Search results for: link data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26028

Search results for: link data

24858 Decision Making System for Clinical Datasets

Authors: P. Bharathiraja

Abstract:

Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making.

Keywords: decision making, data mining, normalization, fuzzy rule, classification

Procedia PDF Downloads 519
24857 The Role of Gender Ideology in the Legality of Same-Sex Marriage: A Cross-National Analysis

Authors: Amber Salamanca-Blazek

Abstract:

This paper explores the connection between gender ideology and the legality of same-sex marriage cross-nationally. The author questions what role gender ideology plays in the cultural shift concerning same-sex marriage currently underway around the world and the variations in the legal treatment of same-sex marriage at the national level. Existing literature on gender, gender ideology, the role of gender ideology in traditional and same-sex marriage, and the extent to which this connection has previously been examined is explored. Also, the author explores the relationship between gender ideology and the legality of same-sex marriage in three countries with the differing legality of same-sex marriage - The United States, where same-sex marriage was legalized in 2015, Australia, where same-sex marriage was legalized in 2017, and Iran, where the death penalty for homosexuality still exists. A comparison of gender ideology frameworks and an analysis of the political rhetoric surrounding same-sex marriage in each country are performed. It is argued that the important role of gender ideology in the legality of same-sex marriage has been greatly ignored and is in need of increased attention to assist gay rights activists in their framework. The link of gender ideology and patriarchal authority between the gay rights movement and the women’s rights movement are subsequently discussed. The author argues that because of this linkage between movements, there is a necessity for joint frameworks. Suggestions for future research are also provided.

Keywords: gender ideology, same-sex marriage, same-sex marriage legality, women's rights movement

Procedia PDF Downloads 245
24856 Estimating Bridge Deterioration for Small Data Sets Using Regression and Markov Models

Authors: Yina F. Muñoz, Alexander Paz, Hanns De La Fuente-Mella, Joaquin V. Fariña, Guilherme M. Sales

Abstract:

The primary approach for estimating bridge deterioration uses Markov-chain models and regression analysis. Traditional Markov models have problems in estimating the required transition probabilities when a small sample size is used. Often, reliable bridge data have not been taken over large periods, thus large data sets may not be available. This study presents an important change to the traditional approach by using the Small Data Method to estimate transition probabilities. The results illustrate that the Small Data Method and traditional approach both provide similar estimates; however, the former method provides results that are more conservative. That is, Small Data Method provided slightly lower than expected bridge condition ratings compared with the traditional approach. Considering that bridges are critical infrastructures, the Small Data Method, which uses more information and provides more conservative estimates, may be more appropriate when the available sample size is small. In addition, regression analysis was used to calculate bridge deterioration. Condition ratings were determined for bridge groups, and the best regression model was selected for each group. The results obtained were very similar to those obtained when using Markov chains; however, it is desirable to use more data for better results.

Keywords: concrete bridges, deterioration, Markov chains, probability matrix

Procedia PDF Downloads 337
24855 Validation of Visibility Data from Road Weather Information Systems by Comparing Three Data Resources: Case Study in Ohio

Authors: Fan Ye

Abstract:

Adverse weather conditions, particularly those with low visibility, are critical to the driving tasks. However, the direct relationship between visibility distances and traffic flow/roadway safety is uncertain due to the limitation of visibility data availability. The recent growth of deployment of Road Weather Information Systems (RWIS) makes segment-specific visibility information available which can be integrated with other Intelligent Transportation System, such as automated warning system and variable speed limit, to improve mobility and safety. Before applying the RWIS visibility measurements in traffic study and operations, it is critical to validate the data. Therefore, an attempt was made in the paper to examine the validity and viability of RWIS visibility data by comparing visibility measurements among RWIS, airport weather stations, and weather information recorded by police in crash reports, based on Ohio data. The results indicated that RWIS visibility measurements were significantly different from airport visibility data in Ohio, but no conclusion regarding the reliability of RWIS visibility could be drawn in the consideration of no verified ground truth in the comparisons. It was suggested that more objective methods are needed to validate the RWIS visibility measurements, such as continuous in-field measurements associated with various weather events using calibrated visibility sensors.

Keywords: RWIS, visibility distance, low visibility, adverse weather

Procedia PDF Downloads 252
24854 Design and Simulation of All Optical Fiber to the Home Network

Authors: Rahul Malhotra

Abstract:

Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 558
24853 Troubleshooting Petroleum Equipment Based on Wireless Sensors Based on Bayesian Algorithm

Authors: Vahid Bayrami Rad

Abstract:

In this research, common methods and techniques have been investigated with a focus on intelligent fault finding and monitoring systems in the oil industry. In fact, remote and intelligent control methods are considered a necessity for implementing various operations in the oil industry, but benefiting from the knowledge extracted from countless data generated with the help of data mining algorithms. It is a avoid way to speed up the operational process for monitoring and troubleshooting in today's big oil companies. Therefore, by comparing data mining algorithms and checking the efficiency and structure and how these algorithms respond in different conditions, The proposed (Bayesian) algorithm using data clustering and their analysis and data evaluation using a colored Petri net has provided an applicable and dynamic model from the point of view of reliability and response time. Therefore, by using this method, it is possible to achieve a dynamic and consistent model of the remote control system and prevent the occurrence of leakage in oil pipelines and refineries and reduce costs and human and financial errors. Statistical data The data obtained from the evaluation process shows an increase in reliability, availability and high speed compared to other previous methods in this proposed method.

