Search results for: fraud prevention and detection
3830 'CardioCare': A Cutting-Edge Fusion of IoT and Machine Learning to Bridge the Gap in Cardiovascular Risk Management
Authors: Arpit Patil, Atharav Bhagwat, Rajas Bhope, Pramod Bide
Abstract:
This research integrates IoT and ML to predict heart failure risks, utilizing the Framingham dataset. IoT devices gather real-time physiological data, focusing on heart rate dynamics, while ML, specifically Random Forest, predicts heart failure. Rigorous feature selection enhances accuracy, achieving over 90% prediction rate. This amalgamation marks a transformative step in proactive healthcare, highlighting early detection's critical role in cardiovascular risk mitigation. Challenges persist, necessitating continual refinement for improved predictive capabilities.Keywords: cardiovascular diseases, internet of things, machine learning, cardiac risk assessment, heart failure prediction, early detection, cardio data analysis
Procedia PDF Downloads 113829 Role of Internal and External Factors in Preventing Risky Sexual Behavior, Drug and Alcohol Abuse
Authors: Veronika Sharok
Abstract:
Research relevance on psychological determinants of risky behaviors is caused by high prevalence of such behaviors, particularly among youth. Risky sexual behavior, including unprotected and casual sex, frequent change of sexual partners, drug and alcohol use lead to negative social consequences and contribute to the spread of HIV infection and other sexually transmitted diseases. Data were obtained from 302 respondents aged 15-35 which were divided into 3 empirical groups: persons prone to risky sexual behavior, drug users and alcohol users; and 3 control groups: the individuals who are not prone to risky sexual behavior, persons who do not use drugs and the respondents who do not use alcohol. For processing, we used the following methods: Qualitative method for nominative data (Chi-squared test) and quantitative methods for metric data (student's t-test, Fisher's F-test, Pearson's r correlation test). Statistical processing was performed using Statistica 6.0 software. The study identifies two groups of factors that prevent risky behaviors. Internal factors, which include the moral and value attitudes; significance of existential values: love, life, self-actualization and search for the meaning of life; understanding independence as a responsibility for the freedom and ability to get attached to someone or something up to a point when this relationship starts restricting the freedom and becomes vital; awareness of risky behaviors as dangerous for the person and for others; self-acknowledgement. External factors (prevent risky behaviors in case of absence of the internal ones): absence of risky behaviors among friends and relatives; socio-demographic characteristics (middle class, marital status); awareness about the negative consequences of risky behaviors; inaccessibility to psychoactive substances. These factors are common for proneness to each type of risky behavior, because it usually caused by the same reasons. It should be noted that if prevention of risky behavior is based only on elimination of external factors, it is not as effective as it may be if we pay more attention to internal factors. The results obtained in the study can be used to develop training programs and activities for prevention of risky behaviors, for using values preventing such behaviors and promoting healthy lifestyle.Keywords: existential values, prevention, psychological features, risky behavior
Procedia PDF Downloads 2563828 School Emergency Drills Evaluation through E-PreS Monitoring System
Authors: A. Kourou, A. Ioakeimidou, V. Avramea
Abstract:
Planning for natural disasters and emergencies is something every school or educational institution must consider, regardless of its size or location. Preparedness is the key to save lives if a disaster strikes. School disaster management mirrors individual and family disaster prevention, and wider community disaster prevention efforts. This paper presents the usage of E-PreS System as a helpful, managerial tool during the school earthquake drill, in order to support schools in developing effective disaster and emergency plans specific to their local needs. The project comes up with a holistic methodology using real-time evaluation involving different categories of actors, districts, steps and metrics. The main outcomes of E-PreS project are the development of E-PreS web platform that host the needed data of school emergency planning; the development of E-PreS System; the implementation of disaster drills using E-PreS System in educational premises and local schools; and the evaluation of E-PreS System. Taking into consideration that every disaster drill aims to test and valid school plan and procedures; clarify and train personnel in roles and responsibilities; improve interagency coordination; identify gaps in resources; improve individual performance; and identify opportunities for improvement, E-PreS Project was submitted and approved by the European Commission (EC).Keywords: disaster drills, earthquake preparedness, E-PreS System, school emergency plans
Procedia PDF Downloads 2283827 Parkinson’s Disease Detection Analysis through Machine Learning Approaches
Authors: Muhtasim Shafi Kader, Fizar Ahmed, Annesha Acharjee
Abstract:
Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used.Keywords: naive bayes, adaptive boosting, bagging classifier, decision tree classifier, random forest classifier, XBG classifier, k nearest neighbor classifier, support vector classifier, gradient boosting classifier
Procedia PDF Downloads 1293826 Numerical Simulation of Fiber Bragg Grating Spectrum for Mode-І Delamination Detection
Authors: O. Hassoon, M. Tarfoui, A. El Malk
Abstract:
