Search results for: gaussian mixture model (GMM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17762

Search results for: gaussian mixture model (GMM)

16592 Constructing a Probabilistic Ontology from a DBLP Data

Authors: Emna Hlel, Salma Jamousi, Abdelmajid Ben Hamadou

Abstract:

Every model for knowledge representation to model real-world applications must be able to cope with the effects of uncertain phenomena. One of main defects of classical ontology is its inability to represent and reason with uncertainty. To remedy this defect, we try to propose a method to construct probabilistic ontology for integrating uncertain information in an ontology modeling a set of basic publications DBLP (Digital Bibliography & Library Project) using a probabilistic model.

Keywords: classical ontology, probabilistic ontology, uncertainty, Bayesian network

Procedia PDF Downloads 337
16591 Acausal and Causal Model Construction with FEM Approach Using Modelica

Authors: Oke Oktavianty, Tadayuki Kyoutani, Shigeyuki Haruyama, Junji Kaneko, Ken Kaminishi

Abstract:

Modelica has many advantages and it is very useful in modeling and simulation especially for the multi-domain with a complex technical system. However, the big obstacle for a beginner is to understand the basic concept and to build a new system model for a real system. In order to understand how to solve the simple circuit model by hand translation and to get a better understanding of how modelica works, we provide a detailed explanation about solver ordering system in horizontal and vertical sorting and make some proposals for improvement. In this study, some difficulties in using modelica software with the original concept and the comparison with Finite Element Method (FEM) approach is discussed. We also present our textual modeling approach using FEM concept for acausal and causal model construction. Furthermore, simulation results are provided that demonstrate the comparison between using textual modeling with original coding in modelica and FEM concept.

Keywords: FEM, a causal model, modelica, horizontal and vertical sorting

Procedia PDF Downloads 299
16590 Feasibility of Simulating External Vehicle Aerodynamics Using Spalart-Allmaras Turbulence Model with Adjoint Method in OpenFOAM and Fluent

Authors: Arpit Panwar, Arvind Deshpande

Abstract:

The study of external vehicle aerodynamics using Spalart-Allmaras turbulence model with adjoint method was conducted. The accessibility and ease of working with the Fluent module of ANSYS and OpenFOAM were considered. The objective of the study was to understand and analyze the possibility of bringing high-level aerodynamic simulation to the average consumer vehicle. A form-factor of BMW M6 vehicle was designed in Solidworks, which was analyzed in OpenFOAM and Fluent. The turbulence model being a single equation provides much faster convergence rate when clubbed with the adjoint method. Fluent being commercial software still does not allow us to solve Spalart-Allmaras turbulence model using the adjoint method. Hence, the turbulence model was solved using the SIMPLE method in Fluent. OpenFOAM being an open source provide flexibility in simulation but is not user-friendly. It supports solving the defined turbulence model with the adjoint method. The result generated from the simulation gives us acceptable values of drag, when validated with the result of percentage error in drag values for a notch-back vehicle model on an extensive simulation produced at 6th ANSA and μETA conference, Greece. The success of this approach will allow us to bring more aerodynamic vehicle body design to all segments of the automobile and not limiting it to just the high-end sports cars.

Keywords: Spalart-Allmaras turbulence model, OpenFOAM, adjoint method, SIMPLE method, vehicle aerodynamic design

Procedia PDF Downloads 193
16589 A Study of Two Disease Models: With and Without Incubation Period

Authors: H. C. Chinwenyi, H. D. Ibrahim, J. O. Adekunle

Abstract:

The incubation period is defined as the time from infection with a microorganism to development of symptoms. In this research, two disease models: one with incubation period and another without incubation period were studied. The study involves the use of a  mathematical model with a single incubation period. The test for the existence and stability of the disease free and the endemic equilibrium states for both models were carried out. The fourth order Runge-Kutta method was used to solve both models numerically. Finally, a computer program in MATLAB was developed to run the numerical experiments. From the results, we are able to show that the endemic equilibrium state of the model with incubation period is locally asymptotically stable whereas the endemic equilibrium state of the model without incubation period is unstable under certain conditions on the given model parameters. It was also established that the disease free equilibrium states of the model with and without incubation period are locally asymptotically stable. Furthermore, results from numerical experiments using empirical data obtained from Nigeria Centre for Disease Control (NCDC) showed that the overall population of the infected people for the model with incubation period is higher than that without incubation period. We also established from the results obtained that as the transmission rate from susceptible to infected population increases, the peak values of the infected population for the model with incubation period decrease and are always less than those for the model without incubation period.

