Search results for: multivariate linear regression
5127 Digital Phase Shifting Holography in a Non-Linear Interferometer using Undetected Photons
Authors: Sebastian Töpfer, Marta Gilaberte Basset, Jorge Fuenzalida, Fabian Steinlechner, Juan P. Torres, Markus Gräfe
Abstract:
This work introduces a combination of digital phase-shifting holography with a non-linear interferometer using undetected photons. Non-linear interferometers can be used in combination with a measurement scheme called quantum imaging with undetected photons, which allows for the separation of the wavelengths used for sampling an object and detecting it in the imaging sensor. This method recently faced increasing attention, as it allows to use of exotic wavelengths (e.g., mid-infrared, ultraviolet) for object interaction while at the same time keeping the detection in spectral areas with highly developed, comparable low-cost imaging sensors. The object information, including its transmission and phase influence, is recorded in the form of an interferometric pattern. To collect these, this work combines the method of quantum imaging with undetected photons with digital phase-shifting holography with a minimal sampling of the interference. With this, the quantum imaging scheme gets extended in its measurement capabilities and brings it one step closer to application. Quantum imaging with undetected photons uses correlated photons generated by spontaneous parametric down-conversion in a non-linear interferometer to create indistinguishable photon pairs, which leads to an effect called induced coherence without induced emission. Placing an object inside changes the interferometric pattern depending on the object’s properties. Digital phase-shifting holography records multiple images of the interference with determined phase shifts to reconstruct the complete interference shape, which can afterward be used to analyze the changes introduced by the object and conclude its properties. An extensive characterization of this method was done using a proof-of-principle setup. The measured spatial resolution, phase accuracy, and transmission accuracy are compared for different combinations of camera exposure times and the number of interference sampling steps. The current limits of this method are shown to allow further improvements. To summarize, this work presents an alternative holographic measurement method using non-linear interferometers in combination with quantum imaging to enable new ways of measuring and motivating continuing research.Keywords: digital holography, quantum imaging, quantum holography, quantum metrology
Procedia PDF Downloads 925126 Modeling Spatio-Temporal Variation in Rainfall Using a Hierarchical Bayesian Regression Model
Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Gundula Bartzke, Hans-Peter Piepho
Abstract:
Rainfall is a critical component of climate governing vegetation growth and production, forage availability and quality for herbivores. However, reliable rainfall measurements are not always available, making it necessary to predict rainfall values for particular locations through time. Predicting rainfall in space and time can be a complex and challenging task, especially where the rain gauge network is sparse and measurements are not recorded consistently for all rain gauges, leading to many missing values. Here, we develop a flexible Bayesian model for predicting rainfall in space and time and apply it to Narok County, situated in southwestern Kenya, using data collected at 23 rain gauges from 1965 to 2015. Narok County encompasses the Maasai Mara ecosystem, the northern-most section of the Mara-Serengeti ecosystem, famous for its diverse and abundant large mammal populations and spectacular migration of enormous herds of wildebeest, zebra and Thomson's gazelle. The model incorporates geographical and meteorological predictor variables, including elevation, distance to Lake Victoria and minimum temperature. We assess the efficiency of the model by comparing it empirically with the established Gaussian process, Kriging, simple linear and Bayesian linear models. We use the model to predict total monthly rainfall and its standard error for all 5 * 5 km grid cells in Narok County. Using the Monte Carlo integration method, we estimate seasonal and annual rainfall and their standard errors for 29 sub-regions in Narok. Finally, we use the predicted rainfall to predict large herbivore biomass in the Maasai Mara ecosystem on a 5 * 5 km grid for both the wet and dry seasons. We show that herbivore biomass increases with rainfall in both seasons. The model can handle data from a sparse network of observations with many missing values and performs at least as well as or better than four established and widely used models, on the Narok data set. The model produces rainfall predictions consistent with expectation and in good agreement with the blended station and satellite rainfall values. The predictions are precise enough for most practical purposes. The model is very general and applicable to other variables besides rainfall.Keywords: non-stationary covariance function, gaussian process, ungulate biomass, MCMC, maasai mara ecosystem
Procedia PDF Downloads 2945125 Absorbed Dose Measurements for Teletherapy Prediction of Superficial Dose Using Halcyon Linear Accelerator
Authors: Raymond Limen Njinga, Adeneye Samuel Olaolu, Akinyode Ojumoola Ajimo
Abstract:
Introduction: Measurement of entrance dose and dose at different depths is essential to avoid overdose and underdose of patients. The aim of this study is to verify the variation in the absorbed dose using a water-equivalent material. Materials and Methods: The plastic phantom was arranged on the couch of the halcyon linear accelerator by Varian, with the farmer ionization chamber inserted and connected to the electrometer. The image of the setup was taken using the High-Quality Single 1280x1280x16 higher on the service mode to check the alignment with the isocenter. The beam quality TPR₂₀,₁₀ (Tissue phantom ratio) was done to check the beam quality of the machine at a field size of 10 cm x 10 cm. The calibration was done using SAD type set-up at a depth of 5 cm. This process was repeated for ten consecutive weeks, and the values were recorded. Results: The results of the beam output for the teletherapy machine were satisfactory and accepted in comparison with the commissioned measurement of 0.62. The beam quality TPR₂₀,₁₀ (Tissue phantom ratio) was reasonable with respect to the beam quality of the machine at a field size of 10 cm x 10 cm. Conclusion: The results of the beam quality and the absorbed dose rate showed a good consistency over the period of ten weeks with the commissioned measurement value.Keywords: linear accelerator, absorbed dose rate, isocenter, phantom, ionization chamber
Procedia PDF Downloads 615124 Genome-Wide Significant SNPs Proximal to Nicotinic Receptor Genes Impact Cognition in Schizophrenia
Authors: Mohammad Ahangari
Abstract:
Schizophrenia is a psychiatric disorder with symptoms that include cognitive deficits and nicotine has been suggested to have an effect on cognition. In recent years, the advents of Genome-Wide Association Studies(GWAS) has evolved our understanding about the genetic causes of complex disorders such as schizophrenia and studying the role of genome-wide significant genes could potentially lead to the development of new therapeutic agents for treatment of cognitive deficits in schizophrenia. The current study identified six Single Nucleotide Polymorphisms (SNP) from schizophrenia and smoking GWAS that are located on or in close proximity to the nicotinic receptor gene cluster (CHRN) and studied their association with cognition in an Irish sample of 1297 cases and controls using linear regression analysis. Further on, the interaction between CHRN gene cluster and Dopamine receptor D2 gene (DRD2) during working memory was investigated. The effect of these polymorphisms on nicotinic and dopaminergic neurotransmission, which is disrupted in schizophrenia, have been characterized in terms of their effects on memory, attention, social cognition and IQ as measured by a neuropsychological test battery and significant effects in two polymorphisms were found across global IQ domain of the test battery.Keywords: cognition, dopamine, GWAS, nicotine, schizophrenia, SNPs
Procedia PDF Downloads 3465123 A New Reliability Allocation Method Based on Fuzzy Numbers
Authors: Peng Li, Chuanri Li, Tao Li
Abstract:
Reliability allocation is quite important during early design and development stages for a system to apportion its specified reliability goal to subsystems. This paper improves the reliability fuzzy allocation method and gives concrete processes on determining the factor set, the factor weight set, judgment set, and multi-grade fuzzy comprehensive evaluation. To determine the weight of factor set, the modified trapezoidal numbers are proposed to reduce errors caused by subjective factors. To decrease the fuzziness in the fuzzy division, an approximation method based on linear programming is employed. To compute the explicit values of fuzzy numbers, centroid method of defuzzification is considered. An example is provided to illustrate the application of the proposed reliability allocation method based on fuzzy arithmetic.Keywords: reliability allocation, fuzzy arithmetic, allocation weight, linear programming
Procedia PDF Downloads 3425122 The Effect of Leadership Style on Employee Engagement in Ethiopian Airlines
Authors: Mahlet Nigussie Worku
Abstract:
The main purpose of this study was to examine the effects of different leadership styles on employee engagement in Ethiopian Airlines headquarters located in Addis Ababa. Specific objectives of the study were stated to examine the effects of five leadership styles, namely transformational, transactional, democratic, lassies fair and autocratic leadership styles on employees’ engagement. The study was conducted on 288 sample sizes, and a simple random sampling technique was employed. The quantitative findings were presented and analyzed by table, ANOVA, bivariate correlation and regression model through SPSS software version 23. Out of 288 total distributed questionnaires, 280 were returned, and 8 of the returned were rejected due to missing data, while the remaining 280 responses were used for data analysis. Data was analyzed using the Statistical Package for Social Sciences (SPSS). The study employed both descriptive and explanatory research design. Correlation and regression were used to analyze the relationship and its effect between leadership Style and employee engagement. The regression results showed that transformational, transactional and democratic leadership Styles have significant contributions to employee engagement. Similarly, the transformational, transactional land democratic leadership style had a positive and strong correlation with employee engagement. However, lassies-fair and autocratic leadership styles showed a negative and insignificant effect on employee engagement. Finally, based on the findings, workable recommendations and implications for further studies were forwarded.Keywords: leadership, autocratic leadership style, democratic leadership style, employee engagement
Procedia PDF Downloads 985121 Modelling and Maping Malnutrition Toddlers in Bojonegoro Regency with Mixed Geographically Weighted Regression Approach