Fiber Bragg optic sensor embedded in composite material to detect and monitor the damage which is occur in composite structure. In this paper we deal with the mode-Ι delamination to determine the resistance of material to crack propagation, and use the coupling mode theory and T-matrix method to simulating the FBGs spectrum for both uniform and non-uniform strain distribution. The double cantilever beam test which is modeling in FEM to determine the Longitudinal strain, there are two models which are used, the first is the global half model, and the second the sub-model to represent the FBGs with refine mesh. This method can simulate the damage in the composite structure and converting the strain to wavelength shifting of the FBG spectrum.Keywords: fiber bragg grating, delamination detection, DCB, FBG spectrum, structure health monitoring
Procedia PDF Downloads 3623825 Somatosensory Detection Wristbands Applied Research of Baby
Authors: Chang Ting, Wu Chun Kuan
Abstract:
Wireless sensing technology is increasingly developed, in order to avoid caregiver neglect children in poor physiological condition, so there are more and more products into the wireless sensor-related technologies, in order to reduce the risk of infants. In view of this, the study will focus on Somatosensory detection wristbands Applied Research of Baby, and to explore through observation and literature, to find design criteria which conform baby products, as well as the advantages and disadvantages of existing products. This study will focus on 0-2 years of infant research and product design, to provide 2-3 new design concepts and products to identify weaknesses through the use of the actual product, further provide future baby wristbands design reference.Keywords: infants, observation, design criteria, wireless sensing
Procedia PDF Downloads 3113824 On the Use of Analytical Performance Models to Design a High-Performance Active Queue Management Scheme
Authors: Shahram Jamali, Samira Hamed
Abstract:
One of the open issues in Random Early Detection (RED) algorithm is how to set its parameters to reach high performance for the dynamic conditions of the network. Although original RED uses fixed values for its parameters, this paper follows a model-based approach to upgrade performance of the RED algorithm. It models the routers queue behavior by using the Markov model and uses this model to predict future conditions of the queue. This prediction helps the proposed algorithm to make some tunings over RED's parameters and provide efficiency and better performance. Widespread packet level simulations confirm that the proposed algorithm, called Markov-RED, outperforms RED and FARED in terms of queue stability, bottleneck utilization and dropped packets count.Keywords: active queue management, RED, Markov model, random early detection algorithm
Procedia PDF Downloads 5393823 A Conceptual Model of Sex Trafficking Dynamics in the Context of Pandemics and Provisioning Systems
Authors: Brian J. Biroscak
Abstract:
In the United States (US), “sex trafficking” is defined at the federal level in the Trafficking Victims Protection Act of 2000 as encompassing a number of processes such as recruitment, transportation, and provision of a person for the purpose of a commercial sex act. It involves the use of force, fraud, or coercion, or in which the person induced to perform such act has not attained 18 years of age. Accumulating evidence suggests that sex trafficking is exacerbated by social and environmental stressors (e.g., pandemics). Given that “provision” is a key part of the definition, “provisioning systems” may offer a useful lens through which to study sex trafficking dynamics. Provisioning systems are the social systems connecting individuals, small groups, entities, and embedded communities as they seek to satisfy their needs and wants for goods, services, experiences and ideas through value-based exchange in communities. This project presents a conceptual framework for understanding sex trafficking dynamics in the context of the COVID pandemic. The framework is developed as a system dynamics simulation model based on published evidence, social and behavioral science theory, and key informant interviews with stakeholders from the Protection, Prevention, Prosecution, and Partnership sectors in one US state. This “4 P Paradigm” has been described as fundamental to the US government’s anti-trafficking strategy. The present research question is: “How do sex trafficking systems (e.g., supply, demand and price) interact with other provisioning systems (e.g., networks of organizations that help sexually exploited persons) to influence trafficking over time vis-à-vis the COVID pandemic?” Semi-structured interviews with stakeholders (n = 19) were analyzed based on grounded theory and combined for computer simulation. The first step (Problem Definition) was completed by open coding video-recorded interviews, supplemented by a literature review. The model depicts provision of sex trafficking services for victims and survivors as declining in March 2020, coincidental with COVID, but eventually rebounding. The second modeling step (Dynamic Hypothesis Formulation) was completed by open- and axial coding of interview segments, as well as consulting peer-reviewed literature. Part of the hypothesized explanation for changes over time is that the sex trafficking system behaves somewhat like a commodities market, with each of the other subsystems exhibiting delayed responses but collectively keeping trafficking levels below what they would be otherwise. Next steps (Model Building & Testing) led to a ‘proof of concept’ model that can be used to conduct simulation experiments and test various action ideas, by taking model users outside the entire system and seeing it whole. If sex trafficking dynamics unfold as hypothesized, e.g., oscillated post-COVID, then one potential leverage point is to address the lack of information feedback loops between the actual occurrence and consequences of sex trafficking and those who seek to prevent its occurrence, prosecute the traffickers, protect the victims and survivors, and partner with the other anti-trafficking advocates. Implications for researchers, administrators, and other stakeholders are discussed.Keywords: pandemics, provisioning systems, sex trafficking, system dynamics modeling
