Search results for: feed forward network
5671 Multi-Stream Graph Attention Network for Recommendation with Knowledge Graph
Abstract:
In recent years, Graph neural network has been widely used in knowledge graph recommendation. The existing recommendation methods based on graph neural network extract information from knowledge graph through entity and relation, which may not be efficient in the way of information extraction. In order to better propose useful entity information for the current recommendation task in the knowledge graph, we propose an end-to-end Neural network Model based on multi-stream graph attentional Mechanism (MSGAT), which can effectively integrate the knowledge graph into the recommendation system by evaluating the importance of entities from both users and items. Specifically, we use the attention mechanism from the user's perspective to distil the domain nodes information of the predicted item in the knowledge graph, to enhance the user's information on items, and generate the feature representation of the predicted item. Due to user history, click items can reflect the user's interest distribution, we propose a multi-stream attention mechanism, based on the user's preference for entities and relationships, and the similarity between items to be predicted and entities, aggregate user history click item's neighborhood entity information in the knowledge graph and generate the user's feature representation. We evaluate our model on three real recommendation datasets: Movielens-1M (ML-1M), LFM-1B 2015 (LFM-1B), and Amazon-Book (AZ-book). Experimental results show that compared with the most advanced models, our proposed model can better capture the entity information in the knowledge graph, which proves the validity and accuracy of the model.Keywords: graph attention network, knowledge graph, recommendation, information propagation
Procedia PDF Downloads 1195670 Investigation of Clustering Algorithms Used in Wireless Sensor Networks
Authors: Naim Karasekreter, Ugur Fidan, Fatih Basciftci
Abstract:
Wireless sensor networks are networks in which more than one sensor node is organized among themselves. The working principle is based on the transfer of the sensed data over the other nodes in the network to the central station. Wireless sensor networks concentrate on routing algorithms, energy efficiency and clustering algorithms. In the clustering method, the nodes in the network are divided into clusters using different parameters and the most suitable cluster head is selected from among them. The data to be sent to the center is sent per cluster, and the cluster head is transmitted to the center. With this method, the network traffic is reduced and the energy efficiency of the nodes is increased. In this study, clustering algorithms were examined in terms of clustering performances and cluster head selection characteristics to try to identify weak and strong sides. This work is supported by the Project 17.Kariyer.123 of Afyon Kocatepe University BAP Commission.Keywords: wireless sensor networks (WSN), clustering algorithm, cluster head, clustering
Procedia PDF Downloads 5145669 Management of Meskit (Prosopis juliflora) Tree in Oman: The Case of Using Meskit (Prosopis juliflora) Pods for Feeding Omani Sheep
Authors: S. Al-Khalasi, O. Mahgoub, H. Yaakub
Abstract:
This study evaluated the use of raw or processed Prosopis juliflora (Meskit) pods as a major ingredient in a formulated ration to provide an alternative non-conventional concentrate for livestock feeding in Oman. Dry Meskit pods were reduced to lengths of 0.5- 1.0 cm to ensure thorough mixing into three diets. Meskit pods were subjected to two types of treatments; roasting and soaking. They were roasted at 150оC for 30 minutes using a locally-made roasting device (40 kg barrel container rotated by electric motor and heated by flame gas cooker). Chopped pods were soaked in tap water for 24 hours and dried for 2 days under the sun with frequent turning. The Meskit-pod-based diets (MPBD) were formulated and pelleted from 500 g/kg ground Meskit pods, 240 g/kg wheat bran, 200 g/kg barley grain, 50 g/kg local dried sardines and 10 g/kg of salt. Twenty four 10 months-old intact Omani male lambs with average body weight of 27.3 kg (± 0.5 kg) were used in a feeding trial for 84 days. They were divided (on body weight basis) and allocated to four diet combination groups. These were: Rhodes grass hay (RGH) plus a general ruminant concentrate (GRC); RGH plus raw Meskit pods (RMP) based concentrate; RGH plus roasted Meskit pods (ROMP) based concentrate; RGH plus soaked Meskit pods (SMP) based concentrate Daily feed intakes and bi-weekly body weights were recorded. MPBD had higher contents of crude protein (CP), acid detergent fibre (ADF) and neutral detergent fibre (NDF) than the GRC. Animals fed various types of MPBD did not show signs of ill health. There was a significant effect of feeding ROMP on the performance of Omani sheep compared to RMP and SMP. The ROMP fed animals had similar performance to those fed the GRC in terms of feed intake, body weight gain and feed conversion ratio (FCR).This study indicated that roasted Meskit pods based diet may be used instead of the commercial concentrate for feeding Omani sheep without adverse effects on performance. It offers a cheap alternative source of protein and energy for feeding Omani sheep. Also, it might help in solving the spread impact of Meskit trees, maintain the ecosystem and helping in preserving the local tree species.Keywords: growth, Meskit, Omani sheep, Prosopis juliflora