Keywords: asymptotic stability, Hartman-Grobman stability criterion, incubation period, Routh-Hurwitz criterion, Runge-Kutta method

Procedia PDF Downloads 164
16588 A Cognitive Schema of Architectural Designing Activity

Authors: Abdelmalek Arrouf

Abstract:

This article sets up a cognitive schema of the architectural designing activity. It begins by outlining, theoretically, an a priori model of its general cognitive mechanisms. The obtained theoretical framework represents the designing activity as a complex system composed of three interrelated subsystems of cognitive actions: a subsystem of meaning production, one of morphology production and finally a subsystem of navigation between the two formers. A protocol analysis that uses statistical and informational tools is then used to measure the validity of the built schema. The model thus achieved shows that the designer begins by conceiving abstract meanings, which he then translates into shapes. That’s why we call it a semio-morphic model of the designing activity.

Keywords: designing actions, model of the design process, morphosis, protocol analysis, semiosis

Procedia PDF Downloads 162
16587 Stabilizing of Lithium-Solid-Electrolyte Interfaces by Atomic Layer Deposition Prepared Nano-Interlayers for a Model All-Solid-State Battery

Authors: Rainer Goetz, Zahra Ahaliabadeh, Princess S. Llanos, Aliaksandr S. Bandarenka, Tanja Kallio

Abstract:

In order to understand the electrochemistry of all-solid-state batteries (ASSBs), the use of electrochemical equivalent circuits with a physical meaning is essential. A model battery is needed whose characterization is independent of the influence of the complex battery assembly. Lithium-Ion Conducting Glass-Ceramic (LICGC), a model solid electrolyte, is chosen for its stability in the air, but on the other hand, it is also well-known for its instability against metallic lithium upon direct contact. Hence, as a first step towards a model ASSB, the interface between lithium and the solid electrolyte (SE) is stabilized with thin (5 nm and 10 nm) coatings of titanium oxide (TO) and lithium titanium oxide (LTO). Impedance data shows that both materials are able to protect the SE surface from rapid degradation due to reducing lithium and, therefore, can serve as a protective interlayer on the anode side of a model ASSB.

Keywords: all-solid-state battery, lithium anode, solid electrolytes, interlayers

Procedia PDF Downloads 100
16586 Hybrid Equity Warrants Pricing Formulation under Stochastic Dynamics

Authors: Teh Raihana Nazirah Roslan, Siti Zulaiha Ibrahim, Sharmila Karim

Abstract:

A warrant is a financial contract that confers the right but not the obligation, to buy or sell a security at a certain price before expiration. The standard procedure to value equity warrants using call option pricing models such as the Black–Scholes model had been proven to contain many flaws, such as the assumption of constant interest rate and constant volatility. In fact, existing alternative models were found focusing more on demonstrating techniques for pricing, rather than empirical testing. Therefore, a mathematical model for pricing and analyzing equity warrants which comprises stochastic interest rate and stochastic volatility is essential to incorporate the dynamic relationships between the identified variables and illustrate the real market. Here, the aim is to develop dynamic pricing formulations for hybrid equity warrants by incorporating stochastic interest rates from the Cox-Ingersoll-Ross (CIR) model, along with stochastic volatility from the Heston model. The development of the model involves the derivations of stochastic differential equations that govern the model dynamics. The resulting equations which involve Cauchy problem and heat equations are then solved using partial differential equation approaches. The analytical pricing formulas obtained in this study comply with the form of analytical expressions embedded in the Black-Scholes model and other existing pricing models for equity warrants. This facilitates the practicality of this proposed formula for comparison purposes and further empirical study.

Keywords: Cox-Ingersoll-Ross model, equity warrants, Heston model, hybrid models, stochastic

Procedia PDF Downloads 121
16585 Physico-Chemical and Microbial Changes of Organic Fertilizers after Compositing Processes under Arid Conditions

Authors: Oustani Mabrouka, Halilat Med Tahar

Abstract:

The physico-chemical properties of poultry droppings indicate that this waste can be an excellent way to enrich the soil with low fertility that is the case in arid soils (low organic matter content), but its concentrations in some microbial and chemical components make them potentially dangerous and toxic contaminants if they are used directly in fresh state. On other hand, the accumulation of plant residues in the crop areas can become a source of plant disease and affects the quality of the environment. The biotechnological processes that we have identified appear to alleviate these problems. It leads to the stabilization and processing of wastes into a product of good hygienic quality and high fertilizer value by the composting test. In this context, a trial was conducted in composting operations in the region of Ouargla located in southern Algeria. Composing test was conducted in a completely randomized design experiment. Three mixtures were prepared, in pits of 1 m3 volume for each mixture. Each pit is composed by mixture of poultry droppings and crushed plant residues in amount of 40 and 60% respectively: C1: Droppings + Straw (P.D +S) , C2: Poultry Droppings + Olive Wastes (P.D+O.W) , C3: Poultry Droppings + Date palm residues (P.D+D.P). Before and after the composting process, physico-chemical parameters (temperature, moisture, pH, electrical conductivity, total carbon and total nitrogen) were studied. The stability of the biological system was noticed after 90 days. The results of physico-chemical and microbiological compost obtained from three mixtures: C1: (P.D +S) , C2: (P.D+O.W) and C3: (P.D +D.P) shows at the end of composting process, three composts characterized by the final products were characterized by their high agronomic and environmental interest with a good physico chemical characteristics in particularly a low C/N ratio with 15.15, 10.01 and 15.36 % for (P.D + S), (P.D. + O.W) and (P.D. +D.P), respectively, reflecting a stabilization and maturity of the composts. On the other hand, a significant increase of temperature was recorded at the first days of composting for all treatments, which is correlated with a strong reduction of the pathogenic micro flora contained in poultry dropings.