Procedia PDF Downloads 793822 Identification of Crimean-Congo Hemorrhagic Fever Virus in Patients Referred to Ahvaz and Gilan Hospitals in Iran by real-time PCR Technique
Authors: Najmeh Jafari, Sona Rostampour Yasouri
Abstract:
Crimean-Congo hemorrhagic fever (CCHF) is an acute hemorrhagic disease. This disease is one of the common diseases between humans and animals, transmitted through tick bites or contact with the blood and secretions or carcasses of infected animals and humans. CCHF is more common in people who work with livestock, such as ranchers, butchers, farmers, slaughterhouse workers, healthcare workers, etc. Its hospital prevalence is also very high. Considering that CCHF can be transmitted through the consumption of food such as beef and sheep meat, this study aims to quickly identify and diagnose the Crimean-Congo fever virus in suspected patients through real-time PCR technique. In the summer of 1402, 20 blood samples were collected separately from Ahvaz and Gilan hospitals. An extraction kit was used to extract the virus RNA. Primers and probes were designed based on the S genomic region, the conserved region in CCHFV. Then, a real-time PCR technique was performed with specific primers and probes. It should be noted that the mentioned technique was repeated several times. The number of 4 samples from the examined samples was determined positive by real-time PCR. This technique has high sensitivity and specificity and the possibility of rapid detection of CCHFV. Therefore, the above method is a good candidate for quick disease diagnosis. By diagnosing the disease, the treatment process can be done faster, and the best prevention methods can be used to control the disease and prevent the death of patients.Keywords: ahvaz, crimean-congo hemorrhagic fever, gilan, real time PCR
Procedia PDF Downloads 733821 Development of a Work-Related Stress Management Program Guaranteeing Fitness-For-Duty for Human Error Prevention
Authors: Hyeon-Kyo Lim, Tong-Il Jang, Yong-Hee Lee
Abstract:
Human error is one of the most dreaded factors that may result in unexpected accidents, especially in nuclear power plants. For accident prevention, it is quite indispensable to analyze and to manage the influence of any factor which may raise the possibility of human errors. Out of lots factors, stress has been reported to have a significant influence on human performance. Therefore, this research aimed to develop a work-related stress management program which can guarantee Fitness-for-Duty (FFD) of the workers in nuclear power plants, especially those working in main control rooms. Major stress factors were elicited through literal surveys and classified into major categories such as demands, supports, and relationships. To manage those factors, a test and intervention program based on 4-level approaches was developed over the whole employment cycle including selection and screening of workers, job allocation, and job rotation. In addition, a managerial care program was introduced with the concept of Employee-Assistance-Program (EAP) program. Reviews on the program conducted by ex-operators in nuclear power plants showed responses in the affirmative, and suggested additional treatment to guarantee high performance of human workers, not in normal operations but also in emergency situations.Keywords: human error, work performance, work stress, Fitness-For-Duty (FFD), Employee Assistance Program (EAP)
Procedia PDF Downloads 4043820 Study on Network-Based Technology for Detecting Potentially Malicious Websites
Authors: Byung-Ik Kim, Hong-Koo Kang, Tae-Jin Lee, Hae-Ryong Park
Abstract:
Cyber terrors against specific enterprises or countries have been increasing recently. Such attacks against specific targets are called advanced persistent threat (APT), and they are giving rise to serious social problems. The malicious behaviors of APT attacks mostly affect websites and penetrate enterprise networks to perform malevolent acts. Although many enterprises invest heavily in security to defend against such APT threats, they recognize the APT attacks only after the latter are already in action. This paper discusses the characteristics of APT attacks at each step as well as the strengths and weaknesses of existing malicious code detection technologies to check their suitability for detecting APT attacks. It then proposes a network-based malicious behavior detection algorithm to protect the enterprise or national networks.Keywords: Advanced Persistent Threat (APT), malware, network security, network packet, exploit kits
Procedia PDF Downloads 3663819 Real Time Detection, Prediction and Reconstitution of Rain Drops
Authors: R. Burahee, B. Chassinat, T. de Laclos, A. Dépée, A. Sastim
Abstract:
The purpose of this paper is to propose a solution to detect, predict and reconstitute rain drops in real time – during the night – using an embedded material with an infrared camera. To prevent the system from needing too high hardware resources, simple models are considered in a powerful image treatment algorithm reducing considerably calculation time in OpenCV software. Using a smart model – drops will be matched thanks to a process running through two consecutive pictures for implementing a sophisticated tracking system. With this system drops computed trajectory gives information for predicting their future location. Thanks to this technique, treatment part can be reduced. The hardware system composed by a Raspberry Pi is optimized to host efficiently this code for real time execution.Keywords: reconstitution, prediction, detection, rain drop, real time, raspberry, infrared