Keywords: wireless sensors, petroleum equipment troubleshooting, Bayesian algorithm, colored Petri net, rapid miner, data mining-reliability

Procedia PDF Downloads 67
24852 Fabrication of Modified Chitosan-Gold Nanoshell with Mercaptopropionic Acid(MPA) for γ-Aminobutyric Acid Detection as a Surface-Enhanced Raman Scattering Substrate

Authors: Bi Wa, Su-Yeon Kwon, Ik-Joong Kang

Abstract:

Surface-enhanced Raman Scattering (SERS) as the principle for enhancing Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures is used to detect the concentration change of γ-Aminobutyric Acid (GABA). GABA is the mainly inhibitory neurotransmitter in the mammalian central nervous system in the human body. It plays such significant role in reducing neuronal excitability throughout the nervous system. In this case, the Mercaptopropionic Acid (MPA) is used to modified chitosan –gold nanoshell, which enhances the absorption between GABA and Chitosan-gold nanoshell. The sulfur end of the MPA is linked to gold which is the surface of the chitosan nanoparticles via the very strong S–Au bond, while a functional group (carboxyl group) attached to GABA. The controlling of particles’ size and the surface morphology are also the important factors during the whole experiment. The particle around 100nm is using to link to MPA, and the range of GABA from 1mM to 30mM was detected by the Raman Scattering to obtain the calibrate curve. In this study, DLS, SEM, FT-IR, UV, SERS were used to analyze the products to obtain the conclusion.

Keywords: chitosan-gold nanoshell, mercaptopropionic acid, γ-aminobutyric acid, surface-enhanced raman scattering

Procedia PDF Downloads 244
24851 Wage Differentiation Patterns of Households Revisited for Turkey in Same Industry Employment: A Pseudo-Panel Approach

Authors: Yasin Kutuk, Bengi Yanik Ilhan

Abstract:

Previous studies investigate the wage differentiations among regions in Turkey between couples who work in the same industry and those who work in different industries by using the models that is appropriate for cross sectional data. However, since there is no available panel data for this investigation in Turkey, pseudo panels using repeated cross-section data sets of the Household Labor Force Surveys 2004-2014 are employed in order to open a new way to examine wage differentiation patterns. For this purpose, household heads are separated into groups with respect to their household composition. These groups’ membership is assumed to be fixed over time such as age groups, education, gender, and NUTS1 (12 regions) Level. The average behavior of them can be tracked overtime same as in the panel data. Estimates using the pseudo panel data would be consistent with the estimates using genuine panel data on individuals if samples are representative of the population which has fixed composition, characteristics. With controlling the socioeconomic factors, wage differentiation of household income is affected by social, cultural and economic changes after global economic crisis emerged in US. It is also revealed whether wage differentiation is changing among the birth cohorts.

Keywords: wage income, same industry, pseudo panel, panel data econometrics

Procedia PDF Downloads 399
24850 A New Approach for Improving Accuracy of Multi Label Stream Data

Authors: Kunal Shah, Swati Patel

Abstract:

Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. Classification is used to predict class of unseen instance as accurate as possible. Multi label classification is a variant of single label classification where set of labels associated with single instance. Multi label classification is used by modern applications, such as text classification, functional genomics, image classification, music categorization etc. This paper introduces the task of multi-label classification, methods for multi-label classification and evolution measure for multi-label classification. Also, comparative analysis of multi label classification methods on the basis of theoretical study, and then on the basis of simulation was done on various data sets.

Keywords: binary relevance, concept drift, data stream mining, MLSC, multiple window with buffer

Procedia PDF Downloads 586
24849 Secure Cryptographic Operations on SIM Card for Mobile Financial Services

Authors: Kerem Ok, Serafettin Senturk, Serdar Aktas, Cem Cevikbas

Abstract:

Mobile technology is very popular nowadays and it provides a digital world where users can experience many value-added services. Service Providers are also eager to offer diverse value-added services to users such as digital identity, mobile financial services and so on. In this context, the security of data storage in smartphones and the security of communication between the smartphone and service provider are critical for the success of these services. In order to provide the required security functions, the SIM card is one acceptable alternative. Since SIM cards include a Secure Element, they are able to store sensitive data, create cryptographically secure keys, encrypt and decrypt data. In this paper, we design and implement a SIM and a smartphone framework that uses a SIM card for secure key generation, key storage, data encryption, data decryption and digital signing for mobile financial services. Our frameworks show that the SIM card can be used as a controlled Secure Element to provide required security functions for popular e-services such as mobile financial services.

