i.e. N-heterocyclic carbenes (NHCs), can form stable crystals. The usability of NHCs in organic synthesis was studied. Due to their exceptional properties (high nucleophilicity) NHCs are commonly used as organocatalysts and also as ligands in transition metal complexes. NHC ligands possess better electron-donating properties than phosphines. Moreover, they exhibit lower toxicity. Due to these features, phosphines are frequently replaced by NHC ligands. In this research is discussed the synthesis of five-membered NHCs which are mainly obtained by deprotonation of azolium salts, e.g., imidazolium or imidazolinium salts. Some of them are immobilized on a solid support what leads to formation of heterogeneous, recyclable catalysts. Magnetic nanoparticles (MNPs) are often used as a solid support for catalysts. MNPs can be easily separated from the reaction mixture using an external magnetic field. Due to their low size and high surface to volume ratio, they are a good choice for immobilization of catalysts. Herein is presented synthesis of N-heterocyclic carbene copper complexes directly on the surface of magnetic nanoparticles. Formation of four different catalysts is discussed. They vary in copper oxidation state (Cu(I) and Cu(II)) and structure of NHC ligand. Catalysts were tested in Huisgen reaction, a type of copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Huisgen reaction represents one of the few universal and highly efficient reactions in which 1,2,3-triazoles can be obtained. The catalytic activity of all synthesized catalysts was compared with activity of commercially available ones. Different reaction conditions (solvent, temperature, the addition of reductant) and reusability of the obtained catalysts were investigated and are discussed. The project was financially supported by National Science Centre, Poland, grant no. 2016/21/N/ST5/01316. Analyses were performed in Centre of Synthesis and Analyses BioNanoTechno of University of Bialystok. The equipment in the Centre of Synthesis and Analysis BioNanoTechno of University of Bialystok was funded by EU, as a part of the Operational Program Development of Eastern Poland 2007-2013, project: POPW.01.03.00-20-034/09-00 and POPW.01.03.00-20-004/11.

Keywords: N-heterocyclic carbenes, click reaction, magnetic nanoparticles, copper catalysts

Procedia PDF Downloads 150
1068 Hepatoprotective Action of Emblica officinalis Linn. against Radiation and Lead Induced Changes in Swiss Albino Mice

Authors: R. K. Purohit

Abstract:

Ionizing radiation induces cellular damage through direct ionization of DNA and other cellular targets and indirectly via reactive oxygen species which may include effects from epigenetic changes. So there is a need of hour is to search for an ideal radioprotector which could minimize the deleterious and damaging effects caused by ionizing radiation. Radioprotectors are agents which reduce the radiation effects on cell when applied prior to exposure of radiation. The aim of this study was to access the efficacy of Emblica officinalis in reducing radiation and lead induced changes in mice liver. For the present experiment, healthy male Swiss albino mice (6-8 weeks) were selected and maintained under standard conditions of temperature and light. Fruit extract of Emblica was fed orally at the dose of 0.01 ml/animal/day. The animal were divided into seven groups according to the treatment i.e. lead acetate solution as drinking water (group-II) or exposed to 3.5 or 7.0 Gy gamma radiation (group-III) or combined treatment of radiation and lead acetate (group-IV). The animals of experimental groups were administered Emblica extract seven days prior to radiation or lead acetate treatment (group V, VI and VII) respectively. The animals from all the groups were sacrificed by cervical dislocation at each post-treatment intervals of 1, 2, 4, 7, 14 and 28 days. After sacrificing the animals pieces of liver were taken out and some of them were kept at -20°C for different biochemical parameters. The histopathological changes included cytoplasmic degranulation, vacuolation, hyperaemia, pycnotic and crenated nuclei. The changes observed in the control groups were compared with the respective experimental groups. An increase in the value of total proteins, glycogen, acid phosphtase, alkaline phosphatase activity and RNA was observed up to day-14 in the non drug treated group and day 7 in the Emblica treated groups, thereafter value declined up to day-28 without reaching to normal. The value of cholesterol and DNA showed a decreasing trend up to day -14 in non drug treated groups and day-7 in drug treated groups, thereafter value elevated up to day-28. The biochemical parameters were observed in the form of increase or decrease in the values. The changes were found dose dependent. After combined treatment of radiation and lead acetate synergistic effect were observed. The liver of Emblica treated animals exhibited less severe damage as compared to non-drug treated animals at all the corresponding intervals. An early and fast recovery was also noticed in Emblica pretreated animals. Thus, it appears that Emblica is potent enough to check lead and radiation induced heptic lesion in Swiss albino mice.

Keywords: radiation, lead , emblica, mice, liver

Procedia PDF Downloads 312
1067 Simultaneous Detection of Cd⁺², Fe⁺², Co⁺², and Pb⁺² Heavy Metal Ions by Stripping Voltammetry Using Polyvinyl Chloride Modified Glassy Carbon Electrode

Authors: Sai Snehitha Yadavalli, K. Sruthi, Swati Ghosh Acharyya

Abstract:

Heavy metal ions are toxic to humans and all living species when exposed in large quantities or for long durations. Though Fe acts as a nutrient, when intake is in large quantities, it becomes toxic. These toxic heavy metal ions, when consumed through water, will cause many disorders and are harmful to all flora and fauna through biomagnification. Specifically, humans are prone to innumerable diseases ranging from skin to gastrointestinal, neurological, etc. In higher quantities, they even cause cancer in humans. Detection of these toxic heavy metal ions in water is thus important. Traditionally, the detection of heavy metal ions in water has been done by techniques like Inductively Coupled Plasma Mass Spectroscopy (ICPMS) and Atomic Absorption Spectroscopy (AAS). Though these methods offer accurate quantitative analysis, they require expensive equipment and cannot be used for on-site measurements. Anodic Stripping Voltammetry is a good alternative as the equipment is affordable, and measurements can be made at the river basins or lakes. In the current study, Square Wave Anodic Stripping Voltammetry (SWASV) was used to detect the heavy metal ions in water. Literature reports various electrodes on which deposition of heavy metal ions was carried out like Bismuth, Polymers, etc. The working electrode used in this study is a polyvinyl chloride (PVC) modified glassy carbon electrode (GCE). Ag/AgCl reference electrode and Platinum counter electrode were used. Biologic Potentiostat SP 300 was used for conducting the experiments. Through this work of simultaneous detection, four heavy metal ions were successfully detected at a time. The influence of modifying GCE with PVC was studied in comparison with unmodified GCE. The simultaneous detection of Cd⁺², Fe⁺², Co⁺², Pb⁺² heavy metal ions was done using PVC modified GCE by drop casting 1 wt.% of PVC dissolved in Tetra Hydro Furan (THF) solvent onto GCE. The concentration of all heavy metal ions was 0.2 mg/L, as shown in the figure. The scan rate was 0.1 V/s. Detection parameters like pH, scan rate, temperature, time of deposition, etc., were optimized. It was clearly understood that PVC helped in increasing the sensitivity and selectivity of detection as the current values are higher for PVC-modified GCE compared to unmodified GCE. The peaks were well defined when PVC-modified GCE was used.