Procedia PDF Downloads 4193818 Effects of the Exit from Budget Support on Good Governance: Findings from Four Sub-Saharan Countries
Authors: Magdalena Orth, Gunnar Gotz
Abstract:
Background: Domestic accountability, budget transparency and public financial management (PFM) are considered vital components of good governance in developing countries. The aid modality budget support (BS) promotes these governance functions in developing countries. BS engages in political decision-making and provides financial and technical support to poverty reduction strategies of the partner countries. Nevertheless, many donors have withdrawn their support from this modality due to cases of corruption, fraud or human rights violations. This exit from BS is leaving a finance and governance vacuum in the countries. The evaluation team analyzed the consequences of terminating the use of this modality and found particularly negative effects for good governance outcomes. Methodology: The evaluation uses a qualitative (theory-based) approach consisting of a comparative case study design, which is complemented by a process-tracing approach. For the case studies, the team conducted over 100 semi-structured interviews in Malawi, Uganda, Rwanda and Zambia and used four country-specific, tailor-made budget analysis. In combination with a previous DEval evaluation synthesis on the effects of BS, the team was able to create a before-and-after comparison that yields causal effects. Main Findings: In all four countries domestic accountability and budget transparency declined if other forms of pressure are not replacing BS´s mutual accountability mechanisms. In Malawi a fraud scandal created pressure from the society and from donors so that accountability was improved. In the other countries, these pressure mechanisms were absent so that domestic accountability declined. BS enables donors to actively participate in political processes of the partner country as donors transfer funds into the treasury of the partner country and conduct a high-level political dialogue. The results confirm that the exit from BS created a governance vacuum that, if not compensated through external/internal pressure, leads to a deterioration of good governance. For example, in the case of highly aid dependent Malawi did the possibility of a relaunch of BS provide sufficient incentives to push for governance reforms. Overall the results show that the three good governance areas are negatively affected by the exit from BS. This stands in contrast to positive effects found before the exit. The team concludes that the relationship is causal, because the before-and-after comparison coherently shows that the presence of BS correlates with positive effects and the absence with negative effects. Conclusion: These findings strongly suggest that BS is an effective modality to promote governance and its abolishment is likely to cause governance disruptions. Donors and partner governments should find ways to re-engage in closely coordinated policy-based aid modalities. In addition, a coordinated and carefully managed exit-strategy should be in place before an exit from similar modalities is considered. Particularly a continued framework of mutual accountability and a high-level political dialogue should be aspired to maintain pressure and oversight that is required to achieve good governance.Keywords: budget support, domestic accountability, public financial management and budget transparency, Sub-Sahara Africa
Procedia PDF Downloads 1513817 The Risk and Prevention of Peer-To-Peer Network Lending in China
Authors: Zhizhong Yuan, Lili Wang, Chenya Zheng, Wuqi Yang
Abstract:
How to encourage and support peer-to-peer (P2P) network lending, and effectively monitor the risk of P2P network lending, has become the focus of the Chinese government departments, industrialists, experts and scholars in recent years. The reason is that this convenient online micro-credit service brings a series of credit risks and other issues. Avoiding the risks brought by the P2P network lending model, it can better play a benign role and help China's small and medium-sized private enterprises with vigorous development to solve the capital needs; otherwise, it will bring confusion to the normal financial order. As a form of financial services, P2P network lending has injected new blood into China's non-government finance in the past ten years, and has found a way out for idle funds and made up for the shortage of traditional financial services in China. However, it lacks feasible measures in credit evaluation and government supervision. This paper collects a large amount of data about P2P network lending of China. The data collection comes from the official media of the Chinese government, the public achievements of existing researchers and the analysis and collation of correlation data by the authors. The research content of this paper includes literature review; the current situation of China's P2P network lending development; the risk analysis of P2P network lending in China; the risk prevention strategy of P2P network lending in China. The focus of this paper is to try to find a specific program to strengthen supervision and avoid risks from the perspective of government regulators, operators of P2P network lending platform, investors and users of funds. These main measures include: China needs to develop self-discipline organization of P2P network lending industry and formulate self-discipline norms as soon as possible; establish a regular information disclosure system of P2P network lending platform; establish censorship of credit rating of borrowers; rectify the P2P network lending platform in compliance through the implementation of bank deposition. The results and solutions will benefit all the P2P network lending platforms, creditors, debtors, bankers, independent auditors and government agencies of China and other countries.Keywords: peer-to-peer(P2P), regulation, risk prevention, supervision