Keywords: Arid environment, Composting, Date palm residues, Olive wastes, pH, Pathogenic microorganisms, Poultry Droppings, Straw

Procedia PDF Downloads 225
16584 Evaluation of Solid-Gas Separation Efficiency in Natural Gas Cyclones

Authors: W. I. Mazyan, A. Ahmadi, M. Hoorfar

Abstract:

Objectives/Scope: This paper proposes a mathematical model for calculating the solid-gas separation efficiency in cyclones. This model provides better agreement with experimental results compared to existing mathematical models. Methods: The separation ratio efficiency, ϵsp, is evaluated by calculating the outlet to inlet count ratio. Similar to mathematical derivations in the literature, the inlet and outlet particle count were evaluated based on Eulerian approach. The model also includes the external forces acting on the particle (i.e., centrifugal and drag forces). In addition, the proposed model evaluates the exact length that the particle travels inside the cyclone for the evaluation of number of turns inside the cyclone. The separation efficiency model derivation using Stoke’s law considers the effect of the inlet tangential velocity on the separation performance. In cyclones, the inlet velocity is a very important factor in determining the performance of the cyclone separation. Therefore, the proposed model provides accurate estimation of actual cyclone separation efficiency. Results/Observations/Conclusion: The separation ratio efficiency, ϵsp, is studied to evaluate the performance of the cyclone for particles ranging from 1 microns to 10 microns. The proposed model is compared with the results in the literature. It is shown that the proposed mathematical model indicates an error of 7% between its efficiency and the efficiency obtained from the experimental results for 1 micron particles. At the same time, the proposed model gives the user the flexibility to analyze the separation efficiency at different inlet velocities. Additive Information: The proposed model determines the separation efficiency accurately and could also be used to optimize the separation efficiency of cyclones at low cost through trial and error testing, through dimensional changes to enhance separation and through increasing the particle centrifugal forces. Ultimately, the proposed model provides a powerful tool to optimize and enhance existing cyclones at low cost.

Keywords: cyclone efficiency, solid-gas separation, mathematical model, models error comparison

Procedia PDF Downloads 383
16583 Development of an Instructional Model for Health Education Based On Social Cognitive Theory and Strategic Life Planning to Enhance Self-Regulation and Learning Achievement of Lower Secondary School Students

Authors: Adisorn Bansong, Walai Isarankura Na Ayudhaya, Aumporn Makanong

Abstract:

A Development of an Instructional Model for Health Education was the aim to develop and study the effectiveness of an instructional model for health education to enhance self-regulation and learning achievement of lower secondary school students. It was the Quasi-Experimental Designs, used a Single-group Interrupted Time-series Designs, conducted by 2 phases: 1. To develop an instructional model based on Social Cognitive Theory and Strategic Life Planning. 2. To trial and evaluate effectiveness of an instructional model. The results as the following: i. An Instructional Model for Health Education consists of five main components: a) Attention b) Forethought c) Tactic Planning d) Execution and e) Reflection. ii. After an Instructional Model for Health Education has used for a semester trial, found the 4.07 percent of sample’s Self-Regulation higher and learning achievement on post-test were significantly higher than pre-test at .05 levels (p = .033, .000).

Keywords: social cognitive theory, strategic life planning, self-regulation, learning achievement

Procedia PDF Downloads 451
16582 LACGC: Business Sustainability Research Model for Generations Consumption, Creation, and Implementation of Knowledge: Academic and Non-Academic

Authors: Satpreet Singh

Abstract:

This paper introduces the new LACGC model to sustain the academic and non-academic business to future educational and organizational generations. The consumption of knowledge and the creation of new knowledge is a strength and focal interest of all academics and Non-academic organizations. Implementing newly created knowledge sustains the businesses to the next generation with growth without detriment. Existing models like the Scholar-practitioner model and Organization knowledge creation models focus specifically on academic or non-academic, not both. LACGC model can be used for both Academic and Non-academic at the domestic or international level. Researchers and scholars play a substantial role in finding literature and practice gaps in academic and non-academic disciplines. LACGC model has unrestricted the number of recurrences because the Consumption, Creation, and implementation of new ideas, disciplines, systems, and knowledge is a never-ending process and must continue from one generation to the next.