Keywords: cadmium, cobalt, electrochemical sensing, glassy carbon electrodes, heavy metal Ions, Iron, lead, polyvinyl chloride, potentiostat, square wave anodic stripping voltammetry

Procedia PDF Downloads 93
1066 Investigating Sediment-Bound Chemical Transport in an Eastern Mediterranean Perennial Stream to Identify Priority Pollution Sources on a Catchment Scale

Authors: Felicia Orah Rein Moshe

Abstract:

Soil erosion has become a priority global concern, impairing water quality and degrading ecosystem services. In Mediterranean climates, following a long dry period, the onset of rain occurs when agricultural soils are often bare and most vulnerable to erosion. Early storms transport sediments and sediment-bound pollutants into streams, along with dissolved chemicals. This results in loss of valuable topsoil, water quality degradation, and potentially expensive dredged-material disposal costs. Information on the provenance of fine sediment and priority sources of adsorbed pollutants represents a critical need for developing effective control strategies aimed at source reduction. Modifying sediment traps designed for marine systems, this study tested a cost-effective method to collect suspended sediments on a catchment scale to characterize stream water quality during first-flush storm events in a flashy Eastern Mediterranean coastal perennial stream. This study investigated the Kishon Basin, deploying sediment traps in 23 locations, including 4 in the mainstream and one downstream in each of 19 tributaries, enabling the characterization of sediment as a vehicle for transporting chemicals. Further, it enabled direct comparison of sediment-bound pollutants transported during the first-flush winter storms of 2020 from each of 19 tributaries, allowing subsequent ecotoxicity ranking. Sediment samples were successfully captured in 22 locations. Pesticides, pharmaceuticals, nutrients, and metal concentrations were quantified, identifying a total of 50 pesticides, 15 pharmaceuticals, and 22 metals, with 16 pesticides and 3 pharmaceuticals found in all 23 locations, demonstrating the importance of this transport pathway. Heavy metals were detected in only one tributary, identifying an important watershed pollution source with immediate potential influence on long-term dredging costs. Simultaneous sediment sampling at first flush storms enabled clear identification of priority tributaries and their chemical contributions, advancing a new national watershed monitoring approach, facilitating strategic plan development based on source reduction, and advancing the goal of improving the farm-stream interface, conserving soil resources, and protecting water quality.

Keywords: adsorbed pollution, dredged material, heavy metals, suspended sediment, water quality monitoring

Procedia PDF Downloads 98
1065 The Effect of Social Media Influencer on Boycott Participation through Attitude toward the Offending Country in a Situational Animosity Context

Authors: Hsing-Hua Stella Chang, Mong-Ching Lin, Cher-Min Fong

Abstract:

Using surrogate boycotts as a coercive tactic to force the offending party into changing its approaches has been increasingly significant over the last several decades, and is expected to increase in the future. Research shows that surrogate boycotts are often triggered by controversial international events, and particular foreign countries serve as the offending party in the international marketplace. In other words, multinational corporations are likely to become surrogate boycott targets in overseas markets because of the animosity between their home and host countries. Focusing on the surrogate boycott triggered by a severe situation animosity, this research aims to examine how social media influencers (SMIs) serving as electronic key opinion leaders (EKOLs) in an international crisis facilitate and organize a boycott, and persuade consumers to participate in the boycott. This research suggests that SMIs could be a particularly important information source in a surrogate boycott sparked by a situation of animosity. This research suggests that under such a context, SMIs become a critical information source for individuals to enhance and update their understanding of the event because, unlike traditional media, social media serve as a platform for instant and 24-hour non-stop information access and dissemination. The Xinjiang cotton event was adopted as the research context, which was viewed as an ongoing inter-country conflict, reflecting a crisis, which provokes animosity against the West. Through online panel services, both studies recruited Mainland Chinese nationals to be respondents to the surveys. The findings show that: 1. Social media influencer message is positively related to a negative attitude toward the offending country. 2. Attitude toward the offending country is positively related to boycotting participation. To address the unexplored question – of the effect of social media influencer influence on consumer participation in boycotts, this research presents a finer-grained examination of boycott motivation, with a special focus on a situational animosity context. This research is split into two interrelated parts. In the first part, this research shows that attitudes toward the offending country can be socially constructed by the influence of social media influencers in a situational animosity context. The study results show that consumers perceive different strengths of social pressure related to various levels of influencer messages and thus exhibit different levels of attitude toward the offending country. In the second part, this research further investigates the effect of attitude toward the offending country on boycott participation. The study findings show that such attitude exacerbated the effect of social media influencer messages on boycott participation in a situation of animosity.