Authors: Elvira Mustikawati P.H., Iis Dewi Ratih, Dita Amelia
Abstract:
Bojonegoro has proclaimed a policy of zero malnutrition. Therefore, as an effort to solve the cases of malnutrition children in Bojonegoro, this study used the approach geographically Mixed Weighted Regression (MGWR) to determine the factors that influence the percentage of malnourished children under five in which factors can be divided into locally influential factor in each district and global factors that influence throughout the district. Based on the test of goodness of fit models, R2 and AIC values in GWR models are better than MGWR models. R2 and AIC values in MGWR models are 84.37% and 14.28, while the GWR models respectively are 91.04% and -62.04. Based on the analysis with GWR models, District Sekar, Bubulan, Gondang, and Dander is a district with three predictor variables (percentage of vitamin A, the percentage of births assisted health personnel, and the percentage of clean water) that significantly influence the percentage of malnourished children under five. Procedia PDF Downloads 2965120 Text Localization in Fixed-Layout Documents Using Convolutional Networks in a Coarse-to-Fine Manner
Authors: Beier Zhu, Rui Zhang, Qi Song
Abstract:
Text contained within fixed-layout documents can be of great semantic value and so requires a high localization accuracy, such as ID cards, invoices, cheques, and passports. Recently, algorithms based on deep convolutional networks achieve high performance on text detection tasks. However, for text localization in fixed-layout documents, such algorithms detect word bounding boxes individually, which ignores the layout information. This paper presents a novel architecture built on convolutional neural networks (CNNs). A global text localization network and a regional bounding-box regression network are introduced to tackle the problem in a coarse-to-fine manner. The text localization network simultaneously locates word bounding points, which takes the layout information into account. The bounding-box regression network inputs the features pooled from arbitrarily sized RoIs and refine the localizations. These two networks share their convolutional features and are trained jointly. A typical type of fixed-layout documents: ID cards, is selected to evaluate the effectiveness of the proposed system. These networks are trained on data cropped from nature scene images, and synthetic data produced by a synthetic text generation engine. Experiments show that our approach locates high accuracy word bounding boxes and achieves state-of-the-art performance.Keywords: bounding box regression, convolutional networks, fixed-layout documents, text localization
Procedia PDF Downloads 1945119 Factors Influencing Bank Profitability of Czech Banks and Their International Parent Companies
Authors: Libena Cernohorska
Abstract:
The goal of this paper is to specify factors influencing the profitability of selected banks. Next, a model will be created to help establish variables that have a demonstrable influence on the development of the selected banks' profitability ratios. Czech banks and their international parent companies were selected for analyzing profitability. Banks categorized as large banks (according to the Czech National Bank's system, which ranks banks according to balance sheet total) were selected to represent the Czech banks. Two ratios, the return on assets ratio (ROA) and the return on equity ratio (ROE) are used to assess bank profitability. Six endogenous and four external indicators were selected from among other factors that influence bank profitability. The data analyzed were for the years 2001 – 2013. First, correlation analysis, which was supposed to eliminate correlated values, was conducted. A large number of correlated values were established on the basis of this analysis. The strongly correlated values were omitted. Despite this, the subsequent regression analysis of profitability for the individual banks that were selected did not confirm that the selected variables influenced their profitability. The studied factors' influence on bank profitability was demonstrated only for Československá Obchodní Banka and Société Générale using regression analysis. For Československá Obchodní Banka, it was demonstrated that inflation level and the amount of the central bank's interest rate influenced the return on assets ratio and that capital adequacy and market concentration influenced the return on equity ratio for Société Générale.Keywords: banks, profitability, regression analysis, ROA, ROE
Procedia PDF Downloads 2545118 Stability of Hybrid Systems
Authors: Kreangkri Ratchagit
Abstract:
This paper is concerned with exponential stability of switched linear systems with interval time-varying delays. The time delay is any continuous function belonging to a given interval, in which the lower bound of delay is not restricted to zero. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, a switching rule for the exponential stability of switched linear systems with interval time-varying delays and new delay-dependent sufficient conditions for the exponential stability of the systems are first established in terms of LMIs. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes.Keywords: exponential stability, hybrid systems, timevarying delays, Lyapunov-Krasovskii functional, Leibniz-Newton’s formula
Procedia PDF Downloads 4585117 The Effect Of Leadership Style On Employee Engagment In Ethiopian Airlines
Authors: Mahlet Nigussie Worku
Abstract:
The main purpose of this study was to examine the effects of different leadership styles on employee engagement in Ethiopian Airlines head quarter located in Addis Ababa. Specific objectives of the study were stated to examine the effects of five leadership styles namely transformational, transactional, democratic, lassies fair and autocratic leadership styles on employees’ engagement. The study was conducted on 288 sample size and a simple random sampling technique was employed. The quantitative findings were presented and analyzed by table, ANOVA, bivariate correlation and regression model through SPSS software version 23. Out of 288 total distributed questionnaires 280 were returned and 8 of the returned were rejected due to missing data while the remaining 280 responses were used for data analysis. Data was analyzed using the Statistical Package for Social Sciences (SPSS). The study employed both descriptive and explanatory research design. Correlation and regression were used to analyze the relationship and its effect between leadership Style and employee’s engagement. The regression results showed that transformational, transactional and democratic leadership Styles have significant contribution for employee’s engagement. Similarly transformational, transactional land democratic leadership style had a positive and strong correlation with employee’s engagement. However lassies-fair and autocratic leadership style showed negative and insignificant effect on employee engagement. Finally, based on the findings, workable recommendations and implications for further studies were forwardedKeywords: leadership, leadership style, employee engagement, autocratic leadership styles
Procedia PDF Downloads 725116 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark
Authors: B. Elshafei, X. Mao
Abstract:
The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.Keywords: data fusion, Gaussian process regression, signal denoise, temporal extrapolation
Procedia PDF Downloads 1355115 Modelling the Indonesian Goverment Securities Yield Curve Using Nelson-Siegel-Svensson and Support Vector Regression
Authors: Jamilatuzzahro, Rezzy Eko Caraka
Abstract:
The yield curve is the plot of the yield to maturity of zero-coupon bonds against maturity. In practice, the yield curve is not observed but must be extracted from observed bond prices for a set of (usually) incomplete maturities. There exist many methodologies and theory to analyze of yield curve. We use two methods (the Nelson-Siegel Method, the Svensson Method, and the SVR method) in order to construct and compare our zero-coupon yield curves. The objectives of this research were: (i) to study the adequacy of NSS model and SVR to Indonesian government bonds data, (ii) to choose the best optimization or estimation method for NSS model and SVR. To obtain that objective, this research was done by the following steps: data preparation, cleaning or filtering data, modeling, and model evaluation.Keywords: support vector regression, Nelson-Siegel-Svensson, yield curve, Indonesian government
Procedia PDF Downloads 2445114 A Continuous Boundary Value Method of Order 8 for Solving the General Second Order Multipoint Boundary Value Problems
Authors: T. A. Biala
Abstract:
This paper deals with the numerical integration of the general second order multipoint boundary value problems. This has been achieved by the development of a continuous linear multistep method (LMM). The continuous LMM is used to construct a main discrete method to be used with some initial and final methods (also obtained from the continuous LMM) so that they form a discrete analogue of the continuous second order boundary value problems. These methods are used as boundary value methods and adapted to cope with the integration of the general second order multipoint boundary value problems. The convergence, the use and the region of absolute stability of the methods are discussed. Several numerical examples are implemented to elucidate our solution process.Keywords: linear multistep methods, boundary value methods, second order multipoint boundary value problems, convergence
Procedia PDF Downloads 3775113 Monocytic Paraoxonase 2 (PON 2) Lactonase Activity Is Related to Myocardial Infarction
Authors: Mukund Ramchandra Mogarekar, Pankaj Kumar, Shraddha V. More
Abstract:
Background: Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), Apo B, and lipoprotein(a) was found as atherogenic factors while high-density lipoprotein cholesterol (HDL-C) was anti-atherogenic. Methods and Results: The study group consists of 40 MI subjects as cases and 40 healthy as controls. Monocytic PON 2 Lactonase (LACT) activity was measured by using Dihydrocoumarine (DHC) as substrate. Phenotyping was done by method of Mogarekar MR et al, serum AOPP by modified method of Witko-Sarsat V et al and Apo B by Turbidimetric immunoassay. PON 2 LACT activities were significantly lower (p< 0.05) and AOPPs & Apo B were higher in MI subjects (p> 0.05). Trimodal distribution of QQ, QR & RR phenotypes of study population showed no significant difference among cases and controls (p> 0.05). Univariate binary logistic regression analysis showed independent association of TC, HDL, LDL, AOPP, Apo B, and PON 2 LACT activity with MI and multiple forward binary logistic regression showed PON 2 LACT activity and serum Apo B as an independent predictor of MI. Conclusions- Decrease in PON 2 LACT activity in MI subjects than in controls suggests increased oxidative stress in MI which is reflected by significantly increased AOPP and Apo B. PON 1 polymorphism of QQ, QR and RR showed no significant difference in protection against MI. Univariate and multiple forward binary logistic regression showed PON 2 LACT activity and serum Apo B as an independent predictor of MI.Keywords: advanced oxidation protein products, apolipoprotein-B, myocardial infarction, paraoxonase 2 lactonase