Keywords: academics, consumption, creation, generations, non-academics, research, sustainability

Procedia PDF Downloads 181
16581 Simulation and Assessment of Carbon Dioxide Separation by Piperazine Blended Solutions Using E-NRTL and Peng-Robinson Models: Study of Regeneration Heat Duty

Authors: Arash Esmaeili, Zhibang Liu, Yang Xiang, Jimmy Yun, Lei Shao

Abstract:

A high-pressure carbon dioxide (CO₂) absorption from a specific off-gas in a conventional column has been evaluated for the environmental concerns by the Aspen HYSYS simulator using a wide range of single absorbents and piperazine (PZ) blended solutions to estimate the outlet CO₂ concentration, CO₂ loading, reboiler power supply, and regeneration heat duty to choose the most efficient solution in terms of CO₂ removal and required heat duty. The property package, which is compatible with all applied solutions for the simulation in this study, estimates the properties based on the electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for vapor phase and liquid hydrocarbon phase properties. The results of the simulation indicate that piperazine, in addition to the mixture of piperazine and monoethanolamine (MEA), demands the highest regeneration heat duty compared with other studied single and blended amine solutions, respectively. The blended amine solutions with the lowest PZ concentrations (5wt% and 10wt%) were considered and compared to reduce the cost of the process, among which the blended solution of 10wt%PZ+35wt%MDEA (methyldiethanolamine) was found as the most appropriate solution in terms of CO₂ content in the outlet gas, rich-CO₂ loading, and regeneration heat duty.

Keywords: absorption, amine solutions, aspen HYSYS, CO₂ loading, piperazine, regeneration heat duty

Procedia PDF Downloads 173
16580 Vortices Structure in Internal Laminar and Turbulent Flows

Authors: Farid Gaci, Zoubir Nemouchi

Abstract:

A numerical study of laminar and turbulent fluid flows in 90° bend of square section was carried out. Three-dimensional meshes, based on hexahedral cells, were generated. The QUICK scheme was employed to discretize the convective term in the transport equations. The SIMPLE algorithm was adopted to treat the velocity-pressure coupling. The flow structure obtained showed interesting features such as recirculation zones and counter-rotating pairs of vortices. The performance of three different turbulence models was evaluated: the standard k- ω model, the SST k-ω model and the Reynolds Stress Model (RSM). Overall, it was found that, the multi-equation model performed better than the two equation models. In fact, the existence of four pairs of counter rotating cells, in the straight duct upstream of the bend, were predicted by the RSM closure but not by the standard eddy viscosity model nor the SST k-ω model. The analysis of the results led to a better understanding of the induced three dimensional secondary flows and the behavior of the local pressure coefficient and the friction coefficient.

Keywords: curved duct, counter-rotating cells, secondary flow, laminar, turbulent

Procedia PDF Downloads 327
16579 The Network Relative Model Accuracy (NeRMA) Score: A Method to Quantify the Accuracy of Prediction Models in a Concurrent External Validation

Authors: Carl van Walraven, Meltem Tuna

Abstract:

Background: Network meta-analysis (NMA) quantifies the relative efficacy of 3 or more interventions from studies containing a subgroup of interventions. This study applied the analytical approach of NMA to quantify the relative accuracy of prediction models with distinct inclusion criteria that are evaluated on a common population (‘concurrent external validation’). Methods: We simulated binary events in 5000 patients using a known risk function. We biased the risk function and modified its precision by pre-specified amounts to create 15 prediction models with varying accuracy and distinct patient applicability. Prediction model accuracy was measured using the Scaled Brier Score (SBS). Overall prediction model accuracy was measured using fixed-effects methods that accounted for model applicability patterns. Prediction model accuracy was summarized as the Network Relative Model Accuracy (NeRMA) Score which ranges from -∞ through 0 (accuracy of random guessing) to 1 (accuracy of most accurate model in concurrent external validation). Results: The unbiased prediction model had the highest SBS. The NeRMA score correctly ranked all simulated prediction models by the extent of bias from the known risk function. A SAS macro and R-function was created to implement the NeRMA Score. Conclusions: The NeRMA Score makes it possible to quantify the accuracy of binomial prediction models having distinct inclusion criteria in a concurrent external validation.