Procedia PDF Downloads 1663816 Assessing Justice, Security and Human Rights Violations in Crisis Situations: The Case of Cameroon
Authors: Forbah Julius Ajamah
Abstract:
The protection of human rights and respect of the rule of law in Sub-Saharan African is a constant challenge due to ongoing and protracted conflict situations, political instability, shrinking democratic space and allegations of large-scale corruption in some countries. Conflict and/or crisis is most often resulting from constant violations of individual rights, with the risk increasing when many human rights are violated in a systematic or widespread fashion. Violations related to economic, social and cultural rights at times are as significant as violations of civil and political rights. Cameroon a country in Sub-Saharan African, for many years now has been confronted by numerous crises across different regions. Despite measures carried out, it has been reported that lesser and lesser attention has been placed on various conflict/crisis across Cameroon. To reach a common understanding of how both the economic, social and cultural rights has been violated and related impact on the quality of life, this paper evaluates justice, security and human rights violations in the present crisis situations. Without the prevention of human rights violations, wider conflict and/or crisis, will continue to have a negative impact in the lives of the inhabitants. This paper aims at providing evidence to support the fact that effective prevention requires early identification of risks that could allow for preventive and/or mitigatory measures to be designed and implemented.Keywords: justice, security, human rights abuses, conflicts, crisis
Procedia PDF Downloads 853815 Analysis of Spatial and Temporal Data Using Remote Sensing Technology
Authors: Kapil Pandey, Vishnu Goyal
Abstract:
Spatial and temporal data analysis is very well known in the field of satellite image processing. When spatial data are correlated with time, series analysis it gives the significant results in change detection studies. In this paper the GIS and Remote sensing techniques has been used to find the change detection using time series satellite imagery of Uttarakhand state during the years of 1990-2010. Natural vegetation, urban area, forest cover etc. were chosen as main landuse classes to study. Landuse/ landcover classes within several years were prepared using satellite images. Maximum likelihood supervised classification technique was adopted in this work and finally landuse change index has been generated and graphical models were used to present the changes.Keywords: GIS, landuse/landcover, spatial and temporal data, remote sensing
Procedia PDF Downloads 4333814 Law Relating to Health and Health Care: A Systematic Mechanism and Critical Study with Reference to Bangladesh
Authors: MD. Kamruzzaman
Abstract:
As a developing country, Bangladesh has seen an increase in total GDP in recent years. But it can be further improved by developing “Health-Care” (HC) services because it has enormous infrastructure problems all over the country. Bangladesh's HC system is now clearly poised to undergo reform at any process level, including prevention, diagnosis, and treatment. Although the Bangladeshi government is trying to develop the HC sector, due to health corruption in this sector, the improvement has not accelerated yet. For this reason, lots of Bangladeshi people are facing acute diseases. Regarding the prevention, diagnosis, and treatment of disease, this research will illustrate the law relating to health and HC to ensure excellent health and well-being. Firstly, this paper investigates health under Bangladeshi law from different perspectives related to the HC system. A massive gap has been investigated in this research after comparing Bangladeshi and international health law (HL). Secondly, a practical scenario is investigated and compared with international HC law. It is evident that the Bangladeshi HC system did not achieve a satisfactory standard level concerning international law. A staggering 70% of Bangladesh's population lives in rural areas, with no restrictions on access to hospitals and clinics. However, it is clear that proper HC infrastructure and some new medical practices are urgently needed to ensure HC quality. Finally, this research provides suggestions for developing a HC system to ensure the health of all Bangladeshi people that needs to be immediately implemented by the Bangladeshi government. This research has practical implications in the HC system for any developing country to maintain their citizen's safety.Keywords: HC system, law relating, bangladeshi HL, international HL, human HC suggestions
Procedia PDF Downloads 723813 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities
Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun
Abstract:
The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids
Procedia PDF Downloads 643812 Quantitative Analysis of Caffeine in Pharmaceutical Formulations Using a Cost-Effective Electrochemical Sensor
Authors: Y. T. Gebreslassie, Abrha Tadesse, R. C. Saini, Rishi Pal
Abstract:
Caffeine, known chemically as 3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione, is a naturally occurring alkaloid classified as an N-methyl derivative of xanthine. Given its widespread use in coffee and other caffeine-containing products, it is the most commonly consumed psychoactive substance in everyday human life. This research aimed to develop a cost-effective, sensitive, and easily manufacturable sensor for the detection of caffeine. Antraquinone-modified carbon paste electrode (AQMCPE) was fabricated, and the electrochemical behavior of caffeine on this electrode was investigated using cyclic voltammetry (CV) and square wave voltammetry (SWV) in a solution of 0.1M perchloric acid at pH 0.56. The modified electrode displayed enhanced electrocatalytic activity towards caffeine oxidation, exhibiting a two-fold increase in peak current and an 82 mV shift of the peak potential in the negative direction compared to an unmodified carbon paste electrode (UMCPE). Exploiting the electrocatalytic properties of the modified electrode, SWV was employed for the quantitative determination of caffeine. Under optimized experimental conditions, a linear relationship between peak current and concentration was observed within the range of 2.0 x 10⁻⁶ to 1.0× 10⁻⁴ M, with a correlation coefficient of 0.998 and a detection limit of 1.47× 10⁻⁷ M (signal-to-noise ratio = 3). Finally, the proposed method was successfully applied to the quantitative analysis of caffeine in pharmaceutical formulations, yielding recovery percentages ranging from 95.27% to 106.75%.Keywords: antraquinone-modified carbon paste electrode, caffeine, detection, electrochemical sensor, quantitative analysis
Procedia PDF Downloads 653811 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification
Authors: Xiao Chen, Xiaoying Kong, Min Xu
Abstract:
This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.Keywords: vehicle classification, signal processing, road traffic model, magnetic sensing
Procedia PDF Downloads 3203810 Construction and Performance of Nanocomposite-Based Electrochemical Biosensor
Authors: Jianfang Wang, Xianzhe Chen, Zhuoliang Liu, Cheng-An Tao, Yujiao Li
Abstract:
Organophosphorus (OPs) pesticide used as insecticides are widely used in agricultural pest control, household and storage deworming. The detection of pesticides needs more simple and efficient methods. One of the best ways is to make electrochemical biosensors. In this paper, an electrochemical enzyme biosensor based on acetylcholine esterase (AChE) was constructed, and its sensing properties and sensing mechanisms were studied. Reduced graphene oxide-polydopamine complexes (RGO-PDA), gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) were prepared firstly and composited with AChE and chitosan (CS), then fixed on the glassy carbon electrode (GCE) surface to construct the biosensor GCE/RGO-PDA-AuNPs-AgNPs-AChE-CS by one-pot method. The results show that graphene oxide (GO) can be reduced by dopamine (DA) and dispersed well in RGO-PDA complexes. And the composites have a synergistic catalysis effect and can improve the surface resistance of GCE. The biosensor selectively can detect acetylcholine (ACh) and OPs pesticide with good linear range and high sensitivity. The performance of the biosensor is affected by the ratio and adding ways of AChE and the adding of AuNPs and AChE. And the biosensor can achieve a detection limit of 2.4 ng/L for methyl parathion and a wide linear detection range of 0.02 ng/L ~ 80 ng/L, and has excellent stability, good anti-interference ability, and excellent preservation performance, indicating that the sensor has practical value.Keywords: acetylcholine esterase, electrochemical biosensor, nanoparticles, organophosphates, reduced graphene oxide
Procedia PDF Downloads 1123809 Taxonomy of Threats and Vulnerabilities in Smart Grid Networks
Authors: Faisal Al Yahmadi, Muhammad R. Ahmed
Abstract:
Electric power is a fundamental necessity in the 21st century. Consequently, any break in electric power is probably going to affect the general activity. To make the power supply smooth and efficient, a smart grid network is introduced which uses communication technology. In any communication network, security is essential. It has been observed from several recent incidents that adversary causes an interruption to the operation of networks. In order to resolve the issues, it is vital to understand the threats and vulnerabilities associated with the smart grid networks. In this paper, we have investigated the threats and vulnerabilities in Smart Grid Networks (SGN) and the few solutions in the literature. Proposed solutions showed developments in electricity theft countermeasures, Denial of services attacks (DoS) and malicious injection attacks detection model, as well as malicious nodes detection using watchdog like techniques and other solutions.Keywords: smart grid network, security, threats, vulnerabilities
Procedia PDF Downloads 1393808 Stochastic Edge Based Anomaly Detection for Supervisory Control and Data Acquisitions Systems: Considering the Zambian Power Grid
Authors: Lukumba Phiri, Simon Tembo, Kumbuso Joshua Nyoni
Abstract:
In Zambia recent initiatives by various power operators like ZESCO, CEC, and consumers like the mines to upgrade power systems into smart grids target an even tighter integration with information technologies to enable the integration of renewable energy sources, local and bulk generation, and demand response. Thus, for the reliable operation of smart grids, its information infrastructure must be secure and reliable in the face of both failures and cyberattacks. Due to the nature of the systems, ICS/SCADA cybersecurity and governance face additional challenges compared to the corporate networks, and critical systems may be left exposed. There exist control frameworks internationally such as the NIST framework, however, there are generic and do not meet the domain-specific needs of the SCADA systems. Zambia is also lagging in cybersecurity awareness and adoption, therefore there is a concern about securing ICS controlling key infrastructure critical to the Zambian economy as there are few known facts about the true posture. In this paper, we introduce a stochastic Edged-based Anomaly Detection for SCADA systems (SEADS) framework for threat modeling and risk assessment. SEADS enables the calculation of steady-steady probabilities that are further applied to establish metrics like system availability, maintainability, and reliability.Keywords: anomaly, availability, detection, edge, maintainability, reliability, stochastic