Procedia PDF Downloads 2395112 Examination of Relationship between Internet Addiction and Cyber Bullying in Adolescents
Authors: Adem Peker, Yüksel Eroğlu, İsmail Ay
Abstract:
As the information and communication technologies have become embedded in everyday life of adolescents, both their possible benefits and risks to adolescents are being identified. The information and communication technologies provide opportunities for adolescents to connect with peers and to access to information. However, as with other social connections, users of information and communication devices have the potential to meet and interact with in harmful ways. One emerging example of such interaction is cyber bullying. Cyber bullying occurs when someone uses the information and communication technologies to harass or embarrass another person. Cyber bullying can take the form of malicious text messages and e-mails, spreading rumours, and excluding people from online groups. Cyber bullying has been linked to psychological problems for cyber bullies and victims. Therefore, it is important to determine how internet addiction contributes to cyber bullying. Building on this question, this study takes a closer look at the relationship between internet addiction and cyber bullying. For this purpose, in this study, based on descriptive relational model, it was hypothesized that loss of control, excessive desire to stay online, and negativity in social relationships, which are dimensions of internet addiction, would be associated positively with cyber bullying and victimization. Participants were 383 high school students (176 girls and 207 boys; mean age, 15.7 years). Internet addiction was measured by using Internet Addiction Scale. The Cyber Victim and Bullying Scale was utilized to measure cyber bullying and victimization. The scales were administered to the students in groups in the classrooms. In this study, stepwise regression analyses were utilized to examine the relationships between dimensions of internet addiction and cyber bullying and victimization. Before applying stepwise regression analysis, assumptions of regression were verified. According to stepwise regression analysis, cyber bullying was predicted by loss of control (β=.26, p<.001) and negativity in social relationships (β=.13, p<.001). These variables accounted for 9 % of the total variance, with the loss of control explaining the higher percentage (8 %). On the other hand, cyber victimization was predicted by loss of control (β=.19, p<.001) and negativity in social relationships (β=.12, p<.001). These variables altogether accounted for 8 % of the variance in cyber victimization, with the best predictor loss of control (7 % of the total variance). The results of this study demonstrated that, as expected, loss of control and negativity in social relationships predicted cyber bullying and victimization positively. However, excessive desire to stay online did not emerge a significant predictor of both cyberbullying and victimization. Consequently, this study would enhance our understanding of the predictors of cyber bullying and victimization since the results proposed that internet addiction is related with cyber bullying and victimization.Keywords: cyber bullying, internet addiction, adolescents, regression
Procedia PDF Downloads 3105111 Reconstructed Phase Space Features for Estimating Post Traumatic Stress Disorder
Authors: Andre Wittenborn, Jarek Krajewski
Abstract:
Trauma-related sadness in speech can alter the voice in several ways. The generation of non-linear aerodynamic phenomena within the vocal tract is crucial when analyzing trauma-influenced speech production. They include non-laminar flow and formation of jets rather than well-behaved laminar flow aspects. Especially state-space reconstruction methods based on chaotic dynamics and fractal theory have been suggested to describe these aerodynamic turbulence-related phenomena of the speech production system. To extract the non-linear properties of the speech signal, we used the time delay embedding method to reconstruct from a scalar time series (reconstructed phase space, RPS). This approach results in the extraction of 7238 Features per .wav file (N= 47, 32 m, 15 f). The speech material was prompted by telling about autobiographical related sadness-inducing experiences (sampling rate 16 kHz, 8-bit resolution). After combining these features in a support vector machine based machine learning approach (leave-one-sample out validation), we achieved a correlation of r = .41 with the well-established, self-report ground truth measure (RATS) of post-traumatic stress disorder (PTSD).Keywords: non-linear dynamics features, post traumatic stress disorder, reconstructed phase space, support vector machine
Procedia PDF Downloads 1025110 A Data Driven Approach for the Degradation of a Lithium-Ion Battery Based on Accelerated Life Test
Authors: Alyaa M. Younes, Nermine Harraz, Mohammad H. Elwany
Abstract:
Lithium ion batteries are currently used for many applications including satellites, electric vehicles and mobile electronics. Their ability to store relatively large amount of energy in a limited space make them most appropriate for critical applications. Evaluation of the life of these batteries and their reliability becomes crucial to the systems they support. Reliability of Li-Ion batteries has been mainly considered based on its lifetime. However, another important factor that can be considered critical in many applications such as in electric vehicles is the cycle duration. The present work presents the results of an experimental investigation on the degradation behavior of a Laptop Li-ion battery (type TKV2V) and the effect of applied load on the battery cycle time. The reliability was evaluated using an accelerated life test. Least squares linear regression with median rank estimation was used to estimate the Weibull distribution parameters needed for the reliability functions estimation. The probability density function, failure rate and reliability function under each of the applied loads were evaluated and compared. An inverse power model is introduced that can predict cycle time at any stress level given.Keywords: accelerated life test, inverse power law, lithium-ion battery, reliability evaluation, Weibull distribution
Procedia PDF Downloads 1685109 Innovative Screening Tool Based on Physical Properties of Blood
Authors: Basant Singh Sikarwar, Mukesh Roy, Ayush Goyal, Priya Ranjan
Abstract:
This work combines two bodies of knowledge which includes biomedical basis of blood stain formation and fluid communities’ wisdom that such formation of blood stain depends heavily on physical properties. Moreover biomedical research tells that different patterns in stains of blood are robust indicator of blood donor’s health or lack thereof. Based on these valuable insights an innovative screening tool is proposed which can act as an aide in the diagnosis of diseases such Anemia, Hyperlipidaemia, Tuberculosis, Blood cancer, Leukemia, Malaria etc., with enhanced confidence in the proposed analysis. To realize this powerful technique, simple, robust and low-cost micro-fluidic devices, a micro-capillary viscometer and a pendant drop tensiometer are designed and proposed to be fabricated to measure the viscosity, surface tension and wettability of various blood samples. Once prognosis and diagnosis data has been generated, automated linear and nonlinear classifiers have been applied into the automated reasoning and presentation of results. A support vector machine (SVM) classifies data on a linear fashion. Discriminant analysis and nonlinear embedding’s are coupled with nonlinear manifold detection in data and detected decisions are made accordingly. In this way, physical properties can be used, using linear and non-linear classification techniques, for screening of various diseases in humans and cattle. Experiments are carried out to validate the physical properties measurement devices. This framework can be further developed towards a real life portable disease screening cum diagnostics tool. Small-scale production of screening cum diagnostic devices is proposed to carry out independent test.Keywords: blood, physical properties, diagnostic, nonlinear, classifier, device, surface tension, viscosity, wettability
Procedia PDF Downloads 3765108 How Openness to Experience Relates to Electoral Behaviour among Senior Non-Teaching Employees of Nnamdi Azikiwe University, Awka
Authors: Nweke Kingsley
Abstract:
From the times of ancient Greece to modern times, democratic elections have been associated with a higher number of participants. Sequel to this, politicians globally and incumbent governments appear concerned with understanding the personality traits that may assure them of unflinching support by electorates. The study examined how openness to experience predicted electoral behaviour among senior non-teaching employees of Nnamdi Azikiwe University Awka. One hundred and thirty-three non-teaching employees who volunteered were randomly selected for the study. Two instruments were used for data collection: The Electoral Behaviour Scale, and the Openness to Experience dimension of the Personality Trait Inventory. A correlational design was adopted for the study, and the data generated were statistically analyzed using Pearson Product Moment and linear regression statistics. Results revealed that Openness to Experience positively and significantly predicted Electoral Behaviour among senior non-teaching employees of Nnamdi Azikiwe University, Awka. It was recommended that politicians and stakeholders hold town hall meetings and seminars to increase awareness of the electoral perception of electorates with the Openness to Experience trait as this will increase their support and yield successive results during elections.Keywords: electoral-behaviour, employees, non-teaching, openness-to-experience
Procedia PDF Downloads 635107 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation
Authors: Mohammad Abu-Shaira, Weishi Shi
Abstract:
Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression
Procedia PDF Downloads 115106 Anti-Western Sentiment amongst Arabs and How It Drives Support for Russia against Ukraine
Authors: Soran Tarkhani
Abstract:
A glance at social media shows that Russia's invasion of Ukraine receives considerable support among Arabs. This significant support for the Russian invasion of Ukraine is puzzling since most Arab leaders openly condemned the Russian invasion through the UN ES‑11/4 Resolution, and Arabs are among the first who experienced the devastating consequences of war firsthand. This article tries to answer this question by using multiple regression to analyze the online content of Arab responses to Russia's invasion of Ukraine on seven major news networks: CNN Arabic, BBC Arabic, Sky News Arabic, France24 Arabic, DW, Aljazeera, and Al-Arabiya. The article argues that the underlying reason for this Arab support is a reaction to the common anti-Western sentiments among Arabs. The empirical result from regression analysis supports the central arguments and uncovers the motivations behind the endorsement of the Russian invasion of Ukraine and the opposing Ukraine by many Arabs.Keywords: Ukraine, Russia, Arabs, Ukrainians, Russians, Putin, invasion, Europe, war
Procedia PDF Downloads 755105 Effects of Knitting Variables for Pressure Controlling of Tubular Compression Fabrics
Authors: Shi Yu, Rong Liu, Jingyun Lv
Abstract:
Compression textiles with ergonomic-fit and controllable pressure performance have demonstrated positive effect on prevention and treatment of chronic venous insufficiency (CVI). Well-designed compression textile products contribute to improving user compliance in their daily application. This study explored the effects of multiple knitting variables (yarn-machinery settings) on the physical-mechanical properties and the produced pressure magnitudes of tubular compression fabrics (TCFs) through experimental testing and multiple regression modeling. The results indicated that fabric physical (stitch densities and circumference) and mechanical (tensile) properties were affected by the linear density (yarn diameters) of inlay yarns, which, to some extent, influenced pressure magnitudes of the TCFs. Knitting variables (e.g., feeding velocity of inlay yarns and loop size settings) can alter circumferences and tensile properties of tubular fabrics, respectively, and significantly varied pressure values of the TCFs. This study enhanced the understanding of the effects of knitting factors on pressure controlling of TCFs, thus facilitating dimension and pressure design of compression textiles in future development.Keywords: laid-in knitted fabric, yarn-machinery settings, pressure magnitudes, quantitative analysis, compression textiles
Procedia PDF Downloads 2105104 Project Financing and Poverty Trends in the Islamic Development Bank Member Countries
Authors: Sennanda Musa, Ahmed Mutunzi Kitunzi, Gerald Kasigwa, Ismail Kintu
Abstract:
This paper is an analysis of the empirical relationship between project financing by Islamic Development Bank (IsDB) and the poverty trends in the context of countries benefiting from IsDB. Specifically, the study seeks to find out whether there is a statistically significant relationship between the project financing dollar amounts by IsDB (PF) and the GNI Per Capita, PPP of 57 countries for the years 2002 to 2021. The research is a longitudinal, desk-top triangulation of correlation, regression, hypothesis-testing employing the linear dynamic panel data GMM model as an estimator of the empirical relationships between the key variables of the study. The study results show that there is a significant positive relationship between the PF dollar amounts from the IsDB and the GNI Per Capita, PPP in these 57 countries. Therefore, countries that receive higher PF dollar amounts from the IsDB, generally have more GNI Per Capita, PPP (less poverty) than their counterparts. It is, therefore, recommendable for countries to formulate policies that facilitate Islamically financed projects to mitigate poverty. This paper develops policy discussions regarding allocation of political attention to the policy topics on poverty mitigation, and their relation to financing projects Islamically, thus generate information on policy choices regarding the Islamic financing alternative.Keywords: gross-national-income, IsDB-project-financing, public policy, poverty
Procedia PDF Downloads 895103 Prevalence and Factors Associated with Multiple Parasitic Infections among Rural Community in Kano State Nigeria
Authors: Salwa S. Dawaki, Init Ithoi, Sa’adatu I. Yelwa
Abstract:
Introduction: Parasitic infections are major public health problems worldwide, particularly in developing countries. Two third of the world population is infected while about 3 billion are at risk of parasitic infections. It is demonstrated that most parasitic infections occur as multiple infections especially among poor and rural communities of most countries in the tropical regions. Parasitic infections are endemic in Nigeria, yet multiple infections are rarely reported. The study aimed to estimate the prevalence and identify factors associating with multiple parasitic infections among rural population in Kano State Nigeria. Methodology: A cross-sectional survey was conducted from June to August 2013 in rural Kano State, Nigeria. Three samples stool, urine, and blood were collected from each of the 551 volunteers aged between one and ninety years old recruited for the survey. A pre-tested questionnaire was used to obtain epidemiological data. Data were analysed using appropriate descriptive, univariate and multivariate logistic regression methods. Major findings: The participants were 61.7% male, 38.3% female, and 69.0% were adults of 15 years and above. Overall, 463 (84%) were infected with parasitic infections among which 60.9% had multiple infections. A total of 15 parasitic species were recovered, and up to 8 different parasitic species were found concurrently in a single host. Plasmodium was the most common parasite followed by Blastocystis, Entamoeba species, and hookworms. It was found that presence of an infected family member (P = 0.017; OR = 1.52; 95% CI = 1.08, 2.13) and not wearing shoes outside home (P = 0.043; OR = 1.50; 95% CI = 1.01, 2.18) significantly associated with higher risk of having multiple parasitic infections among the studied population. Conclusion: Parasitic infections pose a public health challenge in the rural community of Kano. Multiple parasitic infections are highly prevalent and presence of an infected family member as well as not wearing proper foot wear outside home increases the risk of infection. Poor hygiene, unfavourable socioeconomic conditions, and culture promote survival and transmission of parasites. There is a need for implementation of integrated approach aimed at controlling or eliminating the infections with emphasis on public awareness.Keywords: multiple infections, parasitic infections, poor hygiene, risk of infection
Procedia PDF Downloads 1805102 Multivariate Analysis of Student’s Performance in Statistic Courses in Humanities Sciences
Authors: Carla Silva
Abstract:
The aim of this research is to study the relationship between the performance of humanities students in different statistics classes and their performance in their specific courses. Several factors are been studied, such as gender and final grades in statistics and math. Participants of this study comprised a sample of students at a Lisbon University during their academic year. A significant relationship tends to appear between these factors and the performance of these students. However this relationship tends to be stronger with students who had previous studied calculus and math.Keywords: education, performance, statistic, humanities
Procedia PDF Downloads 3235101 Removal of Phenol from Aqueous Solution Using Watermelon (Citrullus C. lanatus) Rind
Authors: Fidelis Chigondo
Abstract:
This study focuses on investigating the effectiveness of watermelon rind in phenol removal from aqueous solution. The effects of various parameters (pH, initial phenol concentration, biosorbent dosage and contact time) on phenol adsorption were investigated. The pH of 2, initial phenol concentration of 40 ppm, the biosorbent dosage of 0.6 g and contact time of 6 h also deduced to be the optimum conditions for the adsorption process. The maximum phenol removal under optimized conditions was 85%. The sorption data fitted to the Freundlich isotherm with a regression coefficient of 0.9824. The kinetics was best described by the intraparticle diffusion model and Elovich Equation with regression coefficients of 1 and 0.8461 respectively showing that the reaction is chemisorption on a heterogeneous surface and the intraparticle diffusion rate only is the rate determining step. The study revealed that watermelon rind has a potential of removing phenol from industrial wastewaters.Keywords: biosorption, phenol, biosorbent, watermelon rind
Procedia PDF Downloads 2475100 Discrete Sliding Modes Regulator with Exponential Holder for Non-Linear Systems
Authors: G. Obregon-Pulido , G. C. Solis-Perales, J. A. Meda-Campaña
Abstract:
In this paper, we present a sliding mode controller in discrete time. The design of the controller is based on the theory of regulation for nonlinear systems. In the problem of disturbance rejection and/or output tracking, it is known that in discrete time, a controller that uses the zero-order holder only guarantees tracking at the sampling instances but not between instances. It is shown that using the so-called exponential holder, it is possible to guarantee asymptotic zero output tracking error, also between the sampling instant. For stabilizing the problem of close loop system we introduce the sliding mode approach relaxing the requirements of the existence of a linear stabilizing control law.Keywords: regulation theory, sliding modes, discrete controller, ripple-free tracking
Procedia PDF Downloads 545099 Big Data Analysis with Rhipe
Authors: Byung Ho Jung, Ji Eun Shin, Dong Hoon Lim
Abstract:
Rhipe that integrates R and Hadoop environment made it possible to process and analyze massive amounts of data using a distributed processing environment. In this paper, we implemented multiple regression analysis using Rhipe with various data sizes of actual data. Experimental results for comparing the performance of our Rhipe with stats and biglm packages available on bigmemory, showed that our Rhipe was more fast than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases. We also compared the computing speeds of pseudo-distributed and fully-distributed modes for configuring Hadoop cluster. The results showed that fully-distributed mode was faster than pseudo-distributed mode, and computing speeds of fully-distributed mode were faster as the number of data nodes increases.Keywords: big data, Hadoop, Parallel regression analysis, R, Rhipe
Procedia PDF Downloads 4975098 Investigation of Dissolution in Diammonium Hydrogen Phosphate Solutions of Gypsum
Authors: Turan Çalban, Nursel Keskin, Sabri Çolak, Soner Kuşlu
Abstract:
Gypsum (CaSO4.2H2O) is a mineral that is found in large quantities in the Turkey and in the World. The dissolution of this mineral in the diammonium hydrogen phosphate solutions has not been studied so far. Investigation of the dissolution and dissolution kinetics gypsum in diammonium hydrogen phosphate solutions will be useful for evaluating of solid wastes containing gypsum. In this study, parameters such as diammonium hydrogen phosphate concentration, temperature and stirring speed affecting on the dissolution rate of the gypsum in diammonium hydrogen phosphate solutions were investigated. In experimental studies have researched effectiveness of the selected parameters. The dissolution of gypsum were examined in two parts at low and high temperatures. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. The activation energy was found to be 34.58 kJ/mol and 44.45 kJ/mol for the low and the high temperatures. The dissolution of gypsum was controlled by chemical reaction both low temperatures and high temperatures. Reaction rate expressions of dissolution of gypsum at the low temperatures and the high temperatures controlled by chemical reaction are as follows, respectively. = k1.e-5159.5/T.t = k2.e-5346.8/T.t Where k1 and k2 are constants depending on the diammonium hydrogen phosphate solution concentration, the solid/liquid ratio, the stirring speed and the particle size.Keywords: diammonium hydrogen phosphate, dissolution kinetics, gypsum, kinetics.
Procedia PDF Downloads 388