Procedia PDF Downloads 4765668 Multivariate Analysis on Water Quality Attributes Using Master-Slave Neural Network Model
Authors: A. Clementking, C. Jothi Venkateswaran
Abstract:
Mathematical and computational functionalities such as descriptive mining, optimization, and predictions are espoused to resolve natural resource planning. The water quality prediction and its attributes influence determinations are adopted optimization techniques. The water properties are tainted while merging water resource one with another. This work aimed to predict influencing water resource distribution connectivity in accordance to water quality and sediment using an innovative proposed master-slave neural network back-propagation model. The experiment results are arrived through collecting water quality attributes, computation of water quality index, design and development of neural network model to determine water quality and sediment, master–slave back propagation neural network back-propagation model to determine variations on water quality and sediment attributes between the water resources and the recommendation for connectivity. The homogeneous and parallel biochemical reactions are influences water quality and sediment while distributing water from one location to another. Therefore, an innovative master-slave neural network model [M (9:9:2)::S(9:9:2)] designed and developed to predict the attribute variations. The result of training dataset given as an input to master model and its maximum weights are assigned as an input to the slave model to predict the water quality. The developed master-slave model is predicted physicochemical attributes weight variations for 85 % to 90% of water quality as a target values.The sediment level variations also predicated from 0.01 to 0.05% of each water quality percentage. The model produced the significant variations on physiochemical attribute weights. According to the predicated experimental weight variation on training data set, effective recommendations are made to connect different resources.Keywords: master-slave back propagation neural network model(MSBPNNM), water quality analysis, multivariate analysis, environmental mining
Procedia PDF Downloads 4785667 Rain Gauges Network Optimization in Southern Peninsular Malaysia
Authors: Mohd Khairul Bazli Mohd Aziz, Fadhilah Yusof, Zulkifli Yusop, Zalina Mohd Daud, Mohammad Afif Kasno
Abstract:
Recent developed rainfall network design techniques have been discussed and compared by many researchers worldwide due to the demand of acquiring higher levels of accuracy from collected data. In many studies, rain-gauge networks are designed to provide good estimation for areal rainfall and for flood modelling and prediction. In a certain study, even using lumped models for flood forecasting, a proper gauge network can significantly improve the results. Therefore existing rainfall network in Johor must be optimized and redesigned in order to meet the required level of accuracy preset by rainfall data users. The well-known geostatistics method (variance-reduction method) that is combined with simulated annealing was used as an algorithm of optimization in this study to obtain the optimal number and locations of the rain gauges. Rain gauge network structure is not only dependent on the station density; station location also plays an important role in determining whether information is acquired accurately. The existing network of 84 rain gauges in Johor is optimized and redesigned by using rainfall, humidity, solar radiation, temperature and wind speed data during monsoon season (November – February) for the period of 1975 – 2008. Three different semivariogram models which are Spherical, Gaussian and Exponential were used and their performances were also compared in this study. Cross validation technique was applied to compute the errors and the result showed that exponential model is the best semivariogram. It was found that the proposed method was satisfied by a network of 64 rain gauges with the minimum estimated variance and 20 of the existing ones were removed and relocated. An existing network may consist of redundant stations that may make little or no contribution to the network performance for providing quality data. Therefore, two different cases were considered in this study. The first case considered the removed stations that were optimally relocated into new locations to investigate their influence in the calculated estimated variance and the second case explored the possibility to relocate all 84 existing stations into new locations to determine the optimal position. The relocations of the stations in both cases have shown that the new optimal locations have managed to reduce the estimated variance and it has proven that locations played an important role in determining the optimal network.Keywords: geostatistics, simulated annealing, semivariogram, optimization
Procedia PDF Downloads 3045666 An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios
Authors: Weiming Hu, Xu Li, Xiaonan Li, Zhong Xu, Li Yuan, Xuan Dong
Abstract:
Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.Keywords: decision-making strategy, risk assessment, multi-objective optimization, commercial vehicle
Procedia PDF Downloads 1355665 Performance of Osmotic Microbial Fuel Cell in Wastewater Treatment and Electricity Generation: A Critical Review