Keywords: animosity, social media marketing, boycott, attitude toward the offending country

Procedia PDF Downloads 94
1064 Driver of Migration and Appropriate Policy Concern Considering the Southwest Coastal Part of Bangladesh

Authors: Aminul Haque, Quazi Zahangir Hossain, Dilshad Sharmin Chowdhury

Abstract:

The human migration is getting growing concern around the world, and recurrent disasters and climate change impact have great influence on migration. Bangladesh is one of the disaster prone countries that/and has greater susceptibility to stress migration by recurrent disasters and climate change. The study was conducted to investigate the factors that have a strong influence on current migration and changing pattern of life and livelihood means of the southwest coastal part of Bangladesh. Moreover, the study also revealed a strong relationship between disasters and migration and appropriate policy concern. To explore this relation, both qualitative and quantitative methods were applied to a questionnaire survey at household level and simple random sampling technique used in the sampling process along with different secondary data sources for understanding policy concern and practices. The study explores the most influential driver of migration and its relationship with social, economic and environmental drivers. The study denotes that, the environmental driver has a greater effect on the intention of permanent migration (t=1.481, p-value=0.000) at the 1 percent significance level. The significant number of respondents denotes that abrupt pattern of cyclone, flood, salinity intrusion and rainfall are the most significant environmental driver to make a decision on permanent migration. The study also found that the temporary migration pattern has 2-fold increased compared to last ten (10) years. It also appears from the study that environmental factors have a great implication on the changing pattern of the occupation of the study area and it has reported that about 76% of the respondent now in the changing modality of livelihood compare to their traditional practices. The study bares that the migration has foremost impact on children and women by increasing hardship and creating critical social security. The exposure-route of permanent migration is not smooth indeed, these migrations creating urban and conflict in Chittagong hill tracks of Bangladesh. The study denotes that there is not any safeguard of the stress migrant on existing policy and not have any measures for safe migration and resettlement rather considering the emergency response and shelter. The majority of (98%) people believes that migration is not to be the adoption strategies, but contrary to this young group of respondent believes that safe migration could be the adaptation strategy which could bring a positive result compare to the other resilience strategies. On the other hand, the significant number of respondents uttered that appropriate policy measure could be an adaptation strategy for being the formation of a resilient community and reduce the migration by meaningful livelihood options with appropriate protection measure.

Keywords: environmental driver, livelihood, migration, resilience

Procedia PDF Downloads 252
1063 Challenges in Environmental Governance: A Case Study of Risk Perceptions of Environmental Agencies Involved in Flood Management in the Hawkesbury-Nepean Region, Australia

Authors: S. Masud, J. Merson, D. F. Robinson

Abstract:

The management of environmental resources requires engagement of a range of stakeholders including public/private agencies and different community groups to implement sustainable conservation practices. The challenge which is often ignored is the analysis of agencies involved and their power relations. One of the barriers identified is the difference in risk perceptions among the agencies involved that leads to disjointed efforts of assessing and managing risks. Wood et al 2012, explains that it is important to have an integrated approach to risk management where decision makers address stakeholder perspectives. This is critical for an effective risk management policy. This abstract is part of a PhD research that looks into barriers to flood management under a changing climate and intends to identify bottlenecks that create maladaptation. Experiences are drawn from international practices in the UK and examined in the context of Australia through exploring the flood governance in a highly flood-prone region in Australia: the Hawkesbury Ne-pean catchment as a case study. In this research study several aspects of governance and management are explored: (i) the complexities created by the way different agencies are involved in assessing flood risks (ii) different perceptions on acceptable flood risk level; (iii) perceptions on community engagement in defining acceptable flood risk level; (iv) Views on a holistic flood risk management approach; and, (v) challenges of centralised information system. The study concludes that the complexity of managing a large catchment is exacerbated by the difference in the way professionals perceive the problem. This has led to: (a) different standards for acceptable risks; (b) inconsistent attempt to set-up a regional scale flood management plan beyond the jurisdictional boundaries: (c) absence of a regional scale agency with license to share and update information (d) Lack of forums for dialogue with insurance companies to ensure an integrated approach to flood management. The research takes the Hawkesbury-Nepean catchment as case example and draws from literary evidence from around the world. In addition, conclusions were extrapolated from eighteen semi-structured interviews from agencies involved in flood risk management in the Hawkesbury-Nepean catchment of NSW, Australia. The outcome of this research is to provide a better understanding of complexity in assessing risks against a rapidly changing climate and contribute towards developing effective risk communication strategies thus enabling better management of floods and achieving increased level of support from insurance companies, real-estate agencies, state and regional risk managers and the affected communities.

Keywords: adaptive governance, flood management, flood risk communication, stakeholder risk perceptions

Procedia PDF Downloads 275
1062 TiO₂ Nanotube Array Based Selective Vapor Sensors for Breath Analysis

Authors: Arnab Hazra

Abstract:

Breath analysis is a quick, noninvasive and inexpensive technique for disease diagnosis can be used on people of all ages without any risk. Only a limited number of volatile organic compounds (VOCs) can be associated with the occurrence of specific diseases. These VOCs can be considered as disease markers or breath markers. Selective detection with specific concentration of breath marker in exhaled human breath is required to detect a particular disease. For example, acetone (C₃H₆O), ethanol (C₂H₅OH), ethane (C₂H₆) etc. are the breath markers and abnormal concentrations of these VOCs in exhaled human breath indicates the diseases like diabetes mellitus, renal failure, breast cancer respectively. Nanomaterial-based vapor sensors are inexpensive, small and potential candidate for the detection of breath markers. In practical measurement, selectivity is the most crucial issue where trace detection of breath marker is needed to identify accurately in the presence of several interfering vapors and gases. Current article concerns a novel technique for selective and lower ppb level detection of breath markers at very low temperature based on TiO₂ nanotube array based vapor sensor devices. Highly ordered and oriented TiO₂ nanotube array was synthesized by electrochemical anodization of high purity tatinium (Ti) foil. 0.5 wt% NH₄F, ethylene glycol and 10 vol% H₂O was used as the electrolyte and anodization was carried out for 90 min with 40 V DC potential. Au/TiO₂ Nanotube/Ti, sandwich type sensor device was fabricated for the selective detection of VOCs in low concentration range. Initially, sensor was characterized where resistive and capacitive change of the sensor was recorded within the valid concentration range for individual breath markers (or organic vapors). Sensor resistance was decreased and sensor capacitance was increased with the increase of vapor concentration. Now, the ratio of resistive slope (mR) and capacitive slope (mC) provided a concentration independent constant term (M) for a particular vapor. For the detection of unknown vapor, ratio of resistive change and capacitive change at any concentration was same to the previously calculated constant term (M). After successful identification of the target vapor, concentration was calculated from the straight line behavior of resistance as a function of concentration. Current technique is suitable for the detection of particular vapor from a mixture of other interfering vapors.