Keywords: prediction model accuracy, scaled brier score, fixed effects methods, concurrent external validation

Procedia PDF Downloads 219
16578 Virtual Co-Creation Model in Hijab Fashion Industry: Business Model Approach

Authors: Lisandy A. Suryana, Lidia Mayangsari, Santi Novani

Abstract:

Creative industry in Indonesia become an important aspect of the economy. One of the sectors of creative industry which give the highest contribution toward Indonesia’s GDP is fashion sector. In line with the target of Indonesia in 2020 to be the qibla’ of moeslem fashion of the world, all of the stakeholders of the business ecosystem should collaborate. Rather than focus on the internal aspects of producer, external aspects such as customers, government, community, etc. become important to be involved in the ecosystem to support the development and sustainability of those fashion sector. Unfortunately, although Indonesia has the biggest moeslem population, the number of hijab business penetration only 10%. Therefore, this research aims to analyze and develop the virtual co-creation platform for hijab creative industry as the strategy to achieve sustainability and increase the market share. This preliminary research describes the main stakeholders in the hijab creative industry based on business model approach. This business model is adapted by considering the service science context, and the data is collected by using the qualitative approach especially in-depth interview. This business model shows the relationship between resource integration, value co-creation, the value proposition of the company, and also the financial aspect of the business.

Keywords: value co-creation, Hijab Fashion Industry, creative industry, service business model, business model canvas

Procedia PDF Downloads 370
16577 Physicochemical Investigation of Caffeic Acid and Caffeinates with Chosen Metals (Na, Mg, Al, Fe, Ru, Os)

Authors: Włodzimierz Lewandowski, Renata Świsłocka, Aleksandra Golonko, Grzegorz Świderski, Monika Kalinowska

Abstract:

Caffeic acid (3,4-dihydroxycinnamic) is distributed in a free form or as ester conjugates in many fruits, vegetables and seasonings including plants used for medical purpose. Caffeic acid is present in propolis – a substance with exceptional healing properties used in natural medicine since ancient times. The antioxidant, antibacterial, antiinflammatory and anticarcinogenic properties of caffeic acid are widely described in the literature. The biological activity of chemical compounds can be modified by the synthesis of their derivatives or metal complexes. The structure of the compounds determines their biological properties. This work is a continuation of the broader topic concerning the investigation of the correlation between the electronic charge distribution and biological (anticancer and antioxidant) activity of the chosen phenolic acids and their metal complexes. In the framework of this study the synthesis of new metal complexes of sodium, magnesium, aluminium, iron (III) ruthenium (III) and osmium (III) with caffeic acid was performed. The spectroscopic properties of these compounds were studied by means of FT-IR, FT-Raman, UV-Vis, ¹H and ¹³C NMR. The quantum-chemical calculations (at B3LYP/LAN L2DZ level) of caffeic acid and selected complexes were done. Moreover the antioxidant properties of synthesized complexes were studied in relation to selected stable radicals (method of reduction of DPPH and method of reduction of ABTS). On the basis of the differences in the number, intensity and locations of the bands from the IR, Raman, UV/Vis and NMR spectra of caffeic acid and its metal complexes the effect of metal cations on the electronic system of ligand was discussed. The geometry, theoretical spectra and electronic charge distribution were calculated by the use of Gaussian 09 programme. The geometric aromaticity indices (Aj – normalized function of the variance in bond lengths; BAC - bond alternation coefficient; HOMA – harmonic oscillator model of aromaticity and I₆ – Bird’s index) were calculated and the changes in the aromaticity of caffeic acid and its complexes was discussed. This work was financially supported by National Science Centre, Poland, under the research project number 2014/13/B/NZ7/02-352.

Keywords: antioxidant properties, caffeic acid, metal complexes, spectroscopic methods

Procedia PDF Downloads 203
16576 Interaction between Space Syntax and Agent-Based Approaches for Vehicle Volume Modelling

Authors: Chuan Yang, Jing Bie, Panagiotis Psimoulis, Zhong Wang

Abstract:

Modelling and understanding vehicle volume distribution over the urban network are essential for urban design and transport planning. The space syntax approach was widely applied as the main conceptual and methodological framework for contemporary vehicle volume models with the help of the statistical method of multiple regression analysis (MRA). However, the MRA model with space syntax variables shows a limitation in vehicle volume predicting in accounting for the crossed effect of the urban configurational characters and socio-economic factors. The aim of this paper is to construct models by interacting with the combined impact of the street network structure and socio-economic factors. In this paper, we present a multilevel linear (ML) and an agent-based (AB) vehicle volume model at an urban scale interacting with space syntax theoretical framework. The ML model allowed random effects of urban configurational characteristics in different urban contexts. And the AB model was developed with the incorporation of transformed space syntax components of the MRA models into the agents’ spatial behaviour. Three models were implemented in the same urban environment. The ML model exhibit superiority over the original MRA model in identifying the relative impacts of the configurational characters and macro-scale socio-economic factors that shape vehicle movement distribution over the city. Compared with the ML model, the suggested AB model represented the ability to estimate vehicle volume in the urban network considering the combined effects of configurational characters and land-use patterns at the street segment level.

