Search results for: thin layer chromatography-flame ionization detection
5510 Antibacterial and Antifungal Activities of the Essential Oil of Pulicaria jaubertii Leaves
Authors: Methaq Algabr, Nabil Al-Hajj, Ameerh Jaber, Amtellah Alshotobi, Shaima'a Al-suryhi, Gadah Whaban, Nawal Alshehari
Abstract:
Steam distillation of the essential oil of P. jaubertii was performed using a Clevenger apparatus. Essential oils were analyzed by gas chromatography-flame ionization detector (GC-FID) and gas chromatography coupled to chromatography–mass spectrometry (GC-MS). The major chemical components identified in P. jaubertii essential oil include carvotanacetone (63.975%), 1-methyl-1,2-propanedione (5.887%), 2,5-dimethoxy-para-cymene (3.303%) and ar-curcumene (3.276%). The antimicrobial activity of the essential oil of P. jaubertii was evaluated against all tested microorganisms. P. jaubertii essential oil inhibited all tested microorganisms except Escherichia coli with a minimum inhibitory concentration (MIC) of 5.0 μg/mL against Staphylococcus aureus.Keywords: Pulicaria jaubertii, essential oil, antimicrobial, Carvotancetone
Procedia PDF Downloads 1105509 Thermal Resistance Analysis of Flexible Composites Based on Al2O3 Aerogels
Authors: Jianzheng Wei, Duo Zhen, Zhihan Yang, Huifeng Tan
Abstract:
The deployable descent technology is a lightweight entry method using an inflatable heat shield. The heatshield consists of a pressurized core which is covered by different layers of thermal insulation and flexible ablative materials in order to protect against the thermal loads. In this paper, both aluminum and silicon-aluminum aerogels were prepared by freeze-drying method. The latter material has bigger specific surface area and nano-scale pores. Mullite fibers are used as the reinforcing fibers to prepare the aerogel matrix to improve composite flexibility. The flexible composite materials were performed as an insulation layer to an underlying aramid fabric by a thermal shock test at a heat flux density of 120 kW/m2 and uniaxial tensile test. These results show that the aramid fabric with untreated mullite fibers as the thermal protective layer is completely carbonized at the heat of about 60 s. The aramid fabric as a thermal resistance layer of the composite material still has good mechanical properties at the same heat condition.Keywords: aerogel, aramid fabric, flexibility, thermal resistance
Procedia PDF Downloads 1535508 Fabrication of Glucose/O₂ Microfluidic Biofuel Cell with Double Layer of Electrodes
Authors: Haroon Khan, Chul Min Kim, Sung Yeol Kim, Sanket Goel, Prabhat K. Dwivedi, Ashutosh Sharma, Gyu Man Kim
Abstract:
Enzymatic biofuel cells (EBFCs) have drawn the attention of researchers due to its demanding application in medical implants. In EBFCs, electricity is produced with the help of redox enzymes. In this study, we report the fabrication of membraneless EBFC with new design of electrodes to overcome microchannel related limitations. The device consists of double layer of electrodes on both sides of Y-shaped microchannel to reduce the effect of oxygen depletion layer and diffusion of fuel and oxidant at the end of microchannel. Moreover, the length of microchannel was reduced by half keeping the same area of multiwalled carbon nanotubes (MWCNT) electrodes. Polydimethylsiloxane (PDMS) stencils were used to pattern MWCNT electrodes on etched Indium Tin Oxide (ITO) glass. PDMS casting was used to fabricate microchannel of the device. Both anode and cathode were modified with glucose oxidase and laccase. Furthermore, these enzymes were covalently bound to carboxyl MWCNTs with the help of EDC/NHS. Glucose used as fuel was oxidized by glucose oxidase at anode while oxygen was reduced to water at the cathode side. The resulted devices were investigated with the help of polarization curves obtained from Chronopotentiometry technique by using potentiostat. From results, we conclude that the performance of double layer EBFC is improved 15 % as compared to single layer EBFC delivering maximum power density of 71.25 µW cm-2 at a cell potential of 0.3 V and current density of 250 µA cm-2 at micro channel height of 450-µm and flow rate of 25 ml hr-1. However, the new device was stable only for three days after which its power output was rapidly dropped by 75 %. This work demonstrates that the power output of membraneless EBFC is improved comparatively, but still efforts will be needed to make the device stable over long period of time.Keywords: EBFC, glucose, MWCNT, microfluidic
Procedia PDF Downloads 3255507 Removal of Pharmaceuticals from Aquarius Solutions Using Hybrid Ceramic Membranes
Authors: Jenny Radeva, Anke-Gundula Roth, Christian Goebbert, Robert Niestroj-Pahl, Lars Daehne, Axel Wolfram, Juergen Wiese
Abstract:
The technological advantages of ceramic filtration elements were combined with polyelectrolyte films in the development process of hybrid membrane for the elimination of pharmaceuticals from Aquarius solutions. Previously extruded alumina ceramic membranes were coated with nanosized polyelectrolyte films using Layer-by-Layer technology. The polyelectrolyte chains form a network with nano-pores on the ceramic surface and promote the retention of small molecules like pharmaceuticals and microplastics, which cannot be eliminated using standard ultrafiltration methods. Additionally, the polyelectrolyte coat contributes with its adjustable (based on application) Zeta Potential for repulsion of contaminant molecules with opposite charges. Properties like permeability, bubble point, pore size distribution and Zeta Potential of ceramic and hybrid membranes were characterized using various laboratory and pilot tests and compared with each other. The most significant role for the membrane characterization played the filtration behavior investigation, during which retention against widely used pharmaceuticals like Diclofenac, Ibuprofen and Sulfamethoxazol was subjected to series of filtration tests. The presented study offers a new perspective on nanosized molecules removal from aqueous solutions and shows the importance of combined techniques application for the elimination of pharmaceutical contaminants from drinking water.Keywords: water treatment, hybrid membranes, layer-by-layer coating, filtration, polyelectrolytes
Procedia PDF Downloads 1675506 Evaluation of Longitudinal and Hoop Stresses and a Critical Study of Factor of Safety (FoS) in Design of a Glass-Fiber Pressure Vessel
Authors: Zainul Huda, Mohammed Hani Ajani
Abstract:
The design, manufacture, and operation of thin-walled pressure vessels must be based on maximum safe operating pressure and an adequate factor of safety (FoS). This research paper first reports experimental evaluation of longitudinal and hoops stresses based on working pressure as well as maximum pressure; and then includes a critical study of factor of safety (FoS) in the design of a glass fiber pressure vessel. Experimental work involved the use of measuring instruments and the readings from pressure gauges. Design calculations involved the computations of design stress and FoS; the latter was based on breaking strength of 55 MPa for the glass fiber (pressure-vessel material). The experimentally determined FoS value has been critically compared with the general FoS allowed in the design of glass fiber pressure vessels.Keywords: thin-walled pressure vessel, hoop stress, longitudinal stress, factor of safety (FoS), fiberglass
Procedia PDF Downloads 4885505 Evaluation of Longitudinal and Hoops Stresses and a Critical Study of Factor of Safety (Fos) in the Design of a Glass-Fiber Pressure Vessel
Authors: Zainul Huda, Mohammad Hani Ajani
Abstract:
The design, manufacture, and operation of thin-walled pressure vessels must be based on maximum safe operating pressure and an adequate factor of safety (FoS). This research paper first reports experimental evaluation of longitudinal and hoops stresses based on working pressure as well as maximum pressure; and then includes a critical study of factor of safety (FoS) in the design of a glass fiber pressure vessel. Experimental work involved the use of measuring instruments and the readings from pressure gauges. Design calculations involved the computations of design stress and FoS; the latter was based on breaking strength of 55 MPa for the glass fiber (pressure-vessel material). The experimentally determined FoS value has been critically compared with the general FoS allowed in the design of glass fiber pressure vessels.Keywords: thin-walled pressure vessel, hoop stress, longitudinal stress, factor of safety (FoS), fiberglass
Procedia PDF Downloads 4915504 An Overview of the Porosity Classification in Carbonate Reservoirs and Their Challenges: An Example of Macro-Microporosity Classification from Offshore Miocene Carbonate in Central Luconia, Malaysia
Authors: Hammad T. Janjuhah, Josep Sanjuan, Mohamed K. Salah
Abstract:
Biological and chemical activities in carbonates are responsible for the complexity of the pore system. Primary porosity is generally of natural origin while secondary porosity is subject to chemical reactivity through diagenetic processes. To understand the integrated part of hydrocarbon exploration, it is necessary to understand the carbonate pore system. However, the current porosity classification scheme is limited to adequately predict the petrophysical properties of different reservoirs having various origins and depositional environments. Rock classification provides a descriptive method for explaining the lithofacies but makes no significant contribution to the application of porosity and permeability (poro-perm) correlation. The Central Luconia carbonate system (Malaysia) represents a good example of pore complexity (in terms of nature and origin) mainly related to diagenetic processes which have altered the original reservoir. For quantitative analysis, 32 high-resolution images of each thin section were taken using transmitted light microscopy. The quantification of grains, matrix, cement, and macroporosity (pore types) was achieved using a petrographic analysis of thin sections and FESEM images. The point counting technique was used to estimate the amount of macroporosity from thin section, which was then subtracted from the total porosity to derive the microporosity. The quantitative observation of thin sections revealed that the mouldic porosity (macroporosity) is the dominant porosity type present, whereas the microporosity seems to correspond to a sum of 40 to 50% of the total porosity. It has been proven that these Miocene carbonates contain a significant amount of microporosity, which significantly complicates the estimation and production of hydrocarbons. Neglecting its impact can increase uncertainty about estimating hydrocarbon reserves. Due to the diversity of geological parameters, the application of existing porosity classifications does not allow a better understanding of the poro-perm relationship. However, the classification can be improved by including the pore types and pore structures where they can be divided into macro- and microporosity. Such studies of microporosity identification/classification represent now a major concern in limestone reservoirs around the world.Keywords: overview of porosity classification, reservoir characterization, microporosity, carbonate reservoir
Procedia PDF Downloads 1545503 Off-Topic Text Detection System Using a Hybrid Model
Authors: Usama Shahid
Abstract:
Be it written documents, news columns, or students' essays, verifying the content can be a time-consuming task. Apart from the spelling and grammar mistakes, the proofreader is also supposed to verify whether the content included in the essay or document is relevant or not. The irrelevant content in any document or essay is referred to as off-topic text and in this paper, we will address the problem of off-topic text detection from a document using machine learning techniques. Our study aims to identify the off-topic content from a document using Echo state network model and we will also compare data with other models. The previous study uses Convolutional Neural Networks and TFIDF to detect off-topic text. We will rearrange the existing datasets and take new classifiers along with new word embeddings and implement them on existing and new datasets in order to compare the results with the previously existing CNN model.Keywords: off topic, text detection, eco state network, machine learning
Procedia PDF Downloads 855502 The Prediction of Sound Absorbing Coefficient for Multi-Layer Non-Woven
Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Gyu Park
Abstract:
Automotive interior material consisting of several material layers has the sound-absorbing function. It is difficult to predict sound absorbing coefficient because of several material layers. So, many experimental tunings are required to achieve the target of sound absorption. Therefore, while the car interior materials are developed, so much time and money is spent. In this study, we present a method to predict the sound absorbing performance of the material with multi-layer using physical properties of each material. The properties are predicted by Foam-X software using the sound absorption coefficient data measured by impedance tube. Then, we will compare and analyze the predicted sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If the method is used instead of experimental tuning in the development of car interior material, the time and money can be saved, and then, the development effort can be reduced because it can be optimized by simulation.Keywords: multi-layer nonwoven, sound absorption coefficient, scaled reverberation chamber, impedance tubes
Procedia PDF Downloads 3765501 Development of a Sprayable Piezoelectric Material for E-Textile Applications
Authors: K. Yang, Y. Wei, M. Zhang, S. Yong, R. Torah, J. Tudor, S. Beeby
Abstract:
E-textiles are traditional textiles with integrated electronic functionality. It is an emerging innovation with numerous applications in fashion, wearable computing, health and safety monitoring, and the military and medical sectors. The piezoelectric effect is a widespread and versatile transduction mechanism used in sensor and actuator applications. Piezoelectric materials produce electric charge when stressed. Conversely, mechanical deformation occurs when an electric field is applied across the material. Lead Zirconate Titanate (PZT) is a widely used piezoceramic material which has been used to fabricate e-textiles through screen printing, electro spinning and hydrothermal synthesis. This paper explores an alternative fabrication process: Spray coating. Spray coating is a straightforward and cost effective fabrication method applicable on both flat and curved surfaces. It can also be applied selectively by spraying through a stencil which enables the required design to be realised on the substrate. This work developed a sprayable PZT based piezoelectric ink consisting of a binder (Fabink-Binder-01), PZT powder (80 % 2 µm and 20 % 0.8 µm) and acetone as a thinner. The optimised weight ratio of PZT/binder is 10:1. The components were mixed using a SpeedMixer DAC 150. The fabrication processes is as follows: 1) Screen print a UV-curable polyurethane interface layer on the textile to create a smooth textile surface. 2) Spray one layer of a conductive silver polymer ink through a pre-designed stencil and dry at 90 °C for 10 minutes to form the bottom electrode. 3) Spray three layers of the PZT ink through a pre-designed stencil and dry at 90 °C for 10 minutes for each layer to form a total thickness of ~250µm PZT layer. 4) Spray one layer of the silver ink through a pre-designed stencil on top of the PZT layer and dry at 90 °C for 10 minutes to form the top electrode. The domains of the PZT elements were aligned by polarising the material at an elevated temperature under a strong electric field. A d33 of 37 pC/N has been achieved after polarising at 90 °C for 6 minutes with an electric field of 3 MV/m. The application of the piezoelectric textile was demonstrated by fabricating a pressure sensor to switch an LED on/off. Other potential applications on e-textiles include motion sensing, energy harvesting, force sensing and a buzzer.Keywords: piezoelectric, PZT, spray coating, pressure sensor, e-textile
Procedia PDF Downloads 4655500 Investigation of Alumina Membrane Coated Titanium Implants on Osseointegration
Authors: Pinar Erturk, Sevde Altuntas, Fatih Buyukserin
Abstract:
In order to obtain an effective integration between an implant and a bone, implant surfaces should have similar properties to bone tissue surfaces. Especially mimicry of the chemical, mechanical and topographic properties of the implant to the bone is crucial for fast and effective osseointegration. Titanium-based biomaterials are more preferred in clinical use, and there are studies of coating these implants with oxide layers that have chemical/nanotopographic properties stimulating cell interactions for enhanced osseointegration. There are low success rates of current implantations, especially in craniofacial implant applications, which are large and vital zones, and the oxide layer coating increases bone-implant integration providing long-lasting implants without requiring revision surgery. Our aim in this study is to examine bone-cell behavior on titanium implants with an aluminum oxide layer (AAO) on effective osseointegration potential in the deformation of large zones with difficult spontaneous healing. In our study, aluminum layer coated titanium surfaces were anodized in sulfuric, phosphoric, and oxalic acid, which are the most common used AAO anodization electrolytes. After morphologic, chemical, and mechanical tests on AAO coated Ti substrates, viability, adhesion, and mineralization of adult bone cells on these substrates were analyzed. Besides with atomic layer deposition (ALD) as a sensitive and conformal technique, these surfaces were coated with pure alumina (5 nm); thus, cell studies were performed on ALD-coated nanoporous oxide layers with suppressed ionic content too. Lastly, in order to investigate the effect of the topography on the cell behavior, flat non-porous alumina layers on silicon wafers formed by ALD were compared with the porous ones. Cell viability ratio was similar between anodized surfaces, but pure alumina coated titanium and anodized surfaces showed a higher viability ratio compared to bare titanium and bare anodized ones. Alumina coated titanium surfaces, which anodized in phosphoric acid, showed significantly different mineralization ratios after 21 days over other bare titanium and titanium surfaces which anodized in other electrolytes. Bare titanium was the second surface that had the highest mineralization ratio. Otherwise, titanium, which is anodized in oxalic acid electrolyte, demonstrated the lowest mineralization. No significant difference was shown between bare titanium and anodized surfaces except AAO titanium surface anodized in phosphoric acid. Currently, osteogenic activities of these cells on the genetic level are investigated by quantitative real-time polymerase chain reaction (qRT-PCR) analysis results of RUNX-2, VEGF, OPG, and osteopontin genes. Also, as a result of the activities of the genes mentioned before, Western Blot will be used for protein detection. Acknowledgment: The project is supported by The Scientific and Technological Research Council of Turkey.Keywords: alumina, craniofacial implant, MG-63 cell line, osseointegration, oxalic acid, phosphoric acid, sulphuric acid, titanium
Procedia PDF Downloads 1315499 A New Mathematical Model of Human Olfaction
Authors: H. Namazi, H. T. N. Kuan
Abstract:
It is known that in humans, the adaptation to a given odor occurs within a quite short span of time (typically one minute) after the odor is presented to the brain. Different models of human olfaction have been developed by scientists but none of these models consider the diffusion phenomenon in olfaction. A novel microscopic model of the human olfaction is presented in this paper. We develop this model by incorporating the transient diffusivity. In fact, the mathematical model is written based on diffusion of the odorant within the mucus layer. By the use of the model developed in this paper, it becomes possible to provide quantification of the objective strength of odor.Keywords: diffusion, microscopic model, mucus layer, olfaction
Procedia PDF Downloads 5055498 A Comprehensive Approach to Mitigate Return-Oriented Programming Attacks: Combining Operating System Protection Mechanisms and Hardware-Assisted Techniques
Authors: Zhang Xingnan, Huang Jingjia, Feng Yue, Burra Venkata Durga Kumar
Abstract:
This paper proposes a comprehensive approach to mitigate ROP (Return-Oriented Programming) attacks by combining internal operating system protection mechanisms and hardware-assisted techniques. Through extensive literature review, we identify the effectiveness of ASLR (Address Space Layout Randomization) and LBR (Last Branch Record) in preventing ROP attacks. We present a process involving buffer overflow detection, hardware-assisted ROP attack detection, and the use of Turing detection technology to monitor control flow behavior. We envision a specialized tool that views and analyzes the last branch record, compares control flow with a baseline, and outputs differences in natural language. This tool offers a graphical interface, facilitating the prevention and detection of ROP attacks. The proposed approach and tool provide practical solutions for enhancing software security.Keywords: operating system, ROP attacks, returning-oriented programming attacks, ASLR, LBR, CFI, DEP, code randomization, hardware-assisted CFI
Procedia PDF Downloads 955497 Comparison of Various Classification Techniques Using WEKA for Colon Cancer Detection
Authors: Beema Akbar, Varun P. Gopi, V. Suresh Babu
Abstract:
Colon cancer causes the deaths of about half a million people every year. The common method of its detection is histopathological tissue analysis, it leads to tiredness and workload to the pathologist. A novel method is proposed that combines both structural and statistical pattern recognition used for the detection of colon cancer. This paper presents a comparison among the different classifiers such as Multilayer Perception (MLP), Sequential Minimal Optimization (SMO), Bayesian Logistic Regression (BLR) and k-star by using classification accuracy and error rate based on the percentage split method. The result shows that the best algorithm in WEKA is MLP classifier with an accuracy of 83.333% and kappa statistics is 0.625. The MLP classifier which has a lower error rate, will be preferred as more powerful classification capability.Keywords: colon cancer, histopathological image, structural and statistical pattern recognition, multilayer perception
Procedia PDF Downloads 5755496 Graphene-Based Nanobiosensors and Lab on Chip for Sensitive Pesticide Detection
Authors: Martin Pumera
Abstract:
Graphene materials are being widely used in electrochemistry due to their versatility and excellent properties as platforms for biosensing. Here we present current trends in the electrochemical biosensing of pesticides and other toxic compounds. We explore two fundamentally different designs, (i) using graphene and other 2-D nanomaterials as an electrochemical platform and (ii) using these nanomaterials in the laboratory on chip design, together with paramagnetic beads. More specifically: (i) We explore graphene as transducer platform with very good conductivity, large surface area, and fast heterogeneous electron transfer for the biosensing. We will present the comparison of these materials and of the immobilization techniques. (ii) We present use of the graphene in the laboratory on chip systems. Laboratory on the chip had a huge advantage due to small footprint, fast analysis times and sample handling. We will show the application of these systems for pesticide detection and detection of other toxic compounds.Keywords: graphene, 2D nanomaterials, biosensing, chip design
Procedia PDF Downloads 5505495 Electrospun Alginate Nanofibers Containing Spirulina Extract Double-Layered with Polycaprolactone Nanofibers
Authors: Seon Yeong Byeon, Hwa Sung Shin
Abstract:
Nanofibrous sheets are of interest in the beauty industries due to the properties of moisturizing, adhesion to skin and delivery of nutrient materials. The benefit and function of the cosmetic products should not be considered without safety thus a non-toxic manufacturing process is ideal when fabricating the products. In this study, we have developed cosmetic patches consisting of alginate and Spirulina extract, a marine resource which has antibacterial and antioxidant effects, without addition of harmful cross-linkers. The patches obtained their structural stabilities by layer-upon-layer electrospinning of an alginate layer on a formerly spread polycaprolactone (PCL) layer instead of crosslinking method. The morphological characteristics, release of Spirulina extract, water absorption, skin adhesiveness and cytotoxicity of the double-layered patches were assessed. The image of scanning electron microscopy (SEM) showed that the addition of Spirulina extract has made the fiber diameter of alginate layers thinner. Impregnation of Spirulina extract increased their hydrophilicity, moisture absorption ability and skin adhesive ability. In addition, wetting the pre-dried patches resulted in releasing the Spirulina extract within 30 min. The patches were detected to have no cytotoxicity in the human keratinocyte cell-based MTT assay, but rather showed increased cell viability. All the results indicate the bioactive and hydro-adhesive double-layered patches have an excellent applicability to bioproducts for personal skin care in the trend of ‘A mask pack a day’.Keywords: alginate, cosmetic patch, electrospun nanofiber, polycaprolactone, Spirulina extract
Procedia PDF Downloads 3475494 An Inspection of Two Layer Model of Agency: An fMRI Study
Authors: Keyvan Kashkouli Nejad, Motoaki Sugiura, Atsushi Sato, Takayuki Nozawa, Hyeonjeong Jeong, Sugiko Hanawa , Yuka Kotozaki, Ryuta Kawashima
Abstract:
The perception of agency/control is altered with presence of discrepancies in the environment or mismatch of predictions (of possible results) and actual results the sense of agency might become altered. Synofzik et al. proposed a two layer model of agency: In the first layer, the Feeling of Agency (FoA) is not directly available to awareness; a slight mismatch in the environment/outcome might cause alterations in FoA, while the agent still feels in control. If the discrepancy passes a threshold, it becomes available to consciousness and alters Judgment of Agency (JoA), which is directly available in the person’s awareness. Most experiments so far only investigate subjects rather conscious JoA, while FoA has been neglected. In this experiment we target FoA by using subliminal discrepancies that can not be consciously detectable by the subjects. Here, we explore whether we can detect this two level model in the subjects behavior and then try to map this in their brain activity. To do this, in a fMRI study, we incorporated both consciously detectable mismatching between action and result and also subliminal discrepancies in the environment. Also, unlike previous experiments where subjective questions from the participants mainly trigger the rather conscious JoA, we also tried to measure the rather implicit FoA by asking participants to rate their performance. We compared behavioral results and also brain activation when there were conscious discrepancies and when there were subliminal discrepancies against trials with no discrepancies and against each other. In line with our expectations, conditions with consciously detectable incongruencies triggered lower JoA ratings than conditions without. Also, conditions with any type of discrepancies had lower FoA ratings compared to conditions without. Additionally, we found out that TPJ and angular gyrus in particular to have a role in coding of JoA and also FoA.Keywords: agency, fMRI, TPJ, two layer model
Procedia PDF Downloads 4705493 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN
Authors: Jamison Duckworth, Shankarachary Ragi
Abstract:
Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands
Procedia PDF Downloads 1275492 Polymer Solar Cells Synthesized with Copper Oxide Nanoparticles
Authors: Nidal H. Abu-Zahra, Aruna P. Wanninayake
Abstract:
Copper Oxide (CuO) is a p-type semiconductor with a band gap energy of 1.5 eV, this is close to the ideal energy gap of 1.4 eV required for solar cells to allow good solar spectral absorption. The inherent electrical characteristics of CuO nano particles make them attractive candidates for improving the performance of polymer solar cells when incorporated into the active polymer layer. The UV-visible absorption spectra and external quantum efficiency of P3HT/PC70BM solar cells containing different weight percentages of CuO nano particles showed a clear enhancement in the photo absorption of the active layer, this increased the power conversion efficiency of the solar cells by 24% in comparison to the reference cell. The short circuit current of the reference cell was found to be 5.234 mA/cm2 and it seemed to increase to 6.484 mA/cm2 in cells containing 0.6 mg of CuO NPs; in addition the fill factor increased from 61.15% to 68.0%, showing an enhancement of 11.2%. These observations suggest that the optimum concentration of CuO nano particles was 0.6 mg in the active layer. These significant findings can be applied to design high-efficiency polymer solar cells containing inorganic nano particles.Keywords: copper oxide nanoparticle, UV-visible spectroscopy, polymer solar cells, P3HT/PCBM
Procedia PDF Downloads 4235491 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network
Authors: Li Hui, Riyadh Hindi
Abstract:
Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network
Procedia PDF Downloads 665490 Spontaneous and Posed Smile Detection: Deep Learning, Traditional Machine Learning, and Human Performance
Authors: Liang Wang, Beste F. Yuksel, David Guy Brizan
Abstract:
A computational model of affect that can distinguish between spontaneous and posed smiles with no errors on a large, popular data set using deep learning techniques is presented in this paper. A Long Short-Term Memory (LSTM) classifier, a type of Recurrent Neural Network, is utilized and compared to human classification. Results showed that while human classification (mean of 0.7133) was above chance, the LSTM model was more accurate than human classification and other comparable state-of-the-art systems. Additionally, a high accuracy rate was maintained with small amounts of training videos (70 instances). The derivation of important features to further understand the success of our computational model were analyzed, and it was inferred that thousands of pairs of points within the eyes and mouth are important throughout all time segments in a smile. This suggests that distinguishing between a posed and spontaneous smile is a complex task, one which may account for the difficulty and lower accuracy of human classification compared to machine learning models.Keywords: affective computing, affect detection, computer vision, deep learning, human-computer interaction, machine learning, posed smile detection, spontaneous smile detection
Procedia PDF Downloads 1255489 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends
Authors: Zheng Yuxun
Abstract:
This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis
Procedia PDF Downloads 515488 Corrosion Control of Carbon Steel Surface by Phosphonic Acid Nano-Layers
Authors: T. Abohalkuma, J. Telegdi
Abstract:
Preparation, characterization, and application of self-assembled monolayers (SAM) formed by fluorophosphonic and undecenyl phosphonic acids on carbon steel surfaces as anticorrosive nanocoatings were demonstrated. The anticorrosive efficacy of these SAM layers was followed by atomic force microscopy, as the change in the surface morphology caused by layer deposition and corrosion processes was monitored. The corrosion process was determined by electrochemical potentiodynamic polarization, whereas the surface wettability of the carbon steel samples was tested with the use of static and dynamic contact angle measurements. Results showed that both chemicals produced good protection against corrosion as they performed as anodic inhibitors, especially with increasing the time of layer formation, which results in a more compact molecular film. According to the atomic force microscope (AFM) images, the fluoro-phosphonic acid self-assembled molecular layer can control the general as well as the pitting corrosion, but the SAM layers of the undecenyl-phosphonic acid cannot inhibit the pitting corrosion. The AFM and the contact angle measurements confirmed the results achieved by electrochemical measurements.Keywords: nanolayers, corrosion, phosphonic acids, coatings
Procedia PDF Downloads 1715487 Detection and Identification of Chlamydophila psittaci in Asymptomatic and Symptomatic Parrots in Isfahan
Authors: Mehdi Moradi Sarmeidani, Peyman Keyhani, Hasan Momtaz
Abstract:
Chlamydophila psittaci is a avian pathogen that may cause respiratory disorders in humans. Conjunctival and cloacal swabs from 54 captive psittacine birds presented at veterinary clinics were collected to determine the prevalence of C. psittaci in domestic birds in Isfahan. Samples were collected during 2014 from a total of 10 different species of parrots, with African gray(33), Cockatiel lutino(3), Cockatiel gray(2), Cockatiel cinnamon(1), Pearl cockatiel(6), Timneh African grey(1), Ringneck parakeet(2), Melopsittacus undulatus(1), Alexander parakeet(2), Green Parakeet(3) being the most representative species sampled. C. psittaci was detected in 27 (50%) birds using molecular detection (PCR) method. The detection of this bacterium in captive psittacine birds shows that there is a potential risk for human whom has a direct contact and there is a possibility of infecting other birds.Keywords: chlamydophila psittaci, psittacine birds, PCR, Isfahan
Procedia PDF Downloads 3715486 Failure Detection in an Edge Cracked Tapered Pipe Conveying Fluid Using Finite Element Method
Authors: Mohamed Gaith, Zaid Haddadin, Abdulah Wahbe, Mahmoud Hamam, Mahmoud Qunees, Mohammad Al Khatib, Mohammad Bsaileh, Abd Al-Aziz Jaber, Ahmad Aqra’a
Abstract:
The crack is one of the most common types of failure in pipelines that convey fluid, and early detection of the crack may assist to avoid the piping system from experiencing catastrophic damage, which would otherwise be fatal. The influence of flow velocity and the presence of a crack on the performance of a tapered simply supported pipe containing moving fluid is explored using the finite element approach in this study. ANSYS software is used to simulate the pipe as Bernoulli's beam theory. In this paper, the fluctuation of natural frequencies and matching mode shapes for various scenarios owing to changes in fluid speed and the presence of damage is discussed in detail.Keywords: damage detection, finite element, tapered pipe, vibration characteristics
Procedia PDF Downloads 1705485 Restricted Boltzmann Machines and Deep Belief Nets for Market Basket Analysis: Statistical Performance and Managerial Implications
Authors: H. Hruschka
Abstract:
This paper presents the first comparison of the performance of the restricted Boltzmann machine and the deep belief net on binary market basket data relative to binary factor analysis and the two best-known topic models, namely Dirichlet allocation and the correlated topic model. This comparison shows that the restricted Boltzmann machine and the deep belief net are superior to both binary factor analysis and topic models. Managerial implications that differ between the investigated models are treated as well. The restricted Boltzmann machine is defined as joint Boltzmann distribution of hidden variables and observed variables (purchases). It comprises one layer of observed variables and one layer of hidden variables. Note that variables of the same layer are not connected. The comparison also includes deep belief nets with three layers. The first layer is a restricted Boltzmann machine based on category purchases. Hidden variables of the first layer are used as input variables by the second-layer restricted Boltzmann machine which then generates second-layer hidden variables. Finally, in the third layer hidden variables are related to purchases. A public data set is analyzed which contains one month of real-world point-of-sale transactions in a typical local grocery outlet. It consists of 9,835 market baskets referring to 169 product categories. This data set is randomly split into two halves. One half is used for estimation, the other serves as holdout data. Each model is evaluated by the log likelihood for the holdout data. Performance of the topic models is disappointing as the holdout log likelihood of the correlated topic model – which is better than Dirichlet allocation - is lower by more than 25,000 compared to the best binary factor analysis model. On the other hand, binary factor analysis on its own is clearly surpassed by both the restricted Boltzmann machine and the deep belief net whose holdout log likelihoods are higher by more than 23,000. Overall, the deep belief net performs best. We also interpret hidden variables discovered by binary factor analysis, the restricted Boltzmann machine and the deep belief net. Hidden variables characterized by the product categories to which they are related differ strongly between these three models. To derive managerial implications we assess the effect of promoting each category on total basket size, i.e., the number of purchased product categories, due to each category's interdependence with all the other categories. The investigated models lead to very different implications as they disagree about which categories are associated with higher basket size increases due to a promotion. Of course, recommendations based on better performing models should be preferred. The impressive performance advantages of the restricted Boltzmann machine and the deep belief net suggest continuing research by appropriate extensions. To include predictors, especially marketing variables such as price, seems to be an obvious next step. It might also be feasible to take a more detailed perspective by considering purchases of brands instead of purchases of product categories.Keywords: binary factor analysis, deep belief net, market basket analysis, restricted Boltzmann machine, topic models
Procedia PDF Downloads 1995484 Stratigraghy and Identifying Boundaries of Mozduran Formation with Magnetite Method in East Kopet-Dagh Basin
Authors: Z. Kadivar, M. Vahidinia, A. Mousavinia
Abstract:
Kopet-Dagh Mountain Range is located in the north and northeast of Iran. Mozduran Formation in the east of Kopet-Dagh is mainly composed of limestone, dolomite, with shale and sandstone interbedded. Mozduran Formation is reservoir rock of the Khangiran gas field. The location of the study was east Kopet-Dagh basin (Northeast Iran) where the deliberate thickness of formation is 418 meters. In the present study, a total of 57 samples were gathered. Moreover, 100 thin sections were made out of 52 samples. According to the findings of the thin section study, 18 genera and nine species of foraminifera and algae were identified. Based on the index fossils, the age of the Mozduran Formation was identified as Upper Jurassic (Kimmerdgian-Tithonian) in the east of Kopet-Dagh basin. According to the magnetite data (total intensity and RTP map), there is a disconformity (low intensity) between the Kashaf-Rood Formation and Mozduran Formation. At the top, where among Mozduran Formation and Shurijeh Formation, is high intensity and a widespread disconformity (high intensity).Keywords: upper jurassic, magnetometre, mozduran formation, stratigraphy
Procedia PDF Downloads 2255483 Analysis of Detection Concealed Objects Based on Multispectral and Hyperspectral Signatures
Authors: M. Kastek, M. Kowalski, M. Szustakowski, H. Polakowski, T. Sosnowski
Abstract:
Development of highly efficient security systems is one of the most urgent topics for science and engineering. There are many kinds of threats and many methods of prevention. It is very important to detect a threat as early as possible in order to neutralize it. One of the very challenging problems is detection of dangerous objects hidden under human’s clothing. This problem is particularly important for safety of airport passengers. In order to develop methods and algorithms to detect hidden objects it is necessary to determine the thermal signatures of such objects of interest. The laboratory measurements were conducted to determine the thermal signatures of dangerous tools hidden under various clothes in different ambient conditions. Cameras used for measurements were working in spectral range 0.6-12.5 μm An infrared imaging Fourier transform spectroradiometer was also used, working in spectral range 7.7-11.7 μm. Analysis of registered thermograms and hyperspectral datacubes has yielded the thermal signatures for two types of guns, two types of knives and home-made explosive bombs. The determined thermal signatures will be used in the development of method and algorithms of image analysis implemented in proposed monitoring systems.Keywords: hyperspectral detection, nultispectral detection, image processing, monitoring systems
Procedia PDF Downloads 3485482 Automatic Seizure Detection Using Weighted Permutation Entropy and Support Vector Machine
Authors: Noha Seddik, Sherine Youssef, Mohamed Kholeif
Abstract:
The automated epileptic seizure detection research field has emerged in the recent years; this involves analyzing the Electroencephalogram (EEG) signals instead of the traditional visual inspection performed by expert neurologists. In this study, a Support Vector Machine (SVM) that uses Weighted Permutation Entropy (WPE) as the input feature is proposed for classifying normal and seizure EEG records. WPE is a modified statistical parameter of the permutation entropy (PE) that measures the complexity and irregularity of a time series. It incorporates both the mapped ordinal pattern of the time series and the information contained in the amplitude of its sample points. The proposed system utilizes the fact that entropy based measures for the EEG segments during epileptic seizure are lower than in normal EEG.Keywords: electroencephalogram (EEG), epileptic seizure detection, weighted permutation entropy (WPE), support vector machine (SVM)
Procedia PDF Downloads 3725481 Insertion Loss Improvement of a Two-Port Saw Resonator Based on AlN via Alloying with Transition Metals
Authors: Kanouni Fares
Abstract:
This paper describes application of X-doped AlN (X=Sc, Cr and Y) to wideband surface acoustic wave (SAW) resonators in 200–300 MHz range. First, it is shown theoretically that Cr doped AlN thin film has the highest piezoelectric strain constant, accompanied by a lowest mechanical softening compared to Sc doped AlScN and Y doped AlN thin films for transition metals concentrations ranging from 0 to 25%. Next, the impact of transition metals (Sc, Cr and Y) concentration have been carried out for the first time, in terms of surface wave velocity, electrode reflectivity, transduction coefficient and distributed finger capacitance. Finely, the insertion loss of two-port SAW resonator based on AlXN (X=Sc, Cr and Y) deposited on sapphire substrate is obtained using P-matrix model, and it is shown that AlCrN-SAW resonator exhibit lower insertion loss compared to those based on AlScN and AlYN for metal concentrations of 25%.This finding may position Cr doped AlN as a prime piezoelectric material for low loss SAW resonators whose performance can be tuned via Cr composition.Keywords: P-Matrix, SAW-delay line, interdigital transducer, nitride aluminum, metals transition
Procedia PDF Downloads 121