Keywords: SIM card, mobile financial services, cryptography, secure data storage

Procedia PDF Downloads 313
24848 Synthetic Data-Driven Prediction Using GANs and LSTMs for Smart Traffic Management

Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad

Abstract:

Smart cities and intelligent transportation systems rely heavily on effective traffic management and infrastructure planning. This research tackles the data scarcity challenge by generating realistically synthetic traffic data from the PeMS-Bay dataset, enhancing predictive modeling accuracy and reliability. Advanced techniques like TimeGAN and GaussianCopula are utilized to create synthetic data that mimics the statistical and structural characteristics of real-world traffic. The future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is anticipated to capture both spatial and temporal correlations, further improving data quality and realism. Each synthetic data generation model's performance is evaluated against real-world data to identify the most effective models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are employed to model and predict complex temporal dependencies within traffic patterns. This holistic approach aims to identify areas with low vehicle counts, reveal underlying traffic issues, and guide targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study facilitates data-driven decision-making that improves urban mobility, safety, and the overall efficiency of city planning initiatives.

Keywords: GAN, long short-term memory (LSTM), synthetic data generation, traffic management

Procedia PDF Downloads 15
24847 Informalization and Feminization of Labour Force in the Context of Globalization of Production: Case Study of Women Migrant Workers in Kinfra Apparel Park of India

Authors: Manasi Mahanty

Abstract:

In the current phase of globalization, the mobility of capital facilitates outsourcing and subcontracting of production processes to the developing economies for cheap and flexible labour force. In such process, the globalization of production networks operates at multi-locational points within the nation. Under the new quota regime in the globalization period, the Indian manufacturing exporters came under the influence of corporate buyers and large retailers from the importing countries. As part of such process, the garment manufacturing sector is expected to create huge employment opportunities and to expand the export market in the country. While following these, expectations, the apparel and garment industries mostly target to hire female migrant workers with a purpose of establishing more flexible industrial relations through the casual nature of employment contract. It leads to an increasing women’s participation in the labour market as well as the rise in precarious forms of female paid employment. In the context, the main objective of the paper is to understand the wider dynamics of globalization of production and its link with informalization, feminization of labour force and internal migration process of the country. For this purpose, the study examines the changing labour relations in the KINFRA Apparel Park at Kerala’s Special Economic Zone which operates under the scheme ‘Apparel Parks for Export’ (APE) of the Government of India. The present study was based on both quantitative and qualitative analysis. In the first, the secondary sources of data were collected from the source location (SEAM centre) and destination (KINFRA Park). The official figures and data were discussed and analyzed in order to find out the various dimensions of labour relations under globalization of production. In the second, the primary survey was conducted to make a comparative analysis of local and migrant female workers. The study is executed by taking 100 workers in total. The local workers comprised of 53% of the sample whereas the outside state workers were 47%. Even personal interviews with management staff, and workers were also made for collecting the information regarding the organisational structure, nature, and mode of recruitment, work environment, etc. The study shows the enormous presence of rural women migrant workers in KINFRA Apparel Park. A Public Private Partnership (PPP) arranged migration system is found as Skills for Employment in Apparel Manufacturing (SEAM) from where young women and girls are being sent to work in garment factories of Kerala’s KINFRA International Apparel Park under the guise of an apprenticeship based recruitment. The study concludes that such arrangements try to avoid standard employment relationships and strengthen informalization, casualization and contractualization of work. In this process, the recruitment of women migrant workers is to be considered as best option for the employers of private industries which could be more easily hired and fired.

Keywords: female migration, globalization, informalization, KINFRA apparel park

Procedia PDF Downloads 340
24846 Adaptation Measures as a Response to Climate Change Impacts and Associated Financial Implications for Construction Businesses by the Application of a Mixed Methods Approach

Authors: Luisa Kynast

Abstract:

It is obvious that buildings and infrastructure are highly impacted by climate change (CC). Both, design and material of buildings need to be resilient to weather events in order to shelter humans, animals, or goods. As well as buildings and infrastructure are exposed to weather events, the construction process itself is generally carried out outdoors without being protected from extreme temperatures, heavy rain, or storms. The production process is restricted by technical limitations for processing materials with machines and physical limitations due to human beings (“outdoor-worker”). In future due to CC, average weather patterns are expected to change as well as extreme weather events are expected to occur more frequently and more intense and therefore have a greater impact on production processes and on the construction businesses itself. This research aims to examine this impact by analyzing an association between responses to CC and financial performance of businesses within the construction industry. After having embedded the above depicted field of research into the resource dependency theory, a literature review was conducted to expound the state of research concerning a contingent relation between climate change adaptation measures (CCAM) and corporate financial performance for construction businesses. The examined studies prove that this field is rarely investigated, especially for construction businesses. Therefore, reports of the Carbon Disclosure Project (CDP) were analyzed by applying content analysis using the software tool MAXQDA. 58 construction companies – located worldwide – could be examined. To proceed even more systematically a coding scheme analogous to findings in literature was adopted. Out of qualitative analysis, data was quantified and a regression analysis containing corporate financial data was conducted. The results gained stress adaptation measures as a response to CC as a crucial proxy to handle climate change impacts (CCI) by mitigating risks and exploiting opportunities. In CDP reports the majority of answers stated increasing costs/expenses as a result of implemented measures. A link to sales/revenue was rarely drawn. Though, CCAM were connected to increasing sales/revenues. Nevertheless, this presumption is supported by the results of the regression analysis where a positive effect of implemented CCAM on construction businesses´ financial performance in the short-run was ascertained. These findings do refer to appropriate responses in terms of the implemented number of CCAM. Anyhow, still businesses show a reluctant attitude for implementing CCAM, which was confirmed by findings in literature as well as by findings in CDP reports. Businesses mainly associate CCAM with costs and expenses rather than with an effect on their corporate financial performance. Mostly companies underrate the effect of CCI and overrate the costs and expenditures for the implementation of CCAM and completely neglect the pay-off. Therefore, this research shall create a basis for bringing CC to the (financial) attention of corporate decision-makers, especially within the construction industry.

Keywords: climate change adaptation measures, construction businesses, financial implication, resource dependency theory

Procedia PDF Downloads 145
24845 New Approach for Minimizing Wavelength Fragmentation in Wavelength-Routed WDM Networks

Authors: Sami Baraketi, Jean Marie Garcia, Olivier Brun

Abstract:

Wavelength Division Multiplexing (WDM) is the dominant transport technology used in numerous high capacity backbone networks, based on optical infrastructures. Given the importance of costs (CapEx and OpEx) associated to these networks, resource management is becoming increasingly important, especially how the optical circuits, called “lightpaths”, are routed throughout the network. This requires the use of efficient algorithms which provide routing strategies with the lowest cost. We focus on the lightpath routing and wavelength assignment problem, known as the RWA problem, while optimizing wavelength fragmentation over the network. Wavelength fragmentation poses a serious challenge for network operators since it leads to the misuse of the wavelength spectrum, and then to the refusal of new lightpath requests. In this paper, we first establish a new Integer Linear Program (ILP) for the problem based on a node-link formulation. This formulation is based on a multilayer approach where the original network is decomposed into several network layers, each corresponding to a wavelength. Furthermore, we propose an efficient heuristic for the problem based on a greedy algorithm followed by a post-treatment procedure. The obtained results show that the optimal solution is often reached. We also compare our results with those of other RWA heuristic methods.

Keywords: WDM, lightpath, RWA, wavelength fragmentation, optimization, linear programming, heuristic

Procedia PDF Downloads 528
24844 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection

Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada

Abstract:

With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.

Keywords: machine learning, imbalanced data, data mining, big data

Procedia PDF Downloads 132
24843 Automatic Detection of Traffic Stop Locations Using GPS Data

Authors: Areej Salaymeh, Loren Schwiebert, Stephen Remias, Jonathan Waddell

Abstract:

Extracting information from new data sources has emerged as a crucial task in many traffic planning processes, such as identifying traffic patterns, route planning, traffic forecasting, and locating infrastructure improvements. Given the advanced technologies used to collect Global Positioning System (GPS) data from dedicated GPS devices, GPS equipped phones, and navigation tools, intelligent data analysis methodologies are necessary to mine this raw data. In this research, an automatic detection framework is proposed to help identify and classify the locations of stopped GPS waypoints into two main categories: signalized intersections or highway congestion. The Delaunay triangulation is used to perform this assessment in the clustering phase. While most of the existing clustering algorithms need assumptions about the data distribution, the effectiveness of the Delaunay triangulation relies on triangulating geographical data points without such assumptions. Our proposed method starts by cleaning noise from the data and normalizing it. Next, the framework will identify stoppage points by calculating the traveled distance. The last step is to use clustering to form groups of waypoints for signalized traffic and highway congestion. Next, a binary classifier was applied to find distinguish highway congestion from signalized stop points. The binary classifier uses the length of the cluster to find congestion. The proposed framework shows high accuracy for identifying the stop positions and congestion points in around 99.2% of trials. We show that it is possible, using limited GPS data, to distinguish with high accuracy.

Keywords: Delaunay triangulation, clustering, intelligent transportation systems, GPS data

Procedia PDF Downloads 276
24842 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data

Authors: Gayathri Nagarajan, L. D. Dhinesh Babu

Abstract:

Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.

Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform

Procedia PDF Downloads 241
24841 The Actuation of Semicrystalline Poly(Vinylidene Fluoride) Tie Molecules: A Computational and Experimental Study

Authors: Abas Mohsenzadeh, Tariq Bashir, Waseen Tahir, Ulf Stigh, Mikael Skrifvars, Kim Bolton

Abstract:

The area of artificial muscles has received significant attention from many research domains including soft robotics, biomechanics and smart textiles in recent years. Poly(vinylidene fluoride) (PVDF) has been used to form artificial muscles since it contracts upon heating when under load. In this study, PVDF fibers were produced by melt spinning technique at different solid state draw ratios and then actuation mechanism for PVDF tie molecules within the semicrystalline region of PVDF polymer has been investigated using molecular dynamics simulations. Tie molecules are polymer chains that link two (or more) crystalline regions in semicrystalline polymers. The changes in fiber length upon heating have been investigated using a novel simulation technique. The results show that conformational changes of the tie molecules from the longer all-trans conformation at low temperature (β structure) to the shorter conformation (α structure) at higher temperature accrue by increasing the temperature. These results may be applied to understand the actuation observed for PVDF upon heating.

Keywords: poly(vinylidene fluoride), molecular dynamics, simulation, actuators, tie molecules, semicrystalline

Procedia PDF Downloads 308
24840 Localized Recharge Modeling of a Coastal Aquifer from a Dam Reservoir (Korba, Tunisia)

Authors: Nejmeddine Ouhichi, Fethi Lachaal, Radhouane Hamdi, Olivier Grunberger

Abstract:

Located in Cap Bon peninsula (Tunisia), the Lebna dam was built in 1987 to balance local water salt intrusion taking place in the coastal aquifer of Korba. The first intention was to reduce coastal groundwater over-pumping by supplying surface water to a large irrigation system. The unpredicted beneficial effect was recorded with the occurrence of a direct localized recharge to the coastal aquifer by leakage through the geological material of the southern bank of the lake. The hydrological balance of the reservoir dam gave an estimation of the annual leakage volume, but dynamic processes and sound quantification of recharge inputs are still required to understand the localized effect of the recharge in terms of piezometry and quality. Present work focused on simulating the recharge process to confirm the hypothesis, and established a sound quantification of the water supply to the coastal aquifer and extend it to multi-annual effects. A spatial frame of 30km² was used for modeling. Intensive outcrops and geophysical surveys based on 68 electrical resistivity soundings were used to characterize the aquifer 3D geometry and the limit of the Plio-quaternary geological material concerned by the underground flow paths. Permeabilities were determined using 17 pumping tests on wells and piezometers. Six seasonal piezometric surveys on 71 wells around southern reservoir dam banks were performed during the 2019-2021 period. Eight monitoring boreholes of high frequency (15min) piezometric data were used to examine dynamical aspects. Model boundary conditions were specified using the geophysics interpretations coupled with the piezometric maps. The dam-groundwater flow model was performed using Visual MODFLOW software. Firstly, permanent state calibration based on the first piezometric map of February 2019 was established to estimate the permanent flow related to the different reservoir levels. Secondly, piezometric data for the 2019-2021 period were used for transient state calibration and to confirm the robustness of the model. Preliminary results confirmed the temporal link between the reservoir level and the localized recharge flow with a strong threshold effect for levels below 16 m.a.s.l. The good agreement of computed flow through recharge cells on the southern banks and hydrological budget of the reservoir open the path to future simulation scenarios of the dilution plume imposed by the localized recharge. The dam reservoir-groundwater flow-model simulation results approve a potential for storage of up to 17mm/year in existing wells, under gravity-feed conditions during level increases on the reservoir into the three years of operation. The Lebna dam groundwater flow model characterized a spatiotemporal relation between groundwater and surface water.

Keywords: leakage, MODFLOW, saltwater intrusion, surface water-groundwater interaction

Procedia PDF Downloads 138
24839 Analysis of Sediment Distribution around Karang Sela Coral Reef Using Multibeam Backscatter

Authors: Razak Zakariya, Fazliana Mustajap, Lenny Sharinee Sakai

Abstract:

A sediment map is quite important in the marine environment. The sediment itself contains thousands of information that can be used for other research. This study was conducted by using a multibeam echo sounder Reson T20 on 15 August 2020 at the Karang Sela (coral reef area) at Pulau Bidong. The study aims to identify the sediment type around the coral reef by using bathymetry and backscatter data. The sediment in the study area was collected as ground truthing data to verify the classification of the seabed. A dry sieving method was used to analyze the sediment sample by using a sieve shaker. PDS 2000 software was used for data acquisition, and Qimera QPS version 2.4.5 was used for processing the bathymetry data. Meanwhile, FMGT QPS version 7.10 processes the backscatter data. Then, backscatter data were analyzed by using the maximum likelihood classification tool in ArcGIS version 10.8 software. The result identified three types of sediments around the coral which were very coarse sand, coarse sand, and medium sand.