Keywords: space syntax, vehicle volume modeling, multilevel model, agent-based model

Procedia PDF Downloads 127
16575 An Integrated Mixed-Integer Programming Model to Address Concurrent Project Scheduling and Material Ordering

Authors: Babak H. Tabrizi, Seyed Farid Ghaderi

Abstract:

Concurrent planning of project scheduling and material ordering can provide more flexibility to the project scheduling problem, as the project execution costs can be enhanced. Hence, the issue has been taken into account in this paper. To do so, a mixed-integer mathematical model is developed which considers the aforementioned flexibility, in addition to the materials quantity discount and space availability restrictions. Moreover, the activities duration has been treated as decision variables. Finally, the efficiency of the proposed model is tested by different instances. Additionally, the influence of the aforementioned parameters is investigated on the model performance.

Keywords: material ordering, project scheduling, quantity discount, space availability

Procedia PDF Downloads 357
16574 A Fuzzy Structural Equation Model for Development of a Safety Performance Index Assessment Tool in Construction Sites

Authors: Murat Gunduz, Mustafa Ozdemir

Abstract:

In this research, a framework is to be proposed to model the safety performance in construction sites. Determinants of safety performance are to be defined through extensive literature review and a multidimensional safety performance model is to be developed. In this context, a questionnaire is to be administered to construction companies with sites. The collected data through questionnaires including linguistic terms are then to be defuzzified to get concrete numbers by using fuzzy set theory which provides strong and significant instruments for the measurement of ambiguities and provides the opportunity to meaningfully represent concepts expressed in the natural language. The validity of the proposed safety performance model, relationships between determinants of safety performance are to be analyzed using the structural equation modeling (SEM) which is a highly strong multi variable analysis technique that makes possible the evaluation of latent structures. After validation of the model, a safety performance index assessment tool is to be proposed by the help of software. The proposed safety performance assessment tool will be based on the empirically validated theoretical model.

Keywords: Fuzzy set theory, safety performance assessment, safety index, structural equation modeling (SEM), construction sites

Procedia PDF Downloads 511
16573 Data Collection with Bounded-Sized Messages in Wireless Sensor Networks

Authors: Min Kyung An

Abstract:

In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models.

Keywords: data collection, collision-free, interference-free, physical interference model, SINR, approximation, bounded-sized message model, wireless sensor networks

Procedia PDF Downloads 209
16572 The Effects of a Thin Liquid Layer on the Hydrodynamic Machine Rotor

Authors: Jaroslav Krutil, František Pochylý, Simona Fialová, Vladimír Habán

Abstract:

A mathematical model of the additional effects of the liquid in the hydrodynamic gap is presented in the paper. An in-compressible viscous fluid is considered. Based on computational modeling are determined the matrices of mass, stiffness and damping. The mathematical model is experimentally verified.

Keywords: computational modeling, mathematical model, hydrodynamic gap, matrices of mass, stiffness and damping

Procedia PDF Downloads 544
16571 Coordination Behavior, Theoretical Studies, and Biological Activity of Some Transition Metal Complexes with Oxime Ligands

Authors: Noura Kichou, Manel Tafergguenit, Nabila Ghechtouli, Zakia Hank

Abstract:

The aim of this work is to synthesize, characterize and evaluate the biological activity of two Ligands : glyoxime and dimethylglyoxime, and their metal Ni(II) chelates. The newly chelates were characterized by elemental analysis, IR, EPR, nuclear magnetic resonances (1H and 13C), and biological activity. The antibacterial and antifungal activities of the ligands and its metal complexes were screened against bacterial species (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli) and fungi (Candida albicans). Ampicillin and amphotericin were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with parent free ligand against bacterial and fungal species. A structural, energetic, and electronic theoretical study was carried out using the DFT method, with the functional B3LYP and the gaussian program 09. A complete optimization of geometries was made, followed by a calculation of the frequencies of the normal modes of vibration. The UV spectrum was also interpreted. The theoretical results were compared with the experimental data.