Keywords: breath marker, vapor sensors, selective detection, TiO₂ nanotube array

Procedia PDF Downloads 149
1061 Study the Effect of Liquefaction on Buried Pipelines during Earthquakes

Authors: Mohsen Hababalahi, Morteza Bastami

Abstract:

Buried pipeline damage correlations are critical part of loss estimation procedures applied to lifelines for future earthquakes. The vulnerability of buried pipelines against earthquake and liquefaction has been observed during some of previous earthquakes and there are a lot of comprehensive reports about this event. One of the main reasons for impairment of buried pipelines during earthquake is liquefaction. Necessary conditions for this phenomenon are loose sandy soil, saturation of soil layer and earthquake intensity. Because of this fact that pipelines structure are very different from other structures (being long and having light mass) by paying attention to the results of previous earthquakes and compare them with other structures, it is obvious that the danger of liquefaction for buried pipelines is not high risked, unless effective parameters like earthquake intensity and non-dense soil and other factors be high. Recent liquefaction researches for buried pipeline include experimental and theoretical ones as well as damage investigations during actual earthquakes. The damage investigations have revealed that a damage ratio of pipelines (Number/km ) has much larger values in liquefied grounds compared with one in shaking grounds without liquefaction according to damage statistics during past severe earthquakes, and that damages of joints and pipelines connected with manholes were remarkable. The purpose of this research is numerical study of buried pipelines under the effect of liquefaction by case study of the 2013 Dashti (Iran) earthquake. Water supply and electrical distribution systems of this township interrupted during earthquake and water transmission pipelines were damaged severely due to occurrence of liquefaction. The model consists of a polyethylene pipeline with 100 meters length and 0.8 meter diameter which is covered by light sandy soil and the depth of burial is 2.5 meters from surface. Since finite element method is used relatively successfully in order to solve geotechnical problems, we used this method for numerical analysis. For evaluating this case, some information like geotechnical information, classification of earthquakes levels, determining the effective parameters in probability of liquefaction, three dimensional numerical finite element modeling of interaction between soil and pipelines are necessary. The results of this study on buried pipelines indicate that the effect of liquefaction is function of pipe diameter, type of soil, and peak ground acceleration. There is a clear increase in percentage of damage with increasing the liquefaction severity. The results indicate that although in this form of the analysis, the damage is always associated to a certain pipe material, but the nominally defined “failures” include by failures of particular components (joints, connections, fire hydrant details, crossovers, laterals) rather than material failures. At the end, there are some retrofit suggestions in order to decrease the risk of liquefaction on buried pipelines.

Keywords: liquefaction, buried pipelines, lifelines, earthquake, finite element method

Procedia PDF Downloads 503
1060 Modeling of Tsunami Propagation and Impact on West Vancouver Island, Canada

Authors: S. Chowdhury, A. Corlett

Abstract:

Large tsunamis strike the British Columbia coast every few hundred years. The Cascadia Subduction Zone, which extends along the Pacific coast from Vancouver Island to Northern California is one of the most seismically active regions in Canada. Significant earthquakes have occurred in this region, including the 1700 Cascade Earthquake with an estimated magnitude of 9.2. Based on geological records, experts have predicted a 'great earthquake' of a similar magnitude within this region may happen any time. This earthquake is expected to generate a large tsunami that could impact the coastal communities on Vancouver Island. Since many of these communities are in remote locations, they are more likely to be vulnerable, as the post-earthquake relief efforts would be impacted by the damage to critical road infrastructures. To assess the coastal vulnerability within these communities, a hydrodynamic model has been developed using MIKE-21 software. We have considered a 500 year probabilistic earthquake design criteria including the subsidence in this model. The bathymetry information was collected from Canadian Hydrographic Services (CHS), and National Oceanic Atmospheric and Administration (NOAA). The arial survey was conducted using a Cessna-172 aircraft for the communities, and then the information was converted to generate a topographic digital elevation map. Both survey information was incorporated into the model, and the domain size of the model was about 1000km x 1300km. This model was calibrated with the tsunami occurred off the west coast of Moresby Island on October 28, 2012. The water levels from the model were compared with two tide gauge stations close to the Vancouver Island and the output from the model indicates the satisfactory result. For this study, the design water level was considered as High Water Level plus the Sea Level Rise for 2100 year. The hourly wind speeds from eight directions were collected from different wind stations and used a 200-year return period wind speed in the model for storm events. The regional model was set for 12 hrs simulation period, which takes more than 16 hrs to complete one simulation using double Xeon-E7 CPU computer plus a K-80 GPU. The boundary information for the local model was generated from the regional model. The local model was developed using a high resolution mesh to estimate the coastal flooding for the communities. It was observed from this study that many communities will be effected by the Cascadia tsunami and the inundation maps were developed for the communities. The infrastructures inside the coastal inundation area were identified. Coastal vulnerability planning and resilient design solutions will be implemented to significantly reduce the risk.

Keywords: tsunami, coastal flooding, coastal vulnerable, earthquake, Vancouver, wave propagation

Procedia PDF Downloads 125
1059 Synthesis and Characterization of Highly Oriented Bismuth Oxyiodide Thin Films for the Photocatalytical Degradation of Pharmaceuticals Compounds in Water

Authors: Juan C. Duran-Alvarez, Daniel Mejia, Rodolfo Zanella

Abstract:

Heterogeneous photocatalysis is a promising method to achieve the complete degradation and mineralization of organic pollutants in water via their exhaustive oxidation. In order to take this advanced oxidation process towards sustainability, it is necessary to reduce the energy consumption, referred as the light sources and the post-treatment operations. For this, the synthesis of new nanostructures of low band gap semiconductors in the form of thin films is in continuous development. In this work, thin films of the low band gap semiconductor bismuth oxyiodide (BiOI) were synthesized via the Successive Ionic Layer Adsorption and Reaction (SILAR) method. For this, Bi(NO3)3 and KI solutions were prepared, and glass supports were immersed in each solution under strict rate and time immersion conditions. Synthesis was performed at room temperature and a washing step was set prior to each immersion. Thin films with an average thickness below 100 nm were obtained upon a cycle of 30 immersions, as determined by AFM and profilometry measurements. Cubic BiOI nanocrystals with average size of 17 nm and a high orientation to the 001 plane were observed by XRD. In order to optimize the synthesis method, several Bi/I ratios were tested, namely 1/1, 1/5, 1/10, 1/20 and 1/50. The highest crystallinity of the BiOI films was observed when the 1/5 ratio was used in the synthesis. Non-stoichiometric conditions also resulted in the highest uniformity of the thin layers. PVP was used as an additive to improve the adherence of the BiOI thin films to the support. The addition of 0.1 mg/mL of PVP during the washing step resulted in the highest adherence of the thin films. In photocatalysis tests, degradation rate of the antibiotic ciprofloxacin as high as 75% was achieved using visible light (380 to 700 nm) irradiation for 5 h in batch tests. Mineralization of the antibiotic was also observed, although in a lower extent; ~ 30% of the total organic carbon was removed upon 5 h of visible light irradiation. Some ciprofloxacin by-products were identified throughout the reaction; and some of these molecules displayed residual antibiotic activity. In conclusion, it is possible to obtain highly oriented BiOI thin films under ambient conditions via the SILAR method. Non-stoichiometric conditions using PVP additive are necessary to increase the crystallinity and adherence of the films, which are photocatalytically active to remove recalcitrant organic pollutants under visible light irradiation.