Procedia PDF Downloads 1103807 A Novel Approach to Design of EDDR Architecture for High Speed Motion Estimation Testing Applications
Authors: T. Gangadhararao, K. Krishna Kishore
Abstract:
Motion Estimation (ME) plays a critical role in a video coder, testing such a module is of priority concern. While focusing on the testing of ME in a video coding system, this work presents an error detection and data recovery (EDDR) design, based on the residue-and-quotient (RQ) code, to embed into ME for video coding testing applications. An error in processing Elements (PEs), i.e. key components of a ME, can be detected and recovered effectively by using the proposed EDDR design. The proposed EDDR design for ME testing can detect errors and recover data with an acceptable area overhead and timing penalty.Keywords: area overhead, data recovery, error detection, motion estimation, reliability, residue-and-quotient (RQ) code
Procedia PDF Downloads 4313806 Alcohol Detection with Engine Locking System Using Arduino and ESP8266
Authors: Sukhpreet Singh, Kishan Bhojrath, Vijay, Avinash Kumar, Mandlesh Mishra
Abstract:
The project uses an Arduino and ESP8266 to construct an alcohol detection system with an engine locking mechanism, offering a distinct way to fight drunk driving. An alcohol sensor module is used by the system to determine the amount of alcohol present in the ambient air. When the system detects alcohol levels beyond a certain threshold that is deemed hazardous for driving, it activates a relay module that is linked to the engine of the car, so rendering it inoperable. By preventing people from operating a vehicle while intoxicated, this preventive measure seeks to improve road safety. Adding an ESP8266 module also allows for remote monitoring and notifications, giving users access to real-time status updates on their system. By using an integrated strategy, the initiative provides a workable and efficient way to lessen the dangers related to driving while intoxicated.Keywords: MQ3 sensor, ESP 8266, arduino, IoT
Procedia PDF Downloads 663805 Banking Innovation and Customers' Satisfaction in Nigeria: A Case Study of Some Selected Banks
Authors: Jameelah O. Yaqub
Abstract:
The financial industry all over the world has undergone and still undergoing great transformation especially with the introduction of e-products which involves the use of computers and telecommunications to enable banking transactions to be done by telephone or computer rather than by humans. The adoption of e-banking in Nigeria is becoming more popular with customers now being able to use the ATM cards for different transactions. The internet banking, POS machines, telephone banking as well as mobile banking are some other e-products being used in Nigeria. This study examines how satisfied bank customers are with the e-products. The study found that the ATM is the most popular e-products among bank customers in Nigeria; followed by the POS. The least use of the e-products is telephone banking. The study also found that visits to banks for transactions declined with the use of e-products. The chi-square analysis shows that there is significant relationship between the use of banks’ e-products and customers’ satisfaction. One of the major reason adduced by respondents for low usage of e-products is insecurity or fear of cyber fraud, it is therefore recommended that banks should provide adequate. Security for transactions and ensure the proper backing up of critical data files. In addition, government should ensure stable electricity supply to reduce banks’ running costs and consequently, customers’ cost of transactions.Keywords: banks, e-products, innovation, Nigeria
Procedia PDF Downloads 3373804 Social Strategeries for HIV and STDs Prevention
Authors: Binu Sahayam
Abstract:
HIV/AIDS epidemic is in its third decade and has become a virulent disease that threatens the world population. Many countless efforts had been made yet this has become a social and developmental concern. According to UNAIDS 2013 Report, In India around 2.4 million people are currently living with HIV and third in the infection rate. As every country is facing this health issue, this has become a social and developmental concern for India. In country like India, open discussion on sex and sexuality is not possible due to its conventional culture. Educational institution like schools and colleges can create awareness on sex education, life skill education, information on HIV and STD which is lacking. It is very clear that preventive knowledge remains low and this leads to increase in the HIV/AIDS infection rate. HIV/AIDS is a disease which is not curable but preventable, keeping this in mind religious leaders of various have come forward in addressing the issue of HIV/AIDS using various social strategies. The study has been focused on three main India religious teachings Hinduism, Christianity and Islam in addressing the issue of HIV/AIDS and its possible intervention in dealing with HIV/AIDS prevention. The study is important because it highlights the health issues, stigma discrimination, psychological disturbances and insecurity faced by the infected and affected persons. Therefore, this study privileges the role of religious leadership in the efforts and processes of preventing HIV/AIDS, caring and providing support to People living with HIV/AIDS and argues that intervention of religious leadership is an effective measure to confront many of the barriers associated with HIV/AIDS.Keywords: HIV and AIDS, STDs, religion and religious organisation
Procedia PDF Downloads 3923803 Glaucoma Detection in Retinal Tomography Using the Vision Transformer
Authors: Sushish Baral, Pratibha Joshi, Yaman Maharjan
Abstract:
Glaucoma is a chronic eye condition that causes vision loss that is irreversible. Early detection and treatment are critical to prevent vision loss because it can be asymptomatic. For the identification of glaucoma, multiple deep learning algorithms are used. Transformer-based architectures, which use the self-attention mechanism to encode long-range dependencies and acquire extremely expressive representations, have recently become popular. Convolutional architectures, on the other hand, lack knowledge of long-range dependencies in the image due to their intrinsic inductive biases. The aforementioned statements inspire this thesis to look at transformer-based solutions and investigate the viability of adopting transformer-based network designs for glaucoma detection. Using retinal fundus images of the optic nerve head to develop a viable algorithm to assess the severity of glaucoma necessitates a large number of well-curated images. Initially, data is generated by augmenting ocular pictures. After that, the ocular images are pre-processed to make them ready for further processing. The system is trained using pre-processed images, and it classifies the input images as normal or glaucoma based on the features retrieved during training. The Vision Transformer (ViT) architecture is well suited to this situation, as it allows the self-attention mechanism to utilise structural modeling. Extensive experiments are run on the common dataset, and the results are thoroughly validated and visualized.Keywords: glaucoma, vision transformer, convolutional architectures, retinal fundus images, self-attention, deep learning
Procedia PDF Downloads 1913802 Detection of Alzheimer's Protein on Nano Designed Polymer Surfaces in Water and Artificial Saliva
Authors: Sevde Altuntas, Fatih Buyukserin
Abstract:
Alzheimer’s disease is responsible for irreversible neural damage of brain parts. One of the disease markers is Amyloid-β 1-42 protein that accumulates in the brain in the form plaques. The basic problem for detection of the protein is the low amount of protein that cannot be detected properly in body liquids such as blood, saliva or urine. To solve this problem, tests like ELISA or PCR are proposed which are expensive, require specialized personnel and can contain complex protocols. Therefore, Surface-enhanced Raman Spectroscopy (SERS) a good candidate for detection of Amyloid-β 1-42 protein. Because the spectroscopic technique can potentially allow even single molecule detection from liquid and solid surfaces. Besides SERS signal can be improved by using nanopattern surface and also is specific to molecules. In this context, our study proposes to fabricate diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin - T to detect low concentrations of Amyloid-β 1-42 protein in water and artificial saliva medium by the enhancement of protein SERS signal. The nanopatterned PC surface that was used to enhance SERS signal was fabricated by using Anodic Alumina Membranes (AAM) as a template. It is possible to produce AAMs with different column structures and varying thicknesses depending on voltage and anodization time. After fabrication process, the pore diameter of AAMs can be arranged with dilute acid solution treatment. In this study, two different columns structures were prepared. After a surface modification to decrease their surface energy, AAMs were treated with PC solution. Following the solvent evaporation, nanopatterned PC films with tunable pillared structures were peeled off from the membrane surface. The PC film was then modified with Au and Thioflavin-T for the detection of Amyloid-β 1-42 protein. The protein detection studies were conducted first in water via this biosensor platform. Same measurements were conducted in artificial saliva to detect the presence of Amyloid Amyloid-β 1-42 protein. SEM, SERS and contact angle measurements were carried out for the characterization of different surfaces and further demonstration of the protein attachment. SERS enhancement factor calculations were also completed via experimental results. As a result, our research group fabricated diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin-T to detect low concentrations of Alzheimer’s Amiloid – β protein in water and artificial saliva medium. This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) Grant No: 214Z167.Keywords: alzheimer, anodic aluminum oxide, nanotopography, surface enhanced Raman spectroscopy
Procedia PDF Downloads 2913801 A Real-Time Snore Detector Using Neural Networks and Selected Sound Features
Authors: Stelios A. Mitilineos, Nicolas-Alexander Tatlas, Georgia Korompili, Lampros Kokkalas, Stelios M. Potirakis
Abstract:
Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) is a widespread chronic disease that mostly remains undetected, mainly due to the fact that it is diagnosed via polysomnography which is a time and resource-intensive procedure. Screening the disease’s symptoms at home could be used as an alternative approach in order to alert individuals that potentially suffer from OSAHS without compromising their everyday routine. Since snoring is usually linked to OSAHS, developing a snore detector is appealing as an enabling technology for screening OSAHS at home using ubiquitous equipment like commodity microphones (included in, e.g., smartphones). In this context, this study developed a snore detection tool and herein present the approach and selection of specific sound features that discriminate snoring vs. environmental sounds, as well as the performance of the proposed tool. Furthermore, a Real-Time Snore Detector (RTSD) is built upon the snore detection tool and employed in whole-night sleep sound recordings resulting to a large dataset of snoring sound excerpts that are made freely available to the public. The RTSD may be used either as a stand-alone tool that offers insight to an individual’s sleep quality or as an independent component of OSAHS screening applications in future developments.Keywords: obstructive sleep apnea hypopnea syndrome, apnea screening, snoring detection, machine learning, neural networks
Procedia PDF Downloads 207