Keywords: glyoxime, dimetylglyoxime, nickel, antibacterial activity

Procedia PDF Downloads 92
16570 Coordination Behavior, Theoretical studies and Biological Activity of Some Transition Metal Complexes with Oxime Ligands

Authors: Noura Kichou, Manel Tafergguenit, Nabila Ghechtouli, Zakia Hank

Abstract:

The aim of this work is to synthesize, characterize and evaluate the biological activity of two Ligands: glyoxime and dimethylglyoxime, and their metal Ni(II) chelates. The newly chelates were characterized by elemental analysis, IR, EPR, nuclear magnetic resonances (1H and 13C), and biological activity. The antibacterial and antifungal activities of the ligands and its metal complexes were screened against bacterial species (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli) and fungi (Candida albicans). Ampicillin and amphotericin were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with parent free ligand against bacterial and fungal species. A structural, energetic, and electronic theoretical study was carried out using the DFT method, with the functional B3LYP and the gaussian program 09. A complete optimization of geometries was made, followed by a calculation of the frequencies of the normal modes of vibration. The UV spectrum was also interpreted. The theoretical results were compared with the experimental data.

Keywords: glyoxime, dimetylglyoxime, nickel, antibacterial activity

Procedia PDF Downloads 100
16569 Spatio-Temporal Properties of p53 States Raised by Glucose

Authors: Md. Jahoor Alam

Abstract:

Recent studies suggest that Glucose controls several lifesaving pathways. Glucose molecule is reported to be responsible for the production of ROS (reactive oxygen species). In the present work, a p53-MDM2-Glucose model is developed in order to study spatiotemporal properties of the p53 pathway. The systematic model is mathematically described. The model is numerically simulated using high computational facility. It is observed that the variation in glucose concentration level triggers the system at different states, namely, oscillation death (stabilized), sustain and damped oscillations which correspond to various cellular states. The transition of these states induced by glucose is phase transition-like behaviour. Further, the amplitude of p53 dynamics with the variation of glucose concentration level follows power law behaviour, As(k) ~ kϒ, where, ϒ is a constant. Further Stochastic approach is needed for understanding of realistic behaviour of the model. The present model predicts the variation of p53 states under the influence of glucose molecule which is also supported by experimental facts reported by various research articles.

Keywords: oscillation, temporal behavior, p53, glucose

Procedia PDF Downloads 287
16568 Clustering Based Level Set Evaluation for Low Contrast Images

Authors: Bikshalu Kalagadda, Srikanth Rangu

Abstract:

The important object of images segmentation is to extract objects with respect to some input features. One of the important methods for image segmentation is Level set method. Generally medical images and synthetic images with low contrast of pixel profile, for such images difficult to locate interested features in images. In conventional level set function, develops irregularity during its process of evaluation of contour of objects, this destroy the stability of evolution process. For this problem a remedy is proposed, a new hybrid algorithm is Clustering Level Set Evolution. Kernel fuzzy particles swarm optimization clustering with the Distance Regularized Level Set (DRLS) and Selective Binary, and Gaussian Filtering Regularized Level Set (SBGFRLS) methods are used. The ability of identifying different regions becomes easy with improved speed. Efficiency of the modified method can be evaluated by comparing with the previous method for similar specifications. Comparison can be carried out by considering medical and synthetic images.

Keywords: segmentation, clustering, level set function, re-initialization, Kernel fuzzy, swarm optimization

Procedia PDF Downloads 342
16567 Experimental Validation of a Mathematical Model for Sizing End-of-Production-Line Test Benches for Electric Motors of Electric Vehicle

Authors: Emiliano Lustrissimi, Bonifacio Bianco, Sebastiano Caravaggi, Antonio Rosato

Abstract:

A mathematical framework has been designed to enhance the configuration of an end-of-production-line (EOL) test bench. This system can be used to assess the performance of electric motors or axles intended for electric vehicles. The model has been developed to predict the behaviour of EOL test benches and electric motors/axles under various boundary conditions, eliminating the need for extensive physical testing and reducing the corresponding power consumption. The suggested model is versatile, capable of being utilized across various types of electric motors or axles, and adaptable to accommodate varying power ratings of electric motors or axles. The maximum performance to be guaranteed by the EMs according to the car maker's specifications are taken as inputs in the model. Then, the required performance of each main EOL test bench component is calculated, and the corresponding systems available on the market are selected based on manufacturers’ catalogues. In this study, an EOL test bench has been designed according to the proposed model outputs for testing a low-power (about 22 kW) electric axle. The performance of the designed EOL test bench has been measured and used to validate the proposed model and assess both the consistency of the constraints as well as the accuracy of predictions in terms of electric demands. The comparison between experimental and predicted data exhibited a reasonable agreement, allowing to demonstrate that, despite some discrepancies, the model gives an accurate representation of the EOL test benches' performance.