Keywords: sediment type, MBES echo sounder, backscatter, ArcGIS

Procedia PDF Downloads 87
24838 The Second Generation of Tyrosine Kinase Inhibitor Afatinib Controls Inflammation by Regulating NLRP3 Inflammasome Activation

Authors: Shujun Xie, Shirong Zhang, Shenglin Ma

Abstract:

Background: Chronic inflammation might lead to many malignancies, and inadequate resolution could play a crucial role in tumor invasion, progression, and metastases. A randomised, double-blind, placebo-controlled trial shows that IL-1β inhibition with canakinumab could reduce incident lung cancer and lung cancer mortality in patients with atherosclerosis. The process and secretion of proinflammatory cytokine IL-1β are controlled by the inflammasome. Here we showed the correlation of the innate immune system and afatinib, a tyrosine kinase inhibitor targeting epidermal growth factor receptor (EGFR) in non-small cell lung cancer. Methods: Murine Bone marrow derived macrophages (BMDMs), peritoneal macrophages (PMs) and THP-1 were used to check the effect of afatinib on the activation of NLRP3 inflammasome. The assembly of NLRP3 inflammasome was check by co-immunoprecipitation of NLRP3 and apoptosis-associated speck-like protein containing CARD (ASC), disuccinimidyl suberate (DSS)-cross link of ASC. Lipopolysaccharide (LPS)-induced sepsis and Alum-induced peritonitis were conducted to confirm that afatinib could inhibit the activation of NLRP3 in vivo. Peripheral blood mononuclear cells (PBMCs) from non-small cell lung cancer (NSCLC) patients before or after taking afatinib were used to check that afatinib inhibits inflammation in NSCLC therapy. Results: Our data showed that afatinib could inhibit the secretion of IL-1β in a dose-dependent manner in macrophage. Moreover, afatinib could inhibit the maturation of IL-1β and caspase-1 without affecting the precursors of IL-1β and caspase-1. Next, we found that afatinib could block the assembly of NLRP3 inflammasome and the ASC speck by blocking the interaction of the sensor protein NLRP3 and the adaptor protein ASC. We also found that afatinib was able to alleviate the LPS-induced sepsis in vivo. Conclusion: Our study found that afatinib could inhibit the activation of NLRP3 inflammasome in macrophage, providing new evidence that afatinib could target the innate immune system to control chronic inflammation. These investigations will provide significant experimental evidence in afatinib as therapeutic drug for non-small cell lung cancer or other tumors and NLRP3-related diseases and will explore new targets for afatinib.

Keywords: inflammasome, afatinib, inflammation, tyrosine kinase inhibitor

Procedia PDF Downloads 119
24837 Generalized Extreme Value Regression with Binary Dependent Variable: An Application for Predicting Meteorological Drought Probabilities

Authors: Retius Chifurira

Abstract:

Logistic regression model is the most used regression model to predict meteorological drought probabilities. When the dependent variable is extreme, the logistic model fails to adequately capture drought probabilities. In order to adequately predict drought probabilities, we use the generalized linear model (GLM) with the quantile function of the generalized extreme value distribution (GEVD) as the link function. The method maximum likelihood estimation is used to estimate the parameters of the generalized extreme value (GEV) regression model. We compare the performance of the logistic and the GEV regression models in predicting drought probabilities for Zimbabwe. The performance of the regression models are assessed using the goodness-of-fit tests, namely; relative root mean square error (RRMSE) and relative mean absolute error (RMAE). Results show that the GEV regression model performs better than the logistic model, thereby providing a good alternative candidate for predicting drought probabilities. This paper provides the first application of GLM derived from extreme value theory to predict drought probabilities for a drought-prone country such as Zimbabwe.

Keywords: generalized extreme value distribution, general linear model, mean annual rainfall, meteorological drought probabilities

Procedia PDF Downloads 201
24836 Carbonation and Mechanical Performance of Reactive Magnesia Based Formulations

Authors: Cise Unluer

Abstract:

Reactive MgO hydrates to form brucite (Mg(OH)2, magnesium hydroxide), which can then react with CO2 and additional water to form a range of strength providing hydrated magnesium carbonates (HMCs) within cement-based formulations. The presented work focuses on the use of reactive MgO in a range of concrete mixes, where it carbonates by absorbing CO2 and gains strength accordingly. The main goal involves maximizing the amount of CO2 absorbed within construction products, thereby reducing the overall environmental impact of the designed formulations. Microstructural analyses including scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetry/differential thermal analysis (TG/DTA) are used in addition to porosity, permeability and unconfined compressive strength (UCS) testing to understand the performance mechanisms. XRD Reference Intensity Ratio (RIR), acid digestion and TG/DTA are utilized to quantify the amount of CO2 sequestered, with the goal of achieving 100% carbonation through careful mix design, leading to a range of carbon neutral products with high strengths. As a result, samples stronger than those containing Portland cement (PC) were produced, revealing the link between the mechanical performance and microstructural development of the developed formulations with the amount of CO2 sequestered.