Keywords: bismuth oxyhalides, photocatalysis, thin films, water treatment

Procedia PDF Downloads 111
1058 Application of Carbon Nanotubes as Cathodic Corrosion Protection of Steel Reinforcement

Authors: M. F. Perez, Ysmael Verde, B. Escobar, R. Barbosa, J. C. Cruz

Abstract:

Reinforced concrete is one of the most important materials in the construction industry. However, in recent years the durability of concrete structures has been a worrying problem, mainly due to corrosion of reinforcing steel; the consequences of corrosion in all cases lead to shortening of the life of the structure and decrease in quality of service. Since the emergence of this problem, they have implemented different methods or techniques to reduce damage by corrosion of reinforcing steel in concrete structures; as the use of polymeric materials as coatings for the steel rod, spiked inhibitors of concrete during mixing, among others, presenting different limitations in the application of these methods. Because of this, it has been used a method that has proved effective, cathodic protection. That is why due to the properties attributed to carbon nanotubes (CNT), these could act as cathodic corrosion protection. Mounting a three-electrode electrochemical cell, carbon steel as working electrode, saturated calomel electrode (SCE) as the reference electrode, and a graphite rod as a counter electrode to close the system is performed. Samples made were subjected to a cycling process in order to compare the results in the corrosion performance of a coating composed of CNT and the others based on an anticorrosive commercial painting. The samples were tested at room temperature using an electrolyte consisting NaCl and NaOH simulating the typical pH of concrete, ranging from 12.6 to 13.9. Three test samples were made of steel rod, white, with commercial anticorrosive paint and CNT based coating; delimiting the work area to a section of 0.71 cm2. Tests cyclic voltammetry and linear voltammetry electrochemical spectroscopy each impedance of the three samples were made with a window of potential vs SCE 0.7 -1.7 a scan rate of 50 mV / s and 100 mV / s. The impedance values were obtained by applying a sine wave of amplitude 50 mV in a frequency range of 100 kHz to 100 MHz. The results obtained in this study show that the CNT based coating applied to the steel rod considerably decreased the corrosion rate compared to the commercial coating of anticorrosive paint, because the Ecorr was passed increase as the cycling process. The samples tested in all three cases were observed by light microscopy throughout the cycling process and micrographic analysis was performed using scanning electron microscopy (SEM). Results from electrochemical measurements show that the application of the coating containing carbon nanotubes on the surface of the steel rod greatly increases the corrosion resistance, compared to commercial anticorrosive coating.

Keywords: anticorrosive, carbon nanotubes, corrosion, steel

Procedia PDF Downloads 469
1057 The Emergence of Memory at the Nanoscale

Authors: Victor Lopez-Richard, Rafael Schio Wengenroth Silva, Fabian Hartmann

Abstract:

Memcomputing is a computational paradigm that combines information processing and storage on the same physical platform. Key elements for this topic are devices with an inherent memory, such as memristors, memcapacitors, and meminductors. Despite the widespread emergence of memory effects in various solid systems, a clear understanding of the basic microscopic mechanisms that trigger them is still a puzzling task. We report basic ingredients of the theory of solid-state transport, intrinsic to a wide range of mechanisms, as sufficient conditions for a memristive response that points to the natural emergence of memory. This emergence should be discernible under an adequate set of driving inputs, as highlighted by our theoretical prediction and general common trends can be thus listed that become a rule and not the exception, with contrasting signatures according to symmetry constraints, either built-in or induced by external factors at the microscopic level. Explicit analytical figures of merit for the memory modulation of the conductance are presented, unveiling very concise and accessible correlations between general intrinsic microscopic parameters such as relaxation times, activation energies, and efficiencies (encountered throughout various fields in Physics) with external drives: voltage pulses, temperature, illumination, etc. These building blocks of memory can be extended to a vast universe of materials and devices, with combinations of parallel and independent transport channels, providing an efficient and unified physical explanation for a wide class of resistive memory devices that have emerged in recent years. Its simplicity and practicality have also allowed a direct correlation with reported experimental observations with the potential of pointing out the optimal driving configurations. The main methodological tools used to combine three quantum transport approaches, Drude-like model, Landauer-Buttiker formalism, and field-effect transistor emulators, with the microscopic characterization of nonequilibrium dynamics. Both qualitative and quantitative agreements with available experimental responses are provided for validating the main hypothesis. This analysis also shades light on the basic universality of complex natural impedances of systems out of equilibrium and might help pave the way for new trends in the area of memory formation as well as in its technological applications.

