Search results for: serious gaming and artificial intelligence against cybercrime
1635 A Progressive Techno-Legal Framework for Digital Evidence Management
Authors: Ayobami P. Olatunji, Saadat Ibiyeye, Abdulaziz Ibiyeye, Tahir M. Khan
Abstract:
Digital evidence has become a cornerstone in criminal investigations due to the vast amount of information available in digital form. Despite its prevalence, this evidence is often met with skepticism in court proceedings because of its inherently volatile nature. Traditional forensic processes, defined predominantly by technology experts, emphasize technical details in evidence collection while often neglecting legal procedures. This gap can pose significant challenges for legal practitioners in understanding and applying digital forensics. As digital evidence increasingly influences future cases, a cohesive framework integrating both technical and legal perspectives is essential. We propose a comprehensive techno-legal framework designed to bridge this gap. Our framework integrates key aspects of collection, preservation, examination, and documentation with legal components such as case building, certificate of compliance, cross-examination, and authorization. This balanced approach aims not to replace existing evidence presentation principles but to enhance the seamless integration of digital evidence into legal proceedings, addressing the common issues that lead to its dismissal.Keywords: evidence presentation, warrant, digital-forensic, certificate of compliance, legal procedures, computer crime, violation, investigation cybercrime
Procedia PDF Downloads 341634 Artificial Membrane Comparison for Skin Permeation in Skin PAMPA
Authors: Aurea C. L. Lacerda, Paulo R. H. Moreno, Bruna M. P. Vianna, Cristina H. R. Serra, Airton Martin, André R. Baby, Vladi O. Consiglieri, Telma M. Kaneko
Abstract:
The modified Franz cell is the most widely used model for in vitro permeation studies, however it still presents some disadvantages. Thus, some alternative methods have been developed such as Skin PAMPA, which is a bio- artificial membrane that has been applied for skin penetration estimation of xenobiotics based on HT permeability model consisting. Skin PAMPA greatest advantage is to carry out more tests, in a fast and inexpensive way. The membrane system mimics the stratum corneum characteristics, which is the primary skin barrier. The barrier properties are given by corneocytes embedded in a multilamellar lipid matrix. This layer is the main penetration route through the paracellular permeation pathway and it consists of a mixture of cholesterol, ceramides, and fatty acids as the dominant components. However, there is no consensus on the membrane composition. The objective of this work was to compare the performance among different bio-artificial membranes for studying the permeation in skin PAMPA system. Material and methods: In order to mimetize the lipid composition`s present in the human stratum corneum six membranes were developed. The membrane composition was equimolar mixture of cholesterol, ceramides 1-O-C18:1, C22, and C20, plus fatty acids C20 and C24. The membrane integrity assay was based on the transport of Brilliant Cresyl Blue, which has a low permeability; and Lucifer Yellow with very poor permeability and should effectively be completely rejected. The membrane characterization was performed using Confocal Laser Raman Spectroscopy, using stabilized laser at 785 nm with 10 second integration time and 2 accumulations. The membrane behaviour results on the PAMPA system were statistically evaluated and all of the compositions have shown integrity and permeability. The confocal Raman spectra were obtained in the region of 800-1200 cm-1 that is associated with the C-C stretches of the carbon scaffold from the stratum corneum lipids showed similar pattern for all the membranes. The ceramides, long chain fatty acids and cholesterol in equimolar ratio permitted to obtain lipid mixtures with self-organization capability, similar to that occurring into the stratum corneum. Conclusion: The artificial biological membranes studied for Skin PAMPA showed to be similar and with comparable properties to the stratum corneum.Keywords: bio-artificial membranes, comparison, confocal Raman, skin PAMPA
Procedia PDF Downloads 5091633 Ranking Priorities for Digital Health in Portugal: Aligning Health Managers’ Perceptions with Official Policy Perspectives
Authors: Pedro G. Rodrigues, Maria J. Bárrios, Sara A. Ambrósio
Abstract:
The digitalisation of health is a profoundly transformative economic, political, and social process. As is often the case, such processes need to be carefully managed if misunderstandings, policy misalignments, or outright conflicts between the government and a wide gamut of stakeholders with competing interests are to be avoided. Thus, ensuring open lines of communication where all parties know what each other’s concerns are is key to good governance, as well as efficient and effective policymaking. This project aims to make a small but still significant contribution in this regard in that we seek to determine the extent to which health managers’ perceptions of what is a priority for digital health in Portugal are aligned with official policy perspectives. By applying state-of-the-art artificial intelligence technology first to the indexed literature on digital health and then to a set of official policy documents on the same topic, followed by a survey directed at health managers working in public and private hospitals in Portugal, we obtain two priority rankings that, when compared, will allow us to produce a synthesis and toolkit on digital health policy in Portugal, with a view to identifying areas of policy convergence and divergence. This project is also particularly peculiar in the sense that sophisticated digital methods related to text analytics are employed to study good governance aspects of digitalisation applied to health care.Keywords: digital health, health informatics, text analytics, governance, natural language understanding
Procedia PDF Downloads 671632 A Fuzzy Inference System for Predicting Air Traffic Demand Based on Socioeconomic Drivers
Authors: Nur Mohammad Ali, Md. Shafiqul Alam, Jayanta Bhusan Deb, Nowrin Sharmin
Abstract:
The past ten years have seen significant expansion in the aviation sector, which during the previous five years has steadily pushed emerging countries closer to economic independence. It is crucial to accurately forecast the potential demand for air travel to make long-term financial plans. To forecast market demand for low-cost passenger carriers, this study suggests working with low-cost airlines, airports, consultancies, and governmental institutions' strategic planning divisions. The study aims to develop an artificial intelligence-based methods, notably fuzzy inference systems (FIS), to determine the most accurate forecasting technique for domestic low-cost carrier demand in Bangladesh. To give end users real-world applications, the study includes nine variables, two sub-FIS, and one final Mamdani Fuzzy Inference System utilizing a graphical user interface (GUI) made with the app designer tool. The evaluation criteria used in this inquiry included mean square error (MSE), accuracy, precision, sensitivity, and specificity. The effectiveness of the developed air passenger demand prediction FIS is assessed using 240 data sets, and the accuracy, precision, sensitivity, specificity, and MSE values are 90.83%, 91.09%, 90.77%, and 2.09%, respectively.Keywords: aviation industry, fuzzy inference system, membership function, graphical user interference
Procedia PDF Downloads 751631 A Comparison of Neural Network and DOE-Regression Analysis for Predicting Resource Consumption of Manufacturing Processes
Authors: Frank Kuebler, Rolf Steinhilper
Abstract:
Artificial neural networks (ANN) as well as Design of Experiments (DOE) based regression analysis (RA) are mainly used for modeling of complex systems. Both methodologies are commonly applied in process and quality control of manufacturing processes. Due to the fact that resource efficiency has become a critical concern for manufacturing companies, these models needs to be extended to predict resource-consumption of manufacturing processes. This paper describes an approach to use neural networks as well as DOE based regression analysis for predicting resource consumption of manufacturing processes and gives a comparison of the achievable results based on an industrial case study of a turning process.Keywords: artificial neural network, design of experiments, regression analysis, resource efficiency, manufacturing process
Procedia PDF Downloads 5261630 The Comparison of Chromium Ions Release for Stainless Steel between Artificial Saliva and Breadfruit Leaf Extracts
Authors: Mirna Febriani
Abstract:
The use of stainless steel wires in the field of dentistry is widely used, especially for orthodontic and prosthodontic treatment using stainless steel wire. The oral cavity is the ideal environment for corrosion, which can be caused by saliva. Prevention of corrosion on stainless steel wires can be done by using an organic or non-organic corrosion inhibitor. One of the organic inhibitors that can be used to prevent corrosion is the leaves of breadfruit. The method used for this research using Atomic Absorption Spectrophotometric test. The results showed that the difference of chromium ion releases on soaking in saliva and breadfruit leaf extracts on days 1, 3, 7 and 14. Statically calculation with independent T-test with p < 0,05 showed the significant difference. The conclusion of this study shows that breadfruit leaf extract can inhibit the corrosion rate of stainless steel wires.Keywords: chromium ion, stainless steel, artificial saliva, breadfruit leaf
Procedia PDF Downloads 1711629 Anticipation of Bending Reinforcement Based on Iranian Concrete Code Using Meta-Heuristic Tools
Authors: Seyed Sadegh Naseralavi, Najmeh Bemani
Abstract:
In this paper, different concrete codes including America, New Zealand, Mexico, Italy, India, Canada, Hong Kong, Euro Code and Britain are compared with the Iranian concrete design code. First, by using Adaptive Neuro Fuzzy Inference System (ANFIS), the codes having the most correlation with the Iranian ninth issue of the national regulation are determined. Consequently, two anticipated methods are used for comparing the codes: Artificial Neural Network (ANN) and Multi-variable regression. The results show that ANN performs better. Predicting is done by using only tensile steel ratio and with ignoring the compression steel ratio.Keywords: adaptive neuro fuzzy inference system, anticipate method, artificial neural network, concrete design code, multi-variable regression
Procedia PDF Downloads 2861628 Comparison of Visio-spatial Intelligence Between Amateur Rugby and Netball Players Using a Hand-Eye Coordination Specific Visual Test Battery
Authors: Lourens Millard, Gerrit Jan Breukelman, Nonkululeko Mathe
Abstract:
Aim: The research aims to investigate the differences in visio-spatial skills (VSS) between athletes and non-athletes, as well as variations across sports, presenting conflicting findings. Therefore, the objective of this study was to determine if there exist significant differences in visio-spatial intelligence skills between rugby players and netball players, and whether such disparities are present when comparing both groups to non-athletes. Methods: Participants underwent an optometric assessment, followed by an evaluation of VSS using six established tests: the Hart Near Far Rock, saccadic eye movement, evasion, accumulator, flash memory, and ball wall toss tests. Results: The results revealed that rugby players significantly outperformed netball players in speed of recognition, peripheral awareness, and hand-eye coordination (p=.000). Moreover, both rugby players and netball players performed significantly better than non-athletes in five of the six tests (p=.000), with the exception being the visual memory test (p=.809). Conclusion: This discrepancy in performance suggests that certain VSS are superior in athletes compared to non-athletes, highlighting potential implications for theories of vision, test selection, and the development of sport-specific VSS testing batteries. Furthermore, the use of a hand-eye coordination-specific VSS test battery effectively differentiated between different sports. However, this pattern was not consistent across all VSS tests, indicating that further research should explore the training methods employed by both sports, as these factors may contribute to the observed differences.Keywords: visio-spatial intelligence (VSI), rugby vision, netball vision, visual skills, sport vision.
Procedia PDF Downloads 551627 Twitter Sentiment Analysis during the Lockdown on New-Zealand
Authors: Smah Almotiri
Abstract:
One of the most common fields of natural language processing (NLP) is sentimental analysis. The inferred feeling in the text can be successfully mined for various events using sentiment analysis. Twitter is viewed as a reliable data point for sentimental analytics studies since people are using social media to receive and exchange different types of data on a broad scale during the COVID-19 epidemic. The processing of such data may aid in making critical decisions on how to keep the situation under control. The aim of this research is to look at how sentimental states differed in a single geographic region during the lockdown at two different times.1162 tweets were analyzed related to the COVID-19 pandemic lockdown using keywords hashtags (lockdown, COVID-19) for the first sample tweets were from March 23, 2020, until April 23, 2020, and the second sample for the following year was from March 1, 2020, until April 4, 2020. Natural language processing (NLP), which is a form of Artificial intelligence, was used for this research to calculate the sentiment value of all of the tweets by using AFINN Lexicon sentiment analysis method. The findings revealed that the sentimental condition in both different times during the region's lockdown was positive in the samples of this study, which are unique to the specific geographical area of New Zealand. This research suggests applying machine learning sentimental methods such as Crystal Feel and extending the size of the sample tweet by using multiple tweets over a longer period of time.Keywords: sentiment analysis, Twitter analysis, lockdown, Covid-19, AFINN, NodeJS
Procedia PDF Downloads 1921626 Study of Surface Water Quality in the Wadi El Harrach for Its Use in the Artificial Groundwater Recharge of the Mitidja, North Algeria
Authors: M. Meddi, A. Boufekane
Abstract:
The Mitidja coastal groundwater which extends over an area of 1450 km2 is a strategic resource in the Algiers region. The high dependence of the regional economy on the use of this groundwater forces us to have recourse to its artificial recharge from the Wadi El Harrach in its upstream part. This system of artificial recharge has shown its effectiveness in the development of water resource mentioned in the succeeding works in several regions of the world. The objective of this study is to: Increase the reserves of water inputs by infiltration, raise the water level and its good quality in wells and boreholes, reduce losses to the sea, and address seawater intrusion by maintaining balance in the freshwater-saltwater interface in the downstream part of the groundwater basin. After analyzing the situation, it was noticed that a qualitative monitoring of the Wadi water for the groundwater recharge has to be done. For this purpose, we proceeded during three successive years (2010, 2011, and 2012) to the monthly sampling of water in the upstream part of the Wadi El Harrach for chemical analysis. The variation of the sediment transport concentration will be also measured. This monitoring aims to characterize the water quality and avoid clogging in the proposed recharge area. The results of these analyses showed the good chemical quality according to the analyses we performed in the laboratory during the three years, but they are too loaded with suspended matters. We noticed that these fine particles come from the grinding of limestone of sandpit located upstream of the area of the proposed recharge system. This problem can be solved by a water supply upstream of sandpit. For the recharge, we propose the method of using two wells for dual use, which means that it can be used for water supply and extraction. This solution is inexpensive in our case and could easily be used as wells are already drilled in the upstream part. This solution increases over time the piezometric level and also reduce groundwater contamination by saltwater in the downstream part.Keywords: water quality, artificial groundwater recharge, Mitidja, North Algeria
Procedia PDF Downloads 2871625 Modelling Biological Treatment of Dye Wastewater in SBR Systems Inoculated with Bacteria by Artificial Neural Network
Authors: Yasaman Sanayei, Alireza Bahiraie
Abstract:
This paper presents a systematic methodology based on the application of artificial neural networks for sequencing batch reactor (SBR). The SBR is a fill-and-draw biological wastewater technology, which is specially suited for nutrient removal. Employing reactive dye by Sphingomonas paucimobilis bacteria at sequence batch reactor is a novel approach of dye removal. The influent COD, MLVSS, and reaction time were selected as the process inputs and the effluent COD and BOD as the process outputs. The best possible result for the discrete pole parameter was a= 0.44. In orderto adjust the parameters of ANN, the Levenberg-Marquardt (LM) algorithm was employed. The results predicted by the model were compared to the experimental data and showed a high correlation with R2> 0.99 and a low mean absolute error (MAE). The results from this study reveal that the developed model is accurate and efficacious in predicting COD and BOD parameters of the dye-containing wastewater treated by SBR. The proposed modeling approach can be applied to other industrial wastewater treatment systems to predict effluent characteristics. Note that SBR are normally operated with constant predefined duration of the stages, thus, resulting in low efficient operation. Data obtained from the on-line electronic sensors installed in the SBR and from the control quality laboratory analysis have been used to develop the optimal architecture of two different ANN. The results have shown that the developed models can be used as efficient and cost-effective predictive tools for the system analysed.Keywords: artificial neural network, COD removal, SBR, Sphingomonas paucimobilis
Procedia PDF Downloads 4151624 Application of Innovative Implementations in the SME Sector
Authors: Mateusz Janas
Abstract:
Innovative implementations in the micro, small, and medium-sized enterprises (MSME) sector are among the essential activities considering the current market realities, technological advancements, and digitization trends. MSMEs play a crucial role and significantly influence the economic conditions of countries, as their competitiveness directly impacts the global economy. Business development and investment in innovation and technology are integral parts of every modern enterprise's strategy, seeking to maintain and achieve a desired competitive position. The instability of the socio-economic environment, along with contemporary changes in artificial intelligence implementation and digitization, requires businesses to adopt increasingly newer solutions and actions. Enterprises must strive to survive in the global market and build competitive positions, especially in uncertain conditions. Being aware of the significance of innovative actions is crucial for MSMEs as it enables them to enhance their operations and expand their scope. It is essential for managers and executives of MSMEs to be focused on development and innovation, as their approach will also impact their employees, emphasizing results and maximizing the company's value. Managers of MSMEs must be aware of various threats, costs, opportunities, and gains that can arise from implementing new technical and organizational solutions. Businesses must view development as an integral part of their strategy and continuously strive for improvement.Keywords: innovation, SME, develop, management
Procedia PDF Downloads 691623 Comparison of ANN and Finite Element Model for the Prediction of Ultimate Load of Thin-Walled Steel Perforated Sections in Compression
Authors: Zhi-Jun Lu, Qi Lu, Meng Wu, Qian Xiang, Jun Gu
Abstract:
The analysis of perforated steel members is a 3D problem in nature, therefore the traditional analytical expressions for the ultimate load of thin-walled steel sections cannot be used for the perforated steel member design. In this study, finite element method (FEM) and artificial neural network (ANN) were used to simulate the process of stub column tests based on specific codes. Results show that compared with those of the FEM model, the ultimate load predictions obtained from ANN technique were much closer to those obtained from the physical experiments. The ANN model for the solving the hard problem of complex steel perforated sections is very promising.Keywords: artificial neural network (ANN), finite element method (FEM), perforated sections, thin-walled Steel, ultimate load
Procedia PDF Downloads 3521622 Signal Restoration Using Neural Network Based Equalizer for Nonlinear channels
Authors: Z. Zerdoumi, D. Benatia, , D. Chicouche
Abstract:
This paper investigates the application of artificial neural network to the problem of nonlinear channel equalization. The difficulties caused by channel distortions such as inter symbol interference (ISI) and nonlinearity can overcome by nonlinear equalizers employing neural networks. It has been shown that multilayer perceptron based equalizer outperform significantly linear equalizers. We present a multilayer perceptron based equalizer with decision feedback (MLP-DFE) trained with the back propagation algorithm. The capacity of the MLP-DFE to deal with nonlinear channels is evaluated. From simulation results it can be noted that the MLP based DFE improves significantly the restored signal quality, the steady state mean square error (MSE), and minimum Bit Error Rate (BER), when comparing with its conventional counterpart.Keywords: Artificial Neural Network, signal restoration, Nonlinear Channel equalization, equalization
Procedia PDF Downloads 4981621 Fraud Detection in Credit Cards with Machine Learning
Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf
Abstract:
Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine
Procedia PDF Downloads 1491620 Combining Mobile Intelligence with Formation Mechanism for Group Commerce
Authors: Lien Fa Lin, Yung Ming Li, Hsin Chen Hsieh
Abstract:
The rise of smartphones brings new concept So-Lo-Mo (social-local-mobile) in mobile commerce area in recent years. However, current So-Lo-Mo services only focus on individual users but not a group of users, and the development of group commerce is not enough to satisfy the demand of real-time group buying and less to think about the social relationship between customers. In this research, we integrate mobile intelligence with group commerce and consider customers' preference, real-time context, and social influence as components in the mechanism. With the support of this mechanism, customers are able to gather near customers with the same potential purchase willingness through mobile devices when he/she wants to purchase products or services to have a real-time group-buying. By matching the demand and supply of mobile group-buying market, this research improves the business value of mobile commerce and group commerce further.Keywords: group formation, group commerce, mobile commerce, So-Lo-Mo, social influence
Procedia PDF Downloads 4161619 Properties of Sustainable Artificial Lightweight Aggregate
Authors: Wasan Ismail Khalil, Hisham Khalid Ahmed, Zainab Ali
Abstract:
Structural Lightweight Aggregate Concrete (SLWAC) has been developed in recent years because it reduces the dead load, cost, thermal conductivity and coefficient of thermal expansion of the structure. So SLWAC has the advantage of being a relatively green building material. Lightweight Aggregate (LWA) is either occurs as natural material such as pumice, scoria, etc. or as artificial material produced from different raw materials such as expanded shale, clay, slate, etc. The use of SLWAC in Iraq is limited due to the lack in natural LWA. The existence of Iraqi clay deposit with different types and characteristics leads to the idea of producing artificial expanded clay aggregate. The main aim in this work is to present of the properties of artificial LWA produced in the laboratory. Available local bentonite clay which occurs in the Western region of Iraq was used as raw material to produce the LWA. Sodium silicate as liquid industrial waste material from glass plant was mixed with bentonite clay in mix proportion 1:1 by weight. The manufacturing method of the lightweight aggregate including, preparation and mixing of clay and sodium silicate, burning of the mixture in the furnace at the temperature between 750-800˚C for two hours, and finally gradually cooling process. The produced LWA was then crushed to small pieces then screened on standard sieve series and prepared with grading which conforms to the specifications of LWA. The maximum aggregate size used in this investigation is 10 mm. The chemical composition and the physical properties of the produced LWA are investigated. The results indicate that the specific gravity of the produced LWA is 1.5 with the density of 543kg/m3 and water absorption of 20.7% which is in conformity with the international standard of LWA. Many trail mixes were carried out in order to produce LWAC containing the artificial LWA produced in this research. The selected mix proportion is 1:1.5:2 (cement: sand: aggregate) by weight with water to cement ratio of 0.45. The experimental results show that LWAC has oven dry density of 1720 kg/m3, water absorption of 8.5%, the thermal conductivity of 0.723 W/m.K and compressive strength of 23 N/mm2. The SLWAC produced in this research can be used in the construction of different thermal insulated buildings and masonry units. It can be concluded that the SLWA produced in this study contributes to sustainable development by, using industrial waste materials, conserving energy, enhancing the thermal and structural efficiency of concrete.Keywords: expanded clay, lightweight aggregate, structural lightweight aggregate concrete, sustainable
Procedia PDF Downloads 3281618 Machine Learning Algorithms for Rocket Propulsion
Authors: Rômulo Eustáquio Martins de Souza, Paulo Alexandre Rodrigues de Vasconcelos Figueiredo
Abstract:
In recent years, there has been a surge in interest in applying artificial intelligence techniques, particularly machine learning algorithms. Machine learning is a data-analysis technique that automates the creation of analytical models, making it especially useful for designing complex situations. As a result, this technology aids in reducing human intervention while producing accurate results. This methodology is also extensively used in aerospace engineering since this is a field that encompasses several high-complexity operations, such as rocket propulsion. Rocket propulsion is a high-risk operation in which engine failure could result in the loss of life. As a result, it is critical to use computational methods capable of precisely representing the spacecraft's analytical model to guarantee its security and operation. Thus, this paper describes the use of machine learning algorithms for rocket propulsion to aid the realization that this technique is an efficient way to deal with challenging and restrictive aerospace engineering activities. The paper focuses on three machine-learning-aided rocket propulsion applications: set-point control of an expander-bleed rocket engine, supersonic retro-propulsion of a small-scale rocket, and leak detection and isolation on rocket engine data. This paper describes the data-driven methods used for each implementation in depth and presents the obtained results.Keywords: data analysis, modeling, machine learning, aerospace, rocket propulsion
Procedia PDF Downloads 1161617 Parallel Genetic Algorithms Clustering for Handling Recruitment Problem
Authors: Walid Moudani, Ahmad Shahin
Abstract:
This research presents a study to handle the recruitment services system. It aims to enhance a business intelligence system by embedding data mining in its core engine and to facilitate the link between job searchers and recruiters companies. The purpose of this study is to present an intelligent management system for supporting recruitment services based on data mining methods. It consists to apply segmentation on the extracted job postings offered by the different recruiters. The details of the job postings are associated to a set of relevant features that are extracted from the web and which are based on critical criterion in order to define consistent clusters. Thereafter, we assign the job searchers to the best cluster while providing a ranking according to the job postings of the selected cluster. The performance of the proposed model used is analyzed, based on a real case study, with the clustered job postings dataset and classified job searchers dataset by using some metrics.Keywords: job postings, job searchers, clustering, genetic algorithms, business intelligence
Procedia PDF Downloads 3291616 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition
Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar
Abstract:
In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers
Procedia PDF Downloads 451615 Using Machine Learning as an Alternative for Predicting Exchange Rates
Authors: Pedro Paulo Galindo Francisco, Eli Dhadad Junior
Abstract:
This study addresses the Meese-Rogoff Puzzle by introducing the latest machine learning techniques as alternatives for predicting the exchange rates. Using RMSE as a comparison metric, Meese and Rogoff discovered that economic models are unable to outperform the random walk model as short-term exchange rate predictors. Decades after this study, no statistical prediction technique has proven effective in overcoming this obstacle; although there were positive results, they did not apply to all currencies and defined periods. Recent advancements in artificial intelligence technologies have paved the way for a new approach to exchange rate prediction. Leveraging this technology, we applied five machine learning techniques to attempt to overcome the Meese-Rogoff puzzle. We considered daily data for the real, yen, British pound, euro, and Chinese yuan against the US dollar over a time horizon from 2010 to 2023. Our results showed that none of the presented techniques were able to produce an RMSE lower than the Random Walk model. However, the performance of some models, particularly LSTM and N-BEATS were able to outperform the ARIMA model. The results also suggest that machine learning models have untapped potential and could represent an effective long-term possibility for overcoming the Meese-Rogoff puzzle.Keywords: exchage rate, prediction, machine learning, deep learning
Procedia PDF Downloads 331614 Modelling Mode Choice Behaviour Using Cloud Theory
Authors: Leah Wright, Trevor Townsend
Abstract:
Mode choice models are crucial instruments in the analysis of travel behaviour. These models show the relationship between an individual’s choice of transportation mode for a given O-D pair and the individual’s socioeconomic characteristics such as household size and income level, age and/or gender, and the features of the transportation system. The most popular functional forms of these models are based on Utility-Based Choice Theory, which addresses the uncertainty in the decision-making process with the use of an error term. However, with the development of artificial intelligence, many researchers have started to take a different approach to travel demand modelling. In recent times, researchers have looked at using neural networks, fuzzy logic and rough set theory to develop improved mode choice formulas. The concept of cloud theory has recently been introduced to model decision-making under uncertainty. Unlike the previously mentioned theories, cloud theory recognises a relationship between randomness and fuzziness, two of the most common types of uncertainty. This research aims to investigate the use of cloud theory in mode choice models. This paper highlights the conceptual framework of the mode choice model using cloud theory. Merging decision-making under uncertainty and mode choice models is state of the art. The cloud theory model is expected to address the issues and concerns with the nested logit and improve the design of mode choice models and their use in travel demand.Keywords: Cloud theory, decision-making, mode choice models, travel behaviour, uncertainty
Procedia PDF Downloads 3891613 The Assessment of Bilingual Students: How Bilingual Can It Really Be?
Authors: Serge Lacroix
Abstract:
The proposed study looks at the psychoeducational assessment of bilingual students, in English and French in this case. It will be the opportunity to look at language of assessment and specifically how certain tests can be administered in one language and others in another language. It is also a look into the questioning of the validity of the test scores that are obtained as well as the quality and generalizability of the conclusions that can be drawn. Bilingualism and multiculturalism, although in constant expansion, is not considered in norms development and remains a poorly understood factor when it is at play in the context of a psychoeducational assessment. Student placement, diagnoses, accurate measures of intelligence and achievement are all impacted by the quality of the assessment procedure. The same is true for questionnaires administered to parents and self-reports completed by bilingual students who, more often than not, are assessed in a language that is not their primary one or are compared to monolinguals not dealing with the same challenges or the same skills. Results show that students, when offered to work in a bilingual fashion, chooses to do so in a significant proportion. Recommendations will be offered to support educators aiming at expanding their skills when confronted with multilingual students in an assessment context.Keywords: psychoeducational assessment, bilingualism, multiculturalism, intelligence, achievement
Procedia PDF Downloads 4551612 Using Computer Vision to Detect and Localize Fractures in Wrist X-ray Images
Authors: John Paul Q. Tomas, Mark Wilson L. de los Reyes, Kirsten Joyce P. Vasquez
Abstract:
The most frequent type of fracture is a wrist fracture, which often makes it difficult for medical professionals to find and locate. In this study, fractures in wrist x-ray pictures were located and identified using deep learning and computer vision. The researchers used image filtering, masking, morphological operations, and data augmentation for the image preprocessing and trained the RetinaNet and Faster R-CNN models with ResNet50 backbones and Adam optimizers separately for each image filtering technique and projection. The RetinaNet model with Anisotropic Diffusion Smoothing filter trained with 50 epochs has obtained the greatest accuracy of 99.14%, precision of 100%, sensitivity/recall of 98.41%, specificity of 100%, and an IoU score of 56.44% for the Posteroanterior projection utilizing augmented data. For the Lateral projection using augmented data, the RetinaNet model with an Anisotropic Diffusion filter trained with 50 epochs has produced the highest accuracy of 98.40%, precision of 98.36%, sensitivity/recall of 98.36%, specificity of 98.43%, and an IoU score of 58.69%. When comparing the test results of the different individual projections, models, and image filtering techniques, the Anisotropic Diffusion filter trained with 50 epochs has produced the best classification and regression scores for both projections.Keywords: Artificial Intelligence, Computer Vision, Wrist Fracture, Deep Learning
Procedia PDF Downloads 751611 Intelligent Chatbot Generating Dynamic Responses Through Natural Language Processing
Authors: Aarnav Singh, Jatin Moolchandani
Abstract:
The proposed research work aims to build a query-based AI chatbot that can answer any question related to any topic. A chatbot is software that converses with users via text messages. In the proposed system, we aim to build a chatbot that generates a response based on the user’s query. For this, we use natural language processing to analyze the query and some set of texts to form a concise answer. The texts are obtained through web-scrapping and filtering all the credible sources from a web search. The objective of this project is to provide a chatbot that is able to provide simple and accurate answers without the user having to read through a large number of articles and websites. Creating an AI chatbot that can answer a variety of user questions on a variety of topics is the goal of the proposed research project. This chatbot uses natural language processing to comprehend user inquiries and provides succinct responses by examining a collection of writings that were scraped from the internet. The texts are carefully selected from reliable websites that are found via internet searches. This project aims to provide users with a chatbot that provides clear and precise responses, removing the need to go through several articles and web pages in great detail. In addition to exploring the reasons for their broad acceptance and their usefulness across many industries, this article offers an overview of the interest in chatbots throughout the world.Keywords: Chatbot, Artificial Intelligence, natural language processing, web scrapping
Procedia PDF Downloads 661610 Data-Driven Monitoring and Control of Water Sanitation and Hygiene for Improved Maternal Health in Rural Communities
Authors: Paul Barasa Wanyama, Tom Wanyama
Abstract:
Governments and development partners in low-income countries often prioritize building Water Sanitation and Hygiene (WaSH) infrastructure of healthcare facilities to improve maternal healthcare outcomes. However, the operation, maintenance, and utilization of this infrastructure are almost never considered. Many healthcare facilities in these countries use untreated water that is not monitored for quality or quantity. Consequently, it is common to run out of water while a patient is on their way to or in the operating theater. Further, the handwashing stations in healthcare facilities regularly run out of water or soap for months, and the latrines are typically not clean, in part due to the lack of water. In this paper, we present a system that uses Internet of Things (IoT), big data, cloud computing, and AI to initiate WaSH security in healthcare facilities, with a specific focus on maternal health. We have implemented smart sensors and actuators to monitor and control WaSH systems from afar to ensure their objectives are achieved. We have also developed a cloud-based system to analyze WaSH data in real time and communicate relevant information back to the healthcare facilities and their stakeholders (e.g., medical personnel, NGOs, ministry of health officials, facilities managers, community leaders, pregnant women, and new mothers and their families) to avert or mitigate problems before they occur.Keywords: WaSH, internet of things, artificial intelligence, maternal health, rural communities, healthcare facilities
Procedia PDF Downloads 241609 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree
Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli
Abstract:
Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture
Procedia PDF Downloads 4231608 Learning through Gaming with Mobile Devices
Authors: Luis Rodrigo Valencia Pérez, Juan Manuel Peña Aguilar, Adelina Morita Alexander, Alberto Lamadrid Alvarez, Héctor Fernando Valencia Pérez
Abstract:
Financial education is among the areas of opportunity in the Spanish-speaking from an early age to high school, through mobile devices such as cell phones and tablets using ludic and fun applications like interactive games, children can learn money management and investment through time, thereby fostering the habit of saving and/or sound management of cash and family business resources, having interaction with an uncontrolled environment such as the involvement of other players in the external decisions of the environment in which the game is play. The application proposed in Phase 1 (design and development) was designed in multi-user environments, under methodologies of hybrid programming for any platform on the market and designed under CMMI standards that allow for quality production over time, following up on these improvements counting with continuous user feedback and usage statistics.Keywords: mobile educational games, ludic games, children, multiuser, design and software development
Procedia PDF Downloads 3831607 AI-Driven Forecasting Models for Anticipating Oil Market Trends and Demand
Authors: Gaurav Kumar Sinha
Abstract:
The volatility of the oil market, influenced by geopolitical, economic, and environmental factors, presents significant challenges for stakeholders in predicting trends and demand. This article explores the application of artificial intelligence (AI) in developing robust forecasting models to anticipate changes in the oil market more accurately. We delve into various AI techniques, including machine learning, deep learning, and time series analysis, that have been adapted to analyze historical data and current market conditions to forecast future trends. The study evaluates the effectiveness of these models in capturing complex patterns and dependencies in market data, which traditional forecasting methods often miss. Additionally, the paper discusses the integration of external variables such as political events, economic policies, and technological advancements that influence oil prices and demand. By leveraging AI, stakeholders can achieve a more nuanced understanding of market dynamics, enabling better strategic planning and risk management. The article concludes with a discussion on the potential of AI-driven models in enhancing the predictive accuracy of oil market forecasts and their implications for global economic planning and strategic resource allocation.Keywords: AI forecasting, oil market trends, machine learning, deep learning, time series analysis, predictive analytics, economic factors, geopolitical influence, technological advancements, strategic planning
Procedia PDF Downloads 361606 Bounded Rational Heterogeneous Agents in Artificial Stock Markets: Literature Review and Research Direction
Authors: Talal Alsulaiman, Khaldoun Khashanah
Abstract:
In this paper, we provided a literature survey on the artificial stock problem (ASM). The paper began by exploring the complexity of the stock market and the needs for ASM. ASM aims to investigate the link between individual behaviors (micro level) and financial market dynamics (macro level). The variety of patterns at the macro level is a function of the AFM complexity. The financial market system is a complex system where the relationship between the micro and macro level cannot be captured analytically. Computational approaches, such as simulation, are expected to comprehend this connection. Agent-based simulation is a simulation technique commonly used to build AFMs. The paper proceeds by discussing the components of the ASM. We consider the roles of behavioral finance (BF) alongside the traditionally risk-averse assumption in the construction of agent's attributes. Also, the influence of social networks in the developing of agents’ interactions is addressed. Network topologies such as a small world, distance-based, and scale-free networks may be utilized to outline economic collaborations. In addition, the primary methods for developing agents learning and adaptive abilities have been summarized. These incorporated approach such as Genetic Algorithm, Genetic Programming, Artificial neural network and Reinforcement Learning. In addition, the most common statistical properties (the stylized facts) of stock that are used for calibration and validation of ASM are discussed. Besides, we have reviewed the major related previous studies and categorize the utilized approaches as a part of these studies. Finally, research directions and potential research questions are argued. The research directions of ASM may focus on the macro level by analyzing the market dynamic or on the micro level by investigating the wealth distributions of the agents.Keywords: artificial stock markets, market dynamics, bounded rationality, agent based simulation, learning, interaction, social networks
Procedia PDF Downloads 355