Keywords: electric motors, electric vehicles, end-of-production-line test bench, mathematical model, field tests

Procedia PDF Downloads 39
16566 A Practical and Efficient Evaluation Function for 3D Model Based Vehicle Matching

Authors: Yuan Zheng

Abstract:

3D model-based vehicle matching provides a new way for vehicle recognition, localization and tracking. Its key is to construct an evaluation function, also called fitness function, to measure the degree of vehicle matching. The existing fitness functions often poorly perform when the clutter and occlusion exist in traffic scenarios. In this paper, we present a practical and efficient fitness function. Unlike the existing evaluation functions, the proposed fitness function is to study the vehicle matching problem from both local and global perspectives, which exploits the pixel gradient information as well as the silhouette information. In view of the discrepancy between 3D vehicle model and real vehicle, a weighting strategy is introduced to differently treat the fitting of the model’s wireframes. Additionally, a normalization operation for the model’s projection is performed to improve the accuracy of the matching. Experimental results on real traffic videos reveal that the proposed fitness function is efficient and robust to the cluttered background and partial occlusion.

Keywords: 3D-2D matching, fitness function, 3D vehicle model, local image gradient, silhouette information

Procedia PDF Downloads 385
16565 Study of Crashworthiness Behavior of Thin-Walled Tube under Axial Loading by Using Computational Mechanics

Authors: M. Kamal M. Shah, Noorhifiantylaily Ahmad, O. Irma Wani, J. Sahari

Abstract:

This paper presents the computationally mechanics analysis of energy absorption for cylindrical and square thin wall tubed structure by using ABAQUS/explicit. The crashworthiness behavior of AISI 1020 mild steel thin-walled tube under axial loading has been studied. The influence effects of different model’s cross-section, as well as model length on the crashworthiness behavior of thin-walled tube, are investigated. The model was placed on loading platform under axial loading with impact velocity of 5 m/s to obtain the deformation results of each model under quasi-static loading. The results showed that model undergoes different deformation mode exhibits different energy absorption performance.

Keywords: axial loading, computational mechanics, energy absorption performance, crashworthiness behavior, deformation mode

Procedia PDF Downloads 430
16564 Impact of Neuron with Two Dendrites in Heart Behavior

Authors: Kaouther Selmi, Alaeddine Sridi, Mohamed Bouallegue, Kais Bouallegue

Abstract:

Neurons are the fundamental units of the brain and the nervous system. The variable structure model of neurons consists of a system of differential equations with various parameters. By optimizing these parameters, we can create a unique model that describes the dynamic behavior of a single neuron. We introduce a neural network based on neurons with multiple dendrites employing an activation function with a variable structure. In this paper, we present a model for heart behavior. Finally, we showcase our successful simulation of the heart's ECG diagram using our Variable Structure Neuron Model (VSMN). This result could provide valuable insights into cardiology.

Keywords: neural networks, neuron, dendrites, heart behavior, ECG

Procedia PDF Downloads 71
16563 Experimental Study of Sand-Silt Mixtures with Torsional and Flexural Resonant Column Tests

Authors: Meghdad Payan, Kostas Senetakis, Arman Khoshghalb, Nasser Khalili

Abstract:

Dynamic properties of soils, especially at the range of very small strains, are of particular interest in geotechnical engineering practice for characterization of the behavior of geo-structures subjected to a variety of stress states. This study reports on the small-strain dynamic properties of sand-silt mixtures with particular emphasis on the effect of non-plastic fines content on the small strain shear modulus (Gmax), Young’s Modulus (Emax), material damping (Ds,min) and Poisson’s Ratio (v). Several clean sands with a wide range of grain size characteristics and particle shape are mixed with variable percentages of a silica non-plastic silt as fines content. Prepared specimens of sand-silt mixtures at different initial void ratios are subjected to sequential torsional and flexural resonant column tests with elastic dynamic properties measured along an isotropic stress path up to 800 kPa. It is shown that while at low percentages of fines content, there is a significant difference between the dynamic properties of the various samples due to the different characteristics of the sand portion of the mixtures, this variance diminishes as the fines content increases and the soil behavior becomes mainly silt-dominant, rendering no significant influence of sand properties on the elastic dynamic parameters. Indeed, beyond a specific portion of fines content, around 20% to 30% typically denoted as threshold fines content, silt is controlling the behavior of the mixture. Using the experimental results, new expressions for the prediction of small-strain dynamic properties of sand-silt mixtures are developed accounting for the percentage of silt and the characteristics of the sand portion. These expressions are general in nature and are capable of evaluating the elastic dynamic properties of sand-silt mixtures with any types of parent sand in the whole range of silt percentage. The inefficiency of skeleton void ratio concept in the estimation of small-strain stiffness of sand-silt mixtures is also illustrated.

Keywords: damping ratio, Poisson’s ratio, resonant column, sand-silt mixture, shear modulus, Young’s modulus

Procedia PDF Downloads 244