Keywords: memories, memdevices, memristors, nonequilibrium states

Procedia PDF Downloads 87
1056 A Paradigm Shift in Patent Protection-Protecting Methods of Doing Business: Implications for Economic Development in Africa

Authors: Odirachukwu S. Mwim, Tana Pistorius

Abstract:

Since the early 1990s political and economic pressures have been mounted on policy and law makers to increase patent protection by raising the protection standards. The perception of the relation between patent protection and development, particularly economic development, has evolved significantly in the past few years. Debate on patent protection in the international arena has been significantly influenced by the perception that there is a strong link between patent protection and economic development. The level of patent protection determines the extent of development that can be achieved. Recently there has been a paradigm shift with a lot of emphasis on extending patent protection to method of doing business generally referred to as Business Method Patenting (BMP). The general perception among international organizations and the private sectors also indicates that there is a strong correlation between BMP protection and economic growth. There are two diametrically opposing views as regards the relation between Intellectual Property (IP) protection and development and innovation. One school of thought promotes the view that IP protection improves economic development through stimulation of innovation and creativity. The other school advances the view that IP protection is unnecessary for stimulation of innovation and creativity and is in fact a hindrance to open access to resources and information required for innovative and creative modalities. Therefore, different theories and policies attach different levels of protection to BMP which have specific implications for economic growth. This study examines the impact of BMP protection on development by focusing on the challenges confronting economic growth in African communities as a result of the new paradigm in patent law. (Africa is used as a single unit in this study but this should not be construed as African homogeneity. Rather, the views advanced in this study are used to address the common challenges facing many communities in Africa). The study reviews (from the point of views of legal philosophers, policy makers and decisions of competent courts) the relevant literature, patent legislation particularly the International Treaty, policies and legal judgments. Findings from this study suggest that over and above the various criticisms levelled against the extreme liberal approach to the recognition of business methods as patentable subject matter, there are other specific implications that are associated with such approach. The most critical implication of extending patent protection to business methods is the locking-up of knowledge which may hamper human development in general and economic development in particular. Locking up knowledge necessary for economic advancement and competitiveness may have a negative effect on economic growth by promoting economic exclusion, particularly in African communities. This study suggests that knowledge of BMP within the African context and the extent of protection linked to it is crucial in achieving a sustainable economic growth in Africa. It also suggests that a balance is struck between the two diametrically opposing views.

Keywords: Africa, business method patenting, economic growth, intellectual property, patent protection

Procedia PDF Downloads 117
1055 Branding in FMCG Sector in India: A Comparison of Indian and Multinational Companies

Authors: Pragati Sirohi, Vivek Singh Rana

Abstract:

Brand is a name, term, sign, symbol or design or a combination of all these which is intended to identify the goods or services of one seller or a group of sellers and to differentiate them from those of the competitors and perception influences purchase decisions here and so building that perception is critical. The FMCG industry is a low margin business. Volumes hold the key to success in this industry. Therefore, the industry has a strong emphasis on marketing. Creating strong brands is important for FMCG companies and they devote considerable money and effort in developing brands. Brand loyalty is fickle. Companies know this and that is why they relentlessly work towards brand building. The purpose of the study is a comparison between Indian and Multinational companies with regard to FMCG sector in India. It has been hypothesized that after liberalization the Indian companies has taken up the challenge of globalization and some of these are giving a stiff competition to MNCs. There is an existence of strong brand image of MNCs compared to Indian companies. Advertisement expenditures of MNCs are proportionately higher compared to Indian counterparts. The operational area of the study is the country as a whole. Continuous time series data is available from 1996-2014 for the selected 8 companies. The selection of these companies is done on the basis of their large market share, brand equity and prominence in the market. Research methodology focuses on finding trend growth rates of market capitalization, net worth, and brand values through regression analysis by the usage of secondary data from prowess database developed by CMIE (Centre for monitoring Indian Economy). Estimation of brand values of selected FMCG companies is being attempted, which can be taken to be the excess of market capitalization over the net worth of a company. Brand value indices are calculated. Correlation between brand values and advertising expenditure is also measured to assess the effect of advertising on branding. Major results indicate that although MNCs enjoy stronger brand image but few Indian companies like ITC is the outstanding leader in terms of its market capitalization and brand values. Dabur and Tata Global Beverages Ltd are competing equally well on these values. Advertisement expenditures are the highest for HUL followed by ITC, Colgate and Dabur which shows that Indian companies are not behind in the race. Although advertisement expenditures are playing a role in brand building process there are many other factors which affect the process. Also, brand values are decreasing over the years for FMCG companies in India which show that competition is intense with aggressive price wars and brand clutter. Implications for Indian companies are that they have to consistently put in proactive and relentless efforts in their brand building process. Brands need focus and consistency. Brand longevity without innovation leads to brand respect but does not create brand value.

Keywords: brand value, FMCG, market capitalization, net worth

Procedia PDF Downloads 348
1054 Adverse Drug Reactions Monitoring in the Northern Region of Zambia

Authors: Ponshano Kaselekela, Simooya O. Oscar, Lunshano Boyd

Abstract:

The Copperbelt University Health Services (CBUHS) was designated by the Zambia Medicines Regulatory Authority (ZAMRA), formally the Pharmaceutical Regulatory Authority (PRA) as a regional pharmacovigilance centre to carryout activities of drug safety monitoring in four provinces in Zambia. CBUHS’s mandate included stimulating the reporting of adverse drug reactions (ADRs), as well as collecting and collating ADR reports from health institutions in the four provinces. This report covers the researchers’ experiences from May 2008 to September, 2016. The main objectives are 1) to monitor ADRs in the Zambian population, 2) to disseminate information to all health professionals in the region advising that the CBU health was a centre for reporting ADRs in the region, 3) to monitor polypharmacy as well as the benefit-risk profile of medicines, 4) to generate independent, evidence based recommendations on the safety of medicines, 5) to support ZAMRA in formulating safety related regulatory decisions for medicines, and 6) to communicate findings with all key stakeholders. The methodology involved monthly visits, beginning in early May 2008 to September, 2016, by the CBUHS to health institutions in the programme areas. Activities included holding discussions with health workers, distribution of ADR forms and collection of ADRs reports. These reports, once collected, were documented and assessed at the CBUHS. A report was then prepared for ZAMRA on quarterly basis. At ZAMRA, serious ADRs were noted and recommendations made to the Ministry of Health of the Republic of Zambia. The results show that 2,600 ADRs reports were received at the pharmacovigilance regional centre. Most of the ADRs reports that received were due to antiretroviral drugs, as well as a few from anti-malarial drugs like Artemether/Lumefantrine – Coartem®. Three hundred and twelve ADRs were entered in the Uppsala Monitoring Centre WHO Vigiflow for further analysis. It was concluded that in general, 2008-16 were exciting years for the pharmacovigilance group at CBUHS. From a very tentative beginning, a lot of strides were made and contacts established with healthcare facilities in the region. The researchers were encouraged by the support received from the Copperbelt University management, the motivation provided by ZAMRA and most importantly the enthusiasm of health workers in all the health care facilities visited. As a centre for drug safety in Zambia, the results show it achieves its objectives for monitoring ADRs, Pharmacovigilance (drug safety monitoring), and activities of monitoring ADRs as well as preventing them. However, the centre faces critical challenges caused by erratic funding that prevents the smooth running of the programme.