Authors: Shubhangi R. Deshmukh, Anupam B. Soni
Abstract:
Clean water and electricity are vital services needed in all communities. Bio-degradation of wastewater contaminants and desalination technologies are the best possible alternatives for the global shortage of fresh water supply. Osmotic microbial fuel cell (OMFC) is a versatile technology that uses microorganism (used for biodegradation of organic waste) and membrane technology (used for water purification) for wastewater treatment and energy generation simultaneously. This technology is the combination of microbial fuel cell (MFC) and forward osmosis (FO) processes. OMFC can give more electricity and clean water than the MFC which has a regular proton exchange membrane. FO gives many improvements such as high contamination removal, lower operating energy, raising high proton flux than other pressure-driven membrane technology. Lower concentration polarization lowers the membrane fouling by giving osmotic water recovery without extra cost. In this review paper, we have discussed the principle, mechanism, limitation, and application of OMFC technology reported to date. Also, we have interpreted the experimental data from various literature on the water recovery and electricity generation assessed by a different component of OMFC. The area of producing electricity using OMFC has further scope for research and seems like a promising route to wastewater treatment.Keywords: forward osmosis, microbial fuel cell, osmotic microbial fuel cell, wastewater treatment
Procedia PDF Downloads 1835664 Survey Based Data Security Evaluation in Pakistan Financial Institutions against Malicious Attacks
Authors: Naveed Ghani, Samreen Javed
Abstract:
In today’s heterogeneous network environment, there is a growing demand for distrust clients to jointly execute secure network to prevent from malicious attacks as the defining task of propagating malicious code is to locate new targets to attack. Residual risk is always there no matter what solutions are implemented or whet so ever security methodology or standards being adapted. Security is the first and crucial phase in the field of Computer Science. The main aim of the Computer Security is gathering of information with secure network. No one need wonder what all that malware is trying to do: It's trying to steal money through data theft, bank transfers, stolen passwords, or swiped identities. From there, with the help of our survey we learn about the importance of white listing, antimalware programs, security patches, log files, honey pots, and more used in banks for financial data protection but there’s also a need of implementing the IPV6 tunneling with Crypto data transformation according to the requirements of new technology to prevent the organization from new Malware attacks and crafting of its own messages and sending them to the target. In this paper the writer has given the idea of implementing IPV6 Tunneling Secessions on private data transmission from financial organizations whose secrecy needed to be safeguarded.Keywords: network worms, malware infection propagating malicious code, virus, security, VPN
Procedia PDF Downloads 3585663 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.Keywords: structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm
Procedia PDF Downloads 3045662 Effect of Ginger (Zingiber Officinale) And Garlic (Allium Sativum) Mixture on Growth Performance, Feed Utilization and Survival of Clarias Gariepinus Fingerlings
Authors: Maryam I. Abdullahi, Suleiman Aliyu, Armaya'u Hamisu Bichi
Abstract:
The study was conducted at the University Fish Farm, Federal University Dutsinma. The aim of the study was to determine the effects of dietary supplementation of Allium sativum and Zingiber officinale mixture on growth performance, feed utilization and survival of C. gariepinus fingerling reared in tank system. The experimental setup comprised of four treatment (4) groups labeled as T1, T2, T3 and T4, each treatment replicated 3 times with ten (10) fingerlings in each replicate respectively. Treatment 1 contained 0.5% of Zingiber officinale and 0.5% of Allium sativum (ZO-AS: 1.0%), Treatment 2 contained 0.75% Zingiber officinale, and 0.75% garlic (ZO-AS: 1.5%) while T3 contained 1% ginger and 1% Allium sativum (ZO-AS: 2.0%) respectively. The experiment lasted for twelve (12) weeks (84 days). The survival rate ranges from 90% - 100%. With a higher Final Mean Weight (893.10) and Percentage Mean Weight (942.65) as compared to the control group and others. There was no significant difference (p > 0.05) in the FMW (893.10) of the fish fed 1.5g/kg of Garlic and Ginger diets than the control (687.00). The SGR (1.20) of fish-fed Zingiber officinale and Allium sativum fortified diets shows that there is no significant difference between treatments fed 1.5g/kg Zingiber officinale and Allium sativum and the control group. Generally, there was an increased survival rate in the experimental fish-fed Zingiber officinale and Allium sativum-supplemented diets as compared to the control.Keywords: clarias gariepinus, zingiber officinale, allium sativum, fingerlings
Procedia PDF Downloads 695661 Mix Proportioning and Strength Prediction of High Performance Concrete Including Waste Using Artificial Neural Network
Authors: D. G. Badagha, C. D. Modhera, S. A. Vasanwala
Abstract:
There is a great challenge for civil engineering field to contribute in environment prevention by finding out alternatives of cement and natural aggregates. There is a problem of global warming due to cement utilization in concrete, so it is necessary to give sustainable solution to produce concrete containing waste. It is very difficult to produce designated grade of concrete containing different ingredient and water cement ratio including waste to achieve desired fresh and harden properties of concrete as per requirement and specifications. To achieve the desired grade of concrete, a number of trials have to be taken, and then after evaluating the different parameters at long time performance, the concrete can be finalized to use for different purposes. This research work is carried out to solve the problem of time, cost and serviceability in the field of construction. In this research work, artificial neural network introduced to fix proportion of concrete ingredient with 50% waste replacement for M20, M25, M30, M35, M40, M45, M50, M55 and M60 grades of concrete. By using the neural network, mix design of high performance concrete was finalized, and the main basic mechanical properties were predicted at 3 days, 7 days and 28 days. The predicted strength was compared with the actual experimental mix design and concrete cube strength after 3 days, 7 days and 28 days. This experimentally and neural network based mix design can be used practically in field to give cost effective, time saving, feasible and sustainable high performance concrete for different types of structures.Keywords: artificial neural network, high performance concrete, rebound hammer, strength prediction
Procedia PDF Downloads 1585660 Detecting Port Maritime Communities in Spain with Complex Network Analysis
Authors: Nicanor Garcia Alvarez, Belarmino Adenso-Diaz, Laura Calzada Infante
Abstract:
In recent years, researchers have shown an interest in modelling maritime traffic as a complex network. In this paper, we propose a bipartite weighted network to model maritime traffic and detect port maritime communities. The bipartite weighted network considers two different types of nodes. The first one represents Spanish ports, while the second one represents the countries with which there is major import/export activity. The flow among both types of nodes is modeled by weighting the volume of product transported. To illustrate the model, the data is segmented by each type of traffic. This will allow fine tuning and the creation of communities for each type of traffic and therefore finding similar ports for a specific type of traffic, which will provide decision-makers with tools to search for alliances or identify their competitors. The traffic with the greatest impact on the Spanish gross domestic product is selected, and the evolution of the communities formed by the most important ports and their differences between 2019 and 2009 will be analyzed. Finally, the set of communities formed by the ports of the Spanish port system will be inspected to determine global similarities between them, analyzing the sum of the membership of the different ports in communities formed for each type of traffic in particular.Keywords: bipartite networks, competition, infomap, maritime traffic, port communities
Procedia PDF Downloads 1505659 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs
Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye
Abstract:
This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label
Procedia PDF Downloads 1305658 A Comparative Study on Electrical Characteristics of Au/n-SiC structure, with and Without Zn-Doped PVA Interfacial Layer at Room Temperature
Authors: M. H. Aldahrob, A. Kokce, S. Altindal, H. E. Lapa
Abstract:
In order to obtain the detailed information about the effect of (Zn-doped PVA) interfacial layer, surface states (Nss) and series resistance (Rs) on electrical characteristics, both Au/n- type 4H-SiC (MS) with and without (Zn doped PVA) interfacial layer were fabricated to compare. The main electrical parameters of them were investigated using forward and reverse bias current-voltage (I-V), capacitance-voltage (C-V) and conductance –voltage (G/W –V) measurements were performed at room temperature. Experimental results show that the value of ideality factor (n), zero –bias barrier height (ΦBo), Rs, rectifier rate (RR=IF/IR) and the density of Nss are strong functions interfacial layer and applied bias voltage. The energy distribution profile of Nss was obtained from forward bias I-V data by taking into account voltage dependent effective BH (ΦBo) and ideality factor (n(V)). Voltage dependent profile of Rs was also obtained both by using Ohm’s law and Nicollian and Brew methods. The other main diode parameters such as the concentration of doping donor atom (ND), Fermi energy level (EF).BH (ΦBo), depletion layer with (WD) were obtained by using the intercept and slope of the reverse bias C-2 vs V plots. It was found that (Zn-doped PVA) interfacial layer lead to a quite decrease in the values Nss, Rs and leakage current and increase in shunt resistance (Rsh) and RR. Therefore, we can say that the use of thin (Zn-doped PVA) interfacial layer can quite improved the performance of MS structure.Keywords: interfacial polymer layer, thickness dependence, electric and dielectric properties, series resistance, interface state
Procedia PDF Downloads 2495657 A Study on Human Musculoskeletal Model for Cycle Fitting: Comparison with EMG
Authors: Yoon- Ho Shin, Jin-Seung Choi, Dong-Won Kang, Jeong-Woo Seo, Joo-Hack Lee, Ju-Young Kim, Dae-Hyeok