Keywords: carbonation, compressive strength, reactive MgO cement, sustainability

Procedia PDF Downloads 181
24835 Umkhonto Wesizwe as the Foundation of Post-Apartheid South Africa’s Foreign Policy and International Relations.

Authors: Bheki R. Mngomezulu

Abstract:

The present paper cogently and systematically traces the history of Umkhonto Wesizwe (MK) and identifies its important role in shaping South Africa’s post-apartheid foreign policy and international relations under black leadership. It provides the political and historical contexts within which we can interpret and better understand South Africa’s controversial ‘Quiet Diplomacy’ approach to Zimbabwe’s endemic political and economic crises, which have dragged for too long. On 16 December 1961, the African National Congress (ANC) officially launched the MK as its military wing. The main aim was to train liberation fighters outside South Africa who would return into the country to topple the apartheid regime. Subsequently, the ANC established links with various countries across Africa and the globe in order to solicit arms, financial resources and military training for its recruits into the MK. Drawing from archival research and empirical data obtained through oral interviews that were conducted with some of the former MK cadres, this paper demonstrates how the ANC forged relations with a number of countries that were like-minded in order to ensure that its dream of removing the apartheid government became a reality. The findings reveal that South Africa’s foreign policy posture and international relations after the demise of apartheid in 1994 built on these relations. As such, even former and current socialist countries that were frowned upon by the Western world became post-apartheid South Africa’s international partners. These include countries such as Cuba and China, among others. Even countries that were not recognized by the Western world as independent states received good reception in post-apartheid South Africa’s foreign policy agenda. One of these countries is Palestine. Within Africa, countries with questionable human rights records such as Nigeria and Zimbabwe were accommodated in South Africa’s foreign policy agenda after 1994. Drawing from this history, the paper concludes that it would be difficult to fully understand and appreciate South Africa’s foreign policy direction and international relations after 1994 without bringing the history and the politics of the MK into the equation. Therefore, the paper proposes that the utilitarian role of history should never be undermined in the analysis of a country’s foreign policy direction and international relations. Umkhonto Wesizwe and South Africa are used as examples to demonstrate how such a link could be drawn through archival and empirical evidence.

Keywords: African National Congress, apartheid, foreign policy, international relations

Procedia PDF Downloads 190
24834 Risk Screening in Digital Insurance Distribution: Evidence and Explanations

Authors: Finbarr Murphy, Wei Xu, Xian Xu

Abstract:

The embedding of digital technologies in the global economy has attracted increasing attention from economists. With a large and detailed dataset, this study examines the specific case where consumers have a choice between offline and digital channels in the context of insurance purchases. We find that digital channels screen consumers with lower unobserved risk. For the term life, endowment, and disease insurance products, the average risk of the policies purchased through digital channels was 75%, 21%, and 31%, respectively, lower than those purchased offline. As a consequence, the lower unobserved risk leads to weaker information asymmetry and higher profitability of digital channels. We highlight three mechanisms of the risk screening effect: heterogeneous marginal influence of channel features on insurance demand, the channel features directly related to risk control, and the link between the digital divide and risk. We also find that the risk screening effect mainly comes from the extensive margin, i.e., from new consumers. This paper contributes to three connected areas in the insurance context: the heterogeneous economic impacts of digital technology adoption, insurer-side risk selection, and insurance marketing.

Keywords: digital economy, information asymmetry, insurance, mobile application, risk screening

Procedia PDF Downloads 75
24833 Protection against the Hazards of Stress on Health in Older Adults through Mindfulness

Authors: Cindy de Frias, Erum Whyne

Abstract:

Objectives: The current study examined whether the link between stress and health-related quality of life was buffered by protective factors, namely mindfulness, in a sample of middle-aged and older adults. Method: In this cross-sectional study, 134 healthy, community-dwelling adults (aged 50–85 years) were recruited from Dallas, Texas. The participants were screened for depressive symptoms and severity (using the Patient Health Questionnaire [PHQ-9]). All participants completed measures of self-reported health status (i.e., SF-36v2: mental and physical health composites), life stress (using the Elder’s Life Stress Inventory [ELSI]), and trait mindfulness (i.e., Mindful Attention Awareness Scale). Results: Hierarchical regressions (covarying for age, gender, and education) showed that life stress was inversely related to physical and mental health. Mindfulness was positively related to mental health. The negative effect of life stress on mental health was weakened for those individuals with greater trait mindfulness. Discussion: The results suggest that mindfulness is a powerful, adaptive strategy that may protect middle-aged and older adults from the well-known harmful effects of stress on healthy aging.