Keywords: adverse drug reactions, drug safety, monitoring, pharmacovigilance

Procedia PDF Downloads 192
1053 An Exploratory Study in Nursing Education: Factors Influencing Nursing Students’ Acceptance of Mobile Learning

Authors: R. Abdulrahman, A. Eardley, A. Soliman

Abstract:

The proliferation in the development of mobile learning (m-learning) has played a vital role in the rapidly growing electronic learning market. This relatively new technology can help to encourage the development of in learning and to aid knowledge transfer a number of areas, by familiarizing students with innovative information and communications technologies (ICT). M-learning plays a substantial role in the deployment of learning methods for nursing students by using the Internet and portable devices to access learning resources ‘anytime and anywhere’. However, acceptance of m-learning by students is critical to the successful use of m-learning systems. Thus, there is a need to study the factors that influence student’s intention to use m-learning. This paper addresses this issue. It outlines the outcomes of a study that evaluates the unified theory of acceptance and use of technology (UTAUT) model as applied to the subject of user acceptance in relation to m-learning activity in nurse education. The model integrates the significant components across eight prominent user acceptance models. Therefore, a standard measure is introduced with core determinants of user behavioural intention. The research model extends the UTAUT in the context of m-learning acceptance by modifying and adding individual innovativeness (II) and quality of service (QoS) to the original structure of UTAUT. The paper goes on to add the factors of previous experience (of using mobile devices in similar applications) and the nursing students’ readiness (to use the technology) to influence their behavioural intentions to use m-learning. This study uses a technique called ‘convenience sampling’ which involves student volunteers as participants in order to collect numerical data. A quantitative method of data collection was selected and involves an online survey using a questionnaire form. This form contains 33 questions to measure the six constructs, using a 5-point Likert scale. A total of 42 respondents participated, all from the Nursing Institute at the Armed Forces Hospital in Saudi Arabia. The gathered data were then tested using a research model that employs the structural equation modelling (SEM), including confirmatory factor analysis (CFA). The results of the CFA show that the UTAUT model has the ability to predict student behavioural intention and to adapt m-learning activity to the specific learning activities. It also demonstrates satisfactory, dependable and valid scales of the model constructs. This suggests further analysis to confirm the model as a valuable instrument in order to evaluate the user acceptance of m-learning activity.

Keywords: mobile learning, nursing institute students’ acceptance of m-learning activity in Saudi Arabia, unified theory of acceptance and use of technology model (UTAUT), structural equation modelling (SEM)

Procedia PDF Downloads 178
1052 Nanoparticles Modification by Grafting Strategies for the Development of Hybrid Nanocomposites

Authors: Irati Barandiaran, Xabier Velasco-Iza, Galder Kortaberria

Abstract:

Hybrid inorganic/organic nanostructured materials based on block copolymers are of considerable interest in the field of Nanotechnology, taking into account that these nanocomposites combine the properties of polymer matrix and the unique properties of the added nanoparticles. The use of block copolymers as templates offers the opportunity to control the size and the distribution of inorganic nanoparticles. This research is focused on the surface modification of inorganic nanoparticles to reach a good interface between nanoparticles and polymer matrices which hinders the nanoparticle aggregation. The aim of this work is to obtain a good and selective dispersion of Fe3O4 magnetic nanoparticles into different types of block copolymers such us, poly(styrene-b-methyl methacrylate) (PS-b-PMMA), poly(styrene-b-ε-caprolactone) (PS-b-PCL) poly(isoprene-b-methyl methacrylate) (PI-b-PMMA) or poly(styrene-b-butadiene-b-methyl methacrylate) (SBM) by using different grafting strategies. Fe3O4 magnetic nanoparticles have been surface-modified with polymer or block copolymer brushes following different grafting methods (grafting to, grafting from and grafting through) to achieve a selective location of nanoparticles into desired domains of the block copolymers. Morphology of fabricated hybrid nanocomposites was studied by means of atomic force microscopy (AFM) and with the aim to reach well-ordered nanostructured composites different annealing methods were used. Additionally, nanoparticle amount has been also varied in order to investigate the effect of the nanoparticle content in the morphology of the block copolymer. Nowadays different characterization methods were using in order to investigate magnetic properties of nanometer-scale electronic devices. Particularly, two different techniques have been used with the aim of characterizing synthesized nanocomposites. First, magnetic force microscopy (MFM) was used to investigate qualitatively the magnetic properties taking into account that this technique allows distinguishing magnetic domains on the sample surface. On the other hand, magnetic characterization by vibrating sample magnetometer and superconducting quantum interference device. This technique demonstrated that magnetic properties of nanoparticles have been transferred to the nanocomposites, exhibiting superparamagnetic behavior similar to that of the maghemite nanoparticles at room temperature. Obtained advanced nanostructured materials could found possible applications in the field of dye-sensitized solar cells and electronic nanodevices.

Keywords: atomic force microscopy, block copolymers, grafting techniques, iron oxide nanoparticles

Procedia PDF Downloads 250
1051 Experimental Analysis of Supersonic Combustion Induced by Shock Wave at the Combustion Chamber of the 14-X Scramjet Model

Authors: Ronaldo de Lima Cardoso, Thiago V. C. Marcos, Felipe J. da Costa, Antonio C. da Oliveira, Paulo G. P. Toro

Abstract:

The 14-X is a strategic project of the Brazil Air Force Command to develop a technological demonstrator of a hypersonic air-breathing propulsion system based on supersonic combustion programmed to flight in the Earth's atmosphere at 30 km of altitude and Mach number 10. The 14-X is under development at the Laboratory of Aerothermodynamics and Hypersonic Prof. Henry T. Nagamatsu of the Institute of Advanced Studies. The program began in 2007 and was planned to have three stages: development of the wave rider configuration, development of the scramjet configuration and finally the ground tests in the hypersonic shock tunnel T3. The install configuration of the model based in the scramjet of the 14-X in the test section of the hypersonic shock tunnel was made to proportionate and test the flight conditions in the inlet of the combustion chamber. Experimental studies with hypersonic shock tunnel require special techniques to data acquisition. To measure the pressure along the experimental model geometry tested we used 30 pressure transducers model 122A22 of PCB®. The piezoeletronic crystals of a piezoelectric transducer pressure when to suffer pressure variation produces electric current (PCB® PIEZOTRONIC, 2016). The reading of the signal of the pressure transducers was made by oscilloscope. After the studies had begun we observed that the pressure inside in the combustion chamber was lower than expected. One solution to improve the pressure inside the combustion chamber was install an obstacle to providing high temperature and pressure. To confirm if the combustion occurs was selected the spectroscopy emission technique. The region analyzed for the spectroscopy emission system is the edge of the obstacle installed inside the combustion chamber. The emission spectroscopy technique was used to observe the emission of the OH*, confirming or not the combustion of the mixture between atmospheric air in supersonic speed and the hydrogen fuel inside of the combustion chamber of the model. This paper shows the results of experimental studies of the supersonic combustion induced by shock wave performed at the Hypersonic Shock Tunnel T3 using the scramjet 14-X model. Also, this paper provides important data about the combustion studies using the model based on the engine of 14-X (second stage of the 14-X Program). Informing the possibility of necessaries corrections to be made in the next stages of the program or in other models to experimental study.

Keywords: 14-X, experimental study, ground tests, scramjet, supersonic combustion

Procedia PDF Downloads 381
1050 Rational Approach to Analysis and Construction of Curved Composite Box Girders in Bridges

Authors: Dongming Feng, Fangyin Zhang, Liling Cao

Abstract:

Horizontally curved steel-concrete composite box girders are extensively used in highway bridges. They consist of reinforced concrete deck on top of prefabricated steel box section beam which exhibits a high torsional rigidity to resist torsional effects induced by the curved structural geometry. This type of structural system is often constructed in two stages. The composite section will take the tension mainly by the steel box and, the compression by the concrete deck. The steel girders are delivered in large pre-fabricated U-shaped sections that are designed for ease of construction. They are then erected on site and overlaid by cast-in-place reinforced concrete deck. The functionality of the composite section is not achieved until the closed section is formed by fully cured concrete. Since this kind of composite section is built in two stages, the erection of the open steel box presents some challenges to contractors. When the reinforced concrete slab is cast-in-place, special care should be taken on bracings that can prevent the open U-shaped steel box from global and local buckling. In the case of multiple steel boxes, the design detailing should pay enough attention to the installation requirement of the bracings connecting adjacent steel boxes to prevent the global buckling. The slope in transverse direction and grade in longitudinal direction will result in some local deformation of the steel boxes that affect the connection of the bracings. During the design phase, it is common for engineers to model the curved composite box girder using one-dimensional beam elements. This is adequate to analyze the global behavior, however, it is unable to capture the local deformation which affects the installation of the field bracing connection. The presence of the local deformation may become a critical component to control the construction tolerance, and overlooking this deformation will produce inadequate structural details that eventually cause misalignment in field and erection failure. This paper will briefly describe the construction issues we encountered in real structures, investigate the difference between beam element modeling and shell/solid element modeling, and their impact on the different construction stages. P-delta effect due to the slope and curvature of the composite box girder is analyzed, and the secondary deformation is compared to the first-order response and evaluated for its impact on installation of lateral bracings. The paper will discuss the rational approach to prepare construction documents and recommendations are made on the communications between engineers, erectors, and fabricators to smooth out construction process.

Keywords: buckling, curved composite box girder, stage construction, structural detailing

Procedia PDF Downloads 113
1049 Isotope Effects on Inhibitors Binding to HIV Reverse Transcriptase

Authors: Agnieszka Krzemińska, Katarzyna Świderek, Vicente Molinier, Piotr Paneth

Abstract:

In order to understand in details the interactions between ligands and the enzyme isotope effects were studied between clinically used drugs that bind in the active site of Human Immunodeficiency Virus Reverse Transcriptase, HIV-1 RT, as well as triazole-based inhibitor that binds in the allosteric pocket of this enzyme. The magnitudes and origins of the resulting binding isotope effects were analyzed. Subsequently, binding isotope effect of the same triazole-based inhibitor bound in the active site were analyzed and compared. Together, these results show differences in binding origins in two sites of the enzyme and allow to analyze binding mode and place of newly synthesized inhibitors. Typical protocol is described below on the example of triazole ligand in the allosteric pocket. Triazole was docked into allosteric cavity of HIV-1 RT with Glide using extra-precision mode as implemented in Schroedinger software. The structure of HIV-1 RT was obtained from Protein Data Bank as structure of PDB ID 2RKI. The pKa for titratable amino acids was calculated using PROPKA software, and in order to neutralize the system 15 Cl- were added using tLEaP package implemented in AMBERTools ver.1.5. Also N-terminals and C-terminals were build using tLEaP. The system was placed in 144x160x144Å3 orthorhombic box of water molecules using NAMD program. Missing parameters for triazole were obtained at the AM1 level using Antechamber software implemented in AMBERTools. The energy minimizations were carried out by means of a conjugate gradient algorithm using NAMD. Then system was heated from 0 to 300 K with temperature increment 0.001 K. Subsequently 2 ns Langevin−Verlet (NVT) MM MD simulation with AMBER force field implemented in NAMD was carried out. Periodic Boundary Conditions and cut-offs for the nonbonding interactions, range radius from 14.5 to 16 Å, are used. After 2 ns relaxation 200 ps of QM/MM MD at 300 K were simulated. The triazole was treated quantum mechanically at the AM1 level, protein was described using AMBER and water molecules were described using TIP3P, as implemented in fDynamo library. Molecules 20 Å apart from the triazole were kept frozen, with cut-offs established on range radius from 14.5 to 16 Å. In order to describe interactions between triazole and RT free energy of binding using Free Energy Perturbation method was done. The change in frequencies from ligand in solution to ligand bounded in enzyme was used to calculate binding isotope effects.

Keywords: binding isotope effects, molecular dynamics, HIV, reverse transcriptase

Procedia PDF Downloads 424