Search results for: recurrent artificial neural network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6944

Search results for: recurrent artificial neural network

5774 Hybrid Approach for Country’s Performance Evaluation

Authors: C. Slim

Abstract:

This paper presents an integrated model, which hybridized data envelopment analysis (DEA) and support vector machine (SVM) together, to class countries according to their efficiency and performance. This model takes into account aspects of multi-dimensional indicators, decision-making hierarchy and relativity of measurement. Starting from a set of indicators of performance as exhaustive as possible, a process of successive aggregations has been developed to attain an overall evaluation of a country’s competitiveness.

Keywords: Artificial Neural Networks (ANN), Support vector machine (SVM), Data Envelopment Analysis (DEA), Aggregations, indicators of performance

Procedia PDF Downloads 340
5773 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning

Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza

Abstract:

The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.

Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library

Procedia PDF Downloads 178
5772 Cooperative Coevolution for Neuro-Evolution of Feed Forward Networks for Time Series Prediction Using Hidden Neuron Connections

Authors: Ravneil Nand

Abstract:

Cooperative coevolution uses problem decomposition methods to solve a larger problem. The problem decomposition deals with breaking down the larger problem into a number of smaller sub-problems depending on their method. Different problem decomposition methods have their own strengths and limitations depending on the neural network used and application problem. In this paper we are introducing a new problem decomposition method known as Hidden-Neuron Level Decomposition (HNL). The HNL method is competing with established problem decomposition method in time series prediction. The results show that the proposed approach has improved the results in some benchmark data sets when compared to the standalone method and has competitive results when compared to methods from literature.

Keywords: cooperative coevaluation, feed forward network, problem decomposition, neuron, synapse

Procedia PDF Downloads 339
5771 Design and Implementation of a Cross-Network Security Management System

Authors: Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai

Abstract:

In recent years, the emerging network worms and attacks have distributive characteristics, which can spread globally in a very short time. Security management crossing networks to co-defense network-wide attacks and improve the efficiency of security administration is urgently needed. We propose a hierarchical distributed network security management system (HD-NSMS), which can integrate security management across multiple networks. First, we describe the system in macrostructure and microstructure; then discuss three key problems when building HD-NSMS: device model, alert mechanism, and emergency response mechanism; lastly, we describe the implementation of HD-NSMS. The paper is valuable for implementing NSMS in that it derives from a practical network security management system (NSMS).

Keywords: network security management, device organization, emergency response, cross-network

Procedia PDF Downloads 169
5770 Packet Analysis in Network Forensics: Insights, Tools, and Case Study

Authors: Dalal Nasser Fathi, Amal Saud Al-Mutairi, Mada Hamed Al-Towairqi, Enas Fawzi Khairallah

Abstract:

Network forensics is essential for investigating cyber incidents and detecting malicious activities by analyzing network traffic, with a focus on packet and protocol data. This process involves capturing, filtering, and examining network data to identify patterns and signs of attacks. Packet analysis, a core technique in this field, provides insights into the origins of data, the protocols used, and any suspicious payloads, which aids in detecting malicious activity. This paper explores network forensics, providing guidance for the analyst on what to look for and identifying attack sites guided by the seven layers of the OSI model. Additionally, it explains the most commonly used tools in network forensics and demonstrates a practical example using Wireshark.

Keywords: network forensic, packet analysis, Wireshark tools, forensic investigation, digital evidence

Procedia PDF Downloads 11
5769 Generalization of Clustering Coefficient on Lattice Networks Applied to Criminal Networks

Authors: Christian H. Sanabria-Montaña, Rodrigo Huerta-Quintanilla

Abstract:

A lattice network is a special type of network in which all nodes have the same number of links, and its boundary conditions are periodic. The most basic lattice network is the ring, a one-dimensional network with periodic border conditions. In contrast, the Cartesian product of d rings forms a d-dimensional lattice network. An analytical expression currently exists for the clustering coefficient in this type of network, but the theoretical value is valid only up to certain connectivity value; in other words, the analytical expression is incomplete. Here we obtain analytically the clustering coefficient expression in d-dimensional lattice networks for any link density. Our analytical results show that the clustering coefficient for a lattice network with density of links that tend to 1, leads to the value of the clustering coefficient of a fully connected network. We developed a model on criminology in which the generalized clustering coefficient expression is applied. The model states that delinquents learn the know-how of crime business by sharing knowledge, directly or indirectly, with their friends of the gang. This generalization shed light on the network properties, which is important to develop new models in different fields where network structure plays an important role in the system dynamic, such as criminology, evolutionary game theory, econophysics, among others.

Keywords: clustering coefficient, criminology, generalized, regular network d-dimensional

Procedia PDF Downloads 412
5768 Project Management Agile Model Based on Project Management Body of Knowledge Guideline

Authors: Mehrzad Abdi Khalife, Iraj Mahdavi

Abstract:

This paper presents the agile model for project management process. For project management process, the Project Management Body of Knowledge (PMBOK) guideline has been selected as platform. Combination of computational science and artificial intelligent methodology has been added to the guideline to transfer the standard to agile project management process. The model is the combination of practical standard, computational science and artificial intelligent. In this model, we present communication model and protocols to keep process agile. Here, we illustrate the collaboration man and machine in project management area with artificial intelligent approach.

Keywords: artificial intelligent, conceptual model, man-machine collaboration, project management, standard

Procedia PDF Downloads 342
5767 Artificial Intelligence Based Analysis of Magnetic Resonance Signals for the Diagnosis of Tissue Abnormalities

Authors: Kapila Warnakulasuriya, Walimuni Janaka Mendis

Abstract:

In this study, an artificial intelligence-based approach is developed to diagnose abnormal tissues in human or animal bodies by analyzing magnetic resonance signals. As opposed to the conventional method of generating an image from the magnetic resonance signals, which are then evaluated by a radiologist for the diagnosis of abnormalities, in the discussed approach, the magnetic resonance signals are analyzed by an artificial intelligence algorithm without having to generate or analyze an image. The AI-based program compares magnetic resonance signals with millions of possible magnetic resonance waveforms which can be generated from various types of normal tissues. Waveforms generated by abnormal tissues are then identified, and images of the abnormal tissues are generated with the possible location of them in the body for further diagnostic tests.

Keywords: magnetic resonance, artificial intelligence, magnetic waveform analysis, abnormal tissues

Procedia PDF Downloads 91
5766 Artificial Cells Capable of Communication by Using Polymer Hydrogel

Authors: Qi Liu, Jiqin Yao, Xiaohu Zhou, Bo Zheng

Abstract:

The first artificial cell was produced by Thomas Chang in the 1950s when he was trying to make a mimic of red blood cells. Since then, many different types of artificial cells have been constructed from one of the two approaches: a so-called bottom-up approach, which aims to create a cell from scratch, and a top-down approach, in which genes are sequentially knocked out from organisms until only the minimal genome required for sustaining life remains. In this project, bottom-up approach was used to build a new cell-free expression system which mimics artificial cell that capable of protein expression and communicate with each other. The artificial cells constructed from the bottom-up approach are usually lipid vesicles, polymersomes, hydrogels or aqueous droplets containing the nucleic acids and transcription-translation machinery. However, lipid vesicles based artificial cells capable of communication present several issues in the cell communication research: (1) The lipid vesicles normally lose the important functions such as protein expression within a few hours. (2) The lipid membrane allows the permeation of only small molecules and limits the types of molecules that can be sensed and released to the surrounding environment for chemical communication; (3) The lipid vesicles are prone to rupture due to the imbalance of the osmotic pressure. To address these issues, the hydrogel-based artificial cells were constructed in this work. To construct the artificial cell, polyacrylamide hydrogel was functionalized with Acrylate PEG Succinimidyl Carboxymethyl Ester (ACLT-PEG2000-SCM) moiety on the polymer backbone. The proteinaceous factors can then be immobilized on the polymer backbone by the reaction between primary amines of proteins and N-hydroxysuccinimide esters (NHS esters) of ACLT-PEG2000-SCM, the plasmid template and ribosome were encapsulated inside the hydrogel particles. Because the artificial cell could continuously express protein with the supply of nutrients and energy, the artificial cell-artificial cell communication and artificial cell-natural cell communication could be achieved by combining the artificial cell vector with designed plasmids. The plasmids were designed referring to the quorum sensing (QS) system of bacteria, which largely relied on cognate acyl-homoserine lactone (AHL) / transcription pairs. In one communication pair, “sender” is the artificial cell or natural cell that can produce AHL signal molecule by synthesizing the corresponding signal synthase that catalyzed the conversion of S-adenosyl-L-methionine (SAM) into AHL, while the “receiver” is the artificial cell or natural cell that can sense the quorum sensing signaling molecule form “sender” and in turn express the gene of interest. In the experiment, GFP was first immobilized inside the hydrogel particle to prove that the functionalized hydrogel particles could be used for protein binding. After that, the successful communication between artificial cell-artificial cell and artificial cell-natural cell was demonstrated, the successful signal between artificial cell-artificial cell or artificial cell-natural cell could be observed by recording the fluorescence signal increase. The hydrogel-based artificial cell designed in this work can help to study the complex communication system in bacteria, it can also be further developed for therapeutic applications.

Keywords: artificial cell, cell-free system, gene circuit, synthetic biology

Procedia PDF Downloads 153
5765 Retaining Users in a Commercially-Supported Social Network

Authors: Sasiphan Nitayaprapha

Abstract:

A commercially-supported social network has become an emerging channel for an organization to communicate with and provide services to customers. The success of the commercially-supported social network depends on the ability of the organization to keep the customers in participating in the network. Drawing from the theories of information adoption, information systems continuance, and web usability, the author develops a model to explore how a commercially-supported social network can encourage customers to continue participating and using the information in the network. The theoretical model will be proved through an online survey of customers using the commercially-supported social networking sites of several high technology companies operating in the same sector. The result will be compared with previous studies to learn about the explanatory power of the research model, and to identify the main factors determining users’ intention to continue using a commercially-supported social network. Theoretical and practical implications, and limitations are discussed.

Keywords: social network, information adoption, information systems continuance, web usability, user satisfaction

Procedia PDF Downloads 317
5764 Artificial Intelligence and Distributed System Computing: Application and Practice in Real Life

Authors: Lai Junzhe, Wang Lihao, Burra Venkata Durga Kumar

Abstract:

In recent years, due to today's global technological advances, big data and artificial intelligence technologies have been widely used in various industries and fields, playing an important role in reducing costs and increasing efficiency. Among them, artificial intelligence has derived another branch in its own continuous progress and the continuous development of computer personnel, namely distributed artificial intelligence computing systems. Distributed AI is a method for solving complex learning, decision-making, and planning problems, characterized by the ability to take advantage of large-scale computation and the spatial distribution of resources, and accordingly, it can handle problems with large data sets. Nowadays, distributed AI is widely used in military, medical, and human daily life and brings great convenience and efficient operation to life. In this paper, we will discuss three areas of distributed AI computing systems in vision processing, blockchain, and smart home to introduce the performance of distributed systems and the role of AI in distributed systems.

Keywords: distributed system, artificial intelligence, blockchain, IoT, visual information processing, smart home

Procedia PDF Downloads 114
5763 Predicting Subsurface Abnormalities Growth Using Physics-Informed Neural Networks

Authors: Mehrdad Shafiei Dizaji, Hoda Azari

Abstract:

The research explores the pioneering integration of Physics-Informed Neural Networks (PINNs) into the domain of Ground-Penetrating Radar (GPR) data prediction, akin to advancements in medical imaging for tracking tumor progression in the human body. This research presents a detailed development framework for a specialized PINN model proficient at interpreting and forecasting GPR data, much like how medical imaging models predict tumor behavior. By harnessing the synergy between deep learning algorithms and the physical laws governing subsurface structures—or, in medical terms, human tissues—the model effectively embeds the physics of electromagnetic wave propagation into its architecture. This ensures that predictions not only align with fundamental physical principles but also mirror the precision needed in medical diagnostics for detecting and monitoring tumors. The suggested deep learning structure comprises three components: a CNN, a spatial feature channel attention (SFCA) mechanism, and ConvLSTM, along with temporal feature frame attention (TFFA) modules. The attention mechanism computes channel attention and temporal attention weights using self-adaptation, thereby fine-tuning the visual and temporal feature responses to extract the most pertinent and significant visual and temporal features. By integrating physics directly into the neural network, our model has shown enhanced accuracy in forecasting GPR data. This improvement is vital for conducting effective assessments of bridge deck conditions and other evaluations related to civil infrastructure. The use of Physics-Informed Neural Networks (PINNs) has demonstrated the potential to transform the field of Non-Destructive Evaluation (NDE) by enhancing the precision of infrastructure deterioration predictions. Moreover, it offers a deeper insight into the fundamental mechanisms of deterioration, viewed through the prism of physics-based models.

Keywords: physics-informed neural networks, deep learning, ground-penetrating radar (GPR), NDE, ConvLSTM, physics, data driven

Procedia PDF Downloads 45
5762 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents

Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei

Abstract:

With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.

Keywords: document processing, framework, formal definition, machine learning

Procedia PDF Downloads 219
5761 Prediction of Coronary Artery Stenosis Severity Based on Machine Learning Algorithms

Authors: Yu-Jia Jian, Emily Chia-Yu Su, Hui-Ling Hsu, Jian-Jhih Chen

Abstract:

Coronary artery is the major supplier of myocardial blood flow. When fat and cholesterol are deposit in the coronary arterial wall, narrowing and stenosis of the artery occurs, which may lead to myocardial ischemia and eventually infarction. According to the World Health Organization (WHO), estimated 740 million people have died of coronary heart disease in 2015. According to Statistics from Ministry of Health and Welfare in Taiwan, heart disease (except for hypertensive diseases) ranked the second among the top 10 causes of death from 2013 to 2016, and it still shows a growing trend. According to American Heart Association (AHA), the risk factors for coronary heart disease including: age (> 65 years), sex (men to women with 2:1 ratio), obesity, diabetes, hypertension, hyperlipidemia, smoking, family history, lack of exercise and more. We have collected a dataset of 421 patients from a hospital located in northern Taiwan who received coronary computed tomography (CT) angiography. There were 300 males (71.26%) and 121 females (28.74%), with age ranging from 24 to 92 years, and a mean age of 56.3 years. Prior to coronary CT angiography, basic data of the patients, including age, gender, obesity index (BMI), diastolic blood pressure, systolic blood pressure, diabetes, hypertension, hyperlipidemia, smoking, family history of coronary heart disease and exercise habits, were collected and used as input variables. The output variable of the prediction module is the degree of coronary artery stenosis. The output variable of the prediction module is the narrow constriction of the coronary artery. In this study, the dataset was randomly divided into 80% as training set and 20% as test set. Four machine learning algorithms, including logistic regression, stepwise regression, neural network and decision tree, were incorporated to generate prediction results. We used area under curve (AUC) / accuracy (Acc.) to compare the four models, the best model is neural network, followed by stepwise logistic regression, decision tree, and logistic regression, with 0.68 / 79 %, 0.68 / 74%, 0.65 / 78%, and 0.65 / 74%, respectively. Sensitivity of neural network was 27.3%, specificity was 90.8%, stepwise Logistic regression sensitivity was 18.2%, specificity was 92.3%, decision tree sensitivity was 13.6%, specificity was 100%, logistic regression sensitivity was 27.3%, specificity 89.2%. From the result of this study, we hope to improve the accuracy by improving the module parameters or other methods in the future and we hope to solve the problem of low sensitivity by adjusting the imbalanced proportion of positive and negative data.

Keywords: decision support, computed tomography, coronary artery, machine learning

Procedia PDF Downloads 229
5760 Competition between Regression Technique and Statistical Learning Models for Predicting Credit Risk Management

Authors: Chokri Slim

Abstract:

The objective of this research is attempting to respond to this question: Is there a significant difference between the regression model and statistical learning models in predicting credit risk management? A Multiple Linear Regression (MLR) model was compared with neural networks including Multi-Layer Perceptron (MLP), and a Support vector regression (SVR). The population of this study includes 50 listed Banks in Tunis Stock Exchange (TSE) market from 2000 to 2016. Firstly, we show the factors that have significant effect on the quality of loan portfolios of banks in Tunisia. Secondly, it attempts to establish that the systematic use of objective techniques and methods designed to apprehend and assess risk when considering applications for granting credit, has a positive effect on the quality of loan portfolios of banks and their future collectability. Finally, we will try to show that the bank governance has an impact on the choice of methods and techniques for analyzing and measuring the risks inherent in the banking business, including the risk of non-repayment. The results of empirical tests confirm our claims.

Keywords: credit risk management, multiple linear regression, principal components analysis, artificial neural networks, support vector machines

Procedia PDF Downloads 154
5759 Artificial Intelligence in Art and Other Sectors: Selected Aspects of Mutual Impact

Authors: Justyna Minkiewicz

Abstract:

Artificial Intelligence (AI) applied in the arts may influence the development of AI knowledge in other sectors and then also impact mutual collaboration with the artistic environment. Hence this collaboration may also impact the development of art projects. The paper will reflect the qualitative research outcomes based on in-depth (IDI) interviews within the marketing sector in Poland and desk research. Art is a reflection of the spirit of our times. Moreover, now we are experiencing a significant acceleration in the development of technologies and their use in various sectors. The leading technologies that contribute to the development of the economy, including the creative sector, embrace technologies such as artificial intelligence, blockchain, extended reality, voice processing, and virtual beings. Artificial intelligence is one of the leading technologies developed for several decades, which is currently reaching a high level of interest and use in various sectors. However, the conducted research has shown that there is still low awareness of artificial intelligence and its wide application in various sectors. The study will show how artists use artificial intelligence in their art projects and how it can be translated into practice within the business. At the same time, the paper will raise awareness of the need for businesses to be inspired by the artistic environment. The research proved that there is still a need to popularize knowledge about this technology which is crucial for many sectors. Art projects are tools to develop knowledge and awareness of society and also various sectors. At the same time, artists may benefit from such collaboration. The paper will include selected aspects of mutual relations, areas of possible inspiration, and possible transfers of technological solutions. Those are AI applications in creative industries such as advertising and film, image recognition in art, and projects from different sectors.

Keywords: artificial intelligence, business, art, creative industry, technology

Procedia PDF Downloads 106
5758 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks

Authors: Lei Zhu, Nan Li

Abstract:

Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.

Keywords: springback, cold stamping, convolutional neural networks, machine learning

Procedia PDF Downloads 151
5757 Artificial Intelligence in Global Healthcare: Need for Robust Governance Frameworks

Authors: Sandeep Reddy, Sonia Allan, Simon Coghlan, Paul Cooper

Abstract:

Artificial Intelligence (AI) and its application in medicine has generated ample interest amongst policymakers and clinicians. Successes with AI in medical imaging interpretation and clinical decision support are paving the way for its incorporation into routine healthcare delivery. While there has been a focus on the development of ethical principles to guide its application in healthcare, challenges of this application go beyond what ethics principles can address thus requiring robust governance frameworks. Also, while ethical challenges of medical artificial intelligence are being discussed, the ethics of deploying AI in lower-income countries receive less attention than in other developed economies. This creates an imperative not only for sound ethical guidelines but also for robust governance frameworks to regulate AI in medicine around the world. In this article, we discuss what components need to be considered in developing these governance frameworks and who should lead this worldwide effort.

Keywords: artificial intelligence, global health, governance, ethics

Procedia PDF Downloads 153
5756 Credit Card Fraud Detection with Ensemble Model: A Meta-Heuristic Approach

Authors: Gong Zhilin, Jing Yang, Jian Yin

Abstract:

The purpose of this paper is to develop a novel system for credit card fraud detection based on sequential modeling of data using hybrid deep learning models. The projected model encapsulates five major phases are pre-processing, imbalance-data handling, feature extraction, optimal feature selection, and fraud detection with an ensemble classifier. The collected raw data (input) is pre-processed to enhance the quality of the data through alleviation of the missing data, noisy data as well as null values. The pre-processed data are class imbalanced in nature, and therefore they are handled effectively with the K-means clustering-based SMOTE model. From the balanced class data, the most relevant features like improved Principal Component Analysis (PCA), statistical features (mean, median, standard deviation) and higher-order statistical features (skewness and kurtosis). Among the extracted features, the most optimal features are selected with the Self-improved Arithmetic Optimization Algorithm (SI-AOA). This SI-AOA model is the conceptual improvement of the standard Arithmetic Optimization Algorithm. The deep learning models like Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and optimized Quantum Deep Neural Network (QDNN). The LSTM and CNN are trained with the extracted optimal features. The outcomes from LSTM and CNN will enter as input to optimized QDNN that provides the final detection outcome. Since the QDNN is the ultimate detector, its weight function is fine-tuned with the Self-improved Arithmetic Optimization Algorithm (SI-AOA).

Keywords: credit card, data mining, fraud detection, money transactions

Procedia PDF Downloads 132
5755 Congestion Control in Mobile Network by Prioritizing Handoff Calls

Authors: O. A. Lawal, O. A Ojesanmi

Abstract:

The demand for wireless cellular services continues to increase while the radio resources remain limited. Thus, network operators have to continuously manage the scarce radio resources in order to have an improved quality of service for mobile users. This paper proposes how to handle the problem of congestion in the mobile network by prioritizing handoff call, using the guard channel allocation scheme. The research uses specific threshold value for the time of allocation of the channel in the algorithm. The scheme would be simulated by generating various data for different traffics in the network as it would be in the real life. The result would be used to determine the probability of handoff call dropping and the probability of the new call blocking as a way of measuring the network performance.

Keywords: call block, channel, handoff, mobile cellular network

Procedia PDF Downloads 396
5754 Tracking Maximum Power Point Utilizing Artificial Immunity System

Authors: Marwa Ahmed Abd El Hamied

Abstract:

In this paper In this paper, a new technique based on Artificial Immunity System (AIS) technique has been developed to track Maximum Power Point (MPP). AIS system is implemented in a photovoltaic system that is subjected to variable temperature and insulation condition. The proposed novel is simulated using Mat Lab program. The results of simulation have been compared to those who are generated from Observation Controller. The proposed model shows promising results as it provide better accuracy comparing to classical model.

Keywords: component, artificial immunity technique, solar energy, perturbation and observation, power based methods

Procedia PDF Downloads 428
5753 Discrete Breeding Swarm for Cost Minimization of Parallel Job Shop Scheduling Problem

Authors: Tarek Aboueldahab, Hanan Farag

Abstract:

Parallel Job Shop Scheduling Problem (JSP) is a multi-objective and multi constrains NP- optimization problem. Traditional Artificial Intelligence techniques have been widely used; however, they could be trapped into the local minimum without reaching the optimum solution, so we propose a hybrid Artificial Intelligence model (AI) with Discrete Breeding Swarm (DBS) added to traditional Artificial Intelligence to avoid this trapping. This model is applied in the cost minimization of the Car Sequencing and Operator Allocation (CSOA) problem. The practical experiment shows that our model outperforms other techniques in cost minimization.

Keywords: parallel job shop scheduling problem, artificial intelligence, discrete breeding swarm, car sequencing and operator allocation, cost minimization

Procedia PDF Downloads 191
5752 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis

Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara

Abstract:

Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).

Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy

Procedia PDF Downloads 354
5751 Optimizing Perennial Plants Image Classification by Fine-Tuning Deep Neural Networks

Authors: Khairani Binti Supyan, Fatimah Khalid, Mas Rina Mustaffa, Azreen Bin Azman, Amirul Azuani Romle

Abstract:

Perennial plant classification plays a significant role in various agricultural and environmental applications, assisting in plant identification, disease detection, and biodiversity monitoring. Nevertheless, attaining high accuracy in perennial plant image classification remains challenging due to the complex variations in plant appearance, the diverse range of environmental conditions under which images are captured, and the inherent variability in image quality stemming from various factors such as lighting conditions, camera settings, and focus. This paper proposes an adaptation approach to optimize perennial plant image classification by fine-tuning the pre-trained DNNs model. This paper explores the efficacy of fine-tuning prevalent architectures, namely VGG16, ResNet50, and InceptionV3, leveraging transfer learning to tailor the models to the specific characteristics of perennial plant datasets. A subset of the MYLPHerbs dataset consisted of 6 perennial plant species of 13481 images under various environmental conditions that were used in the experiments. Different strategies for fine-tuning, including adjusting learning rates, training set sizes, data augmentation, and architectural modifications, were investigated. The experimental outcomes underscore the effectiveness of fine-tuning deep neural networks for perennial plant image classification, with ResNet50 showcasing the highest accuracy of 99.78%. Despite ResNet50's superior performance, both VGG16 and InceptionV3 achieved commendable accuracy of 99.67% and 99.37%, respectively. The overall outcomes reaffirm the robustness of the fine-tuning approach across different deep neural network architectures, offering insights into strategies for optimizing model performance in the domain of perennial plant image classification.

Keywords: perennial plants, image classification, deep neural networks, fine-tuning, transfer learning, VGG16, ResNet50, InceptionV3

Procedia PDF Downloads 67
5750 Improving Axial-Attention Network via Cross-Channel Weight Sharing

Authors: Nazmul Shahadat, Anthony S. Maida

Abstract:

In recent years, hypercomplex inspired neural networks improved deep CNN architectures due to their ability to share weights across input channels and thus improve cohesiveness of representations within the layers. The work described herein studies the effect of replacing existing layers in an Axial Attention ResNet with their quaternion variants that use cross-channel weight sharing to assess the effect on image classification. We expect the quaternion enhancements to produce improved feature maps with more interlinked representations. We experiment with the stem of the network, the bottleneck layer, and the fully connected backend by replacing them with quaternion versions. These modifications lead to novel architectures which yield improved accuracy performance on the ImageNet300k classification dataset. Our baseline networks for comparison were the original real-valued ResNet, the original quaternion-valued ResNet, and the Axial Attention ResNet. Since improvement was observed regardless of which part of the network was modified, there is a promise that this technique may be generally useful in improving classification accuracy for a large class of networks.

Keywords: axial attention, representational networks, weight sharing, cross-channel correlations, quaternion-enhanced axial attention, deep networks

Procedia PDF Downloads 84
5749 Transfer Learning for Protein Structure Classification at Low Resolution

Authors: Alexander Hudson, Shaogang Gong

Abstract:

Structure determination is key to understanding protein function at a molecular level. Whilst significant advances have been made in predicting structure and function from amino acid sequence, researchers must still rely on expensive, time-consuming analytical methods to visualise detailed protein conformation. In this study, we demonstrate that it is possible to make accurate (≥80%) predictions of protein class and architecture from structures determined at low (>3A) resolution, using a deep convolutional neural network trained on high-resolution (≤3A) structures represented as 2D matrices. Thus, we provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function. We investigate the impact of the input representation on classification performance, showing that side-chain information may not be necessary for fine-grained structure predictions. Finally, we confirm that high resolution, low-resolution and NMR-determined structures inhabit a common feature space, and thus provide a theoretical foundation for boosting with single-image super-resolution.

Keywords: transfer learning, protein distance maps, protein structure classification, neural networks

Procedia PDF Downloads 138
5748 Performance Analysis of ERA Using Fuzzy Logic in Wireless Sensor Network

Authors: Kamalpreet Kaur, Harjit Pal Singh, Vikas Khullar

Abstract:

In Wireless Sensor Network (WSN), the main limitation is generally inimitable energy consumption during processing of the sensor nodes. Cluster head (CH) election is one of the main issues that can reduce the energy consumption. Therefore, discovering energy saving routing protocol is the focused area for research. In this paper, fuzzy-based energy aware routing protocol is presented, which enhances the stability and network lifetime of the network. Fuzzy logic ensures the well-organized selection of CH by taking four linguistic variables that are concentration, energy, centrality, and distance to base station (BS). The results show that the proposed protocol shows better results in requisites of stability and throughput of the network.

Keywords: ERA, fuzzy logic, network model, WSN

Procedia PDF Downloads 280
5747 ‘BEST BARK’ Dog Care and Owner Consultation System

Authors: Shalitha Jayasekara, Saluk Bawantha, Dinithi Anupama, Isuru Gunarathne, Pradeepa Bandara, Hansi De Silva

Abstract:

Dogs have been known as "man's best friend" for generations, providing friendship and loyalty to their human counterparts. However, due to people's busy lives, they are unaware of the ailments that can affect their pets. However, in recent years, mobile technologies have had a significant impact on our lives, and with technological improvements, a rule-based expert system allows the end-user to enable new types of healthcare systems. The advent of Android OS-based smartphones with more user-friendly interfaces and lower pricing opens new possibilities for continuous monitoring of pets' health conditions, such as healthy dogs, dangerous ingestions, and swallowed objects. The proposed ‘Best Bark’ Dog care and owner consultation system is a mobile application for dog owners. Four main components for dog owners were implemented after a questionnaire was distributed to the target group of audience and the findings were evaluated. The proposed applications are widely used to provide health and clinical support to dog owners, including suggesting exercise and diet plans and answering queries about their dogs. Additionally, after the owner uploads a photo of the dog, the application provides immediate feedback and a description of the dog's skin disease.

Keywords: Convolution Neural Networks, Artificial Neural Networks, Knowledgebase, Sentimental Analysis.

Procedia PDF Downloads 154
5746 3D Object Model Reconstruction Based on Polywogs Wavelet Network Parametrization

Authors: Mohamed Othmani, Yassine Khlifi

Abstract:

This paper presents a technique for compact three dimensional (3D) object model reconstruction using wavelet networks. It consists to transform an input surface vertices into signals,and uses wavelet network parameters for signal approximations. To prove this, we use a wavelet network architecture founded on several mother wavelet families. POLYnomials WindOwed with Gaussians (POLYWOG) wavelet families are used to maximize the probability to select the best wavelets which ensure the good generalization of the network. To achieve a better reconstruction, the network is trained several iterations to optimize the wavelet network parameters until the error criterion is small enough. Experimental results will shown that our proposed technique can effectively reconstruct an irregular 3D object models when using the optimized wavelet network parameters. We will prove that an accurateness reconstruction depends on the best choice of the mother wavelets.

Keywords: 3d object, optimization, parametrization, polywog wavelets, reconstruction, wavelet networks

Procedia PDF Downloads 286
5745 Heuristic of Style Transfer for Real-Time Detection or Classification of Weather Conditions from Camera Images

Authors: Hamed Ouattara, Pierre Duthon, Frédéric Bernardin, Omar Ait Aider, Pascal Salmane

Abstract:

In this article, we present three neural network architectures for real-time classification of weather conditions (sunny, rainy, snowy, foggy) from images. Inspired by recent advances in style transfer, two of these architectures -Truncated ResNet50 and Truncated ResNet50 with Gram Matrix and Attention- surpass the state of the art and demonstrate re-markable generalization capability on several public databases, including Kaggle (2000 images), Kaggle 850 images, MWI (1996 images) [1], and Image2Weather [2]. Although developed for weather detection, these architectures are also suitable for other appearance-based classification tasks, such as animal species recognition, texture classification, disease detection in medical images, and industrial defect identification. We illustrate these applications in the section “Applications of Our Models to Other Tasks” with the “SIIM-ISIC Melanoma Classification Challenge 2020” [3].

Keywords: weather simulation, weather measurement, weather classification, weather detection, style transfer, Pix2Pix, CycleGAN, CUT, neural style transfer

Procedia PDF Downloads 13