Keywords: health, stress, mindfulness, aging

Procedia PDF Downloads 464
24832 Location Privacy Preservation of Vehicle Data In Internet of Vehicles

Authors: Ying Ying Liu, Austin Cooke, Parimala Thulasiraman

Abstract:

Internet of Things (IoT) has attracted a recent spark in research on Internet of Vehicles (IoV). In this paper, we focus on one research area in IoV: preserving location privacy of vehicle data. We discuss existing location privacy preserving techniques and provide a scheme for evaluating these techniques under IoV traffic condition. We propose a different strategy in applying Differential Privacy using k-d tree data structure to preserve location privacy and experiment on real world Gowalla data set. We show that our strategy produces differentially private data, good preservation of utility by achieving similar regression accuracy to the original dataset on an LSTM (Long Term Short Term Memory) neural network traffic predictor.

Keywords: differential privacy, internet of things, internet of vehicles, location privacy, privacy preservation scheme

Procedia PDF Downloads 180
24831 Mother-Child Attachment and Anxiety Symptoms in Middle Childhood: Differences in Levels of Attachment Security

Authors: Simran Sharda

Abstract:

There is increasing evidence that leads psychologists today to believe that the attachment formed between a mother and child plays a much more profound role in later-life outcomes than previously expected. Particularly, the fact that a link may exist between maternal attachment and the development in addition to the severity of social anxiety in middle childhood seems to be gaining ground. This research will examine and address a myriad of major issues related to the impact of mother-child attachment: behaviors of children with different levels of secure attachment, various aspects of anxiety in relation to attachment security as well as other styles of mother-child attachments, especially avoidant attachment and over-attachment. This analysis serves to compile previous literature on the subject and touch light upon a logical extension of the research. Moreover, researchers have identified links between attachment and the externalization of problem behaviors: these behaviors may later manifest as social anxiety as well as increased severity and likelihood of PTSD diagnosis (an anxiety disorder). Furthermore, secure attachment has been linked to increased health benefits, cognitive skills, emotive socialization, and developmental psychopathology.

Keywords: child development, anxiety, cognition, developmental psychopathology, mother-child relationships, maternal, cognitive development

Procedia PDF Downloads 160
24830 Shopping Centers and Public Transport: Study of the Shopping Centres Trips of Algiers City

Authors: Bakhrouri Sarah

Abstract:

The city of Algiers constitutes the first commercial pole of the country; 56.3% of its economic entities come from the commercial sector. Shopping centers are the new form of commerce that has emerged in the city since the 2000s. They are considered to be commercial and leisure poles and major generators of travel. However, shopping centers in the capital Algiers are poorly served by public transport, and their choice of location is mainly conditioned by the availability of land; accessibility by public transport does not appear to be an important criterion in the choice of their location. As a result, travel to and from these commercial centers is mainly by car, which breaks with the sustainability objectives of national transportation policy. Our study attempts to examine the impact of public transport accessibility of shopping centers on consumers' travel behaviour. The main objective of this research is to determine the link between the accessibility of these facilities, the use of private cars, and public transport modes. To this end, we analyze the choice of travel mode of consumers and the different factors that determine it by focusing on the influence of accessibility. The results showed a considerable influence of the accessibility on the travel behavior of the consumer in Algiers, so it is recommended to improve the accessibility of shopping centers by public transport in order to contribute to a modal shift.

Keywords: accessibility, shopping centers trips, public transportation, Algiers

Procedia PDF Downloads 100
24829 Investigating Data Normalization Techniques in Swarm Intelligence Forecasting for Energy Commodity Spot Price

Authors: Yuhanis Yusof, Zuriani Mustaffa, Siti Sakira Kamaruddin

Abstract:

Data mining is a fundamental technique in identifying patterns from large data sets. The extracted facts and patterns contribute in various domains such as marketing, forecasting, and medical. Prior to that, data are consolidated so that the resulting mining process may be more efficient. This study investigates the effect of different data normalization techniques, which are Min-max, Z-score, and decimal scaling, on Swarm-based forecasting models. Recent swarm intelligence algorithms employed includes the Grey Wolf Optimizer (GWO) and Artificial Bee Colony (ABC). Forecasting models are later developed to predict the daily spot price of crude oil and gasoline. Results showed that GWO works better with Z-score normalization technique while ABC produces better accuracy with the Min-Max. Nevertheless, the GWO is more superior that ABC as its model generates the highest accuracy for both crude oil and gasoline price. Such a result indicates that GWO is a promising competitor in the family of swarm intelligence algorithms.

Keywords: artificial bee colony, data normalization, forecasting, Grey Wolf optimizer

Procedia PDF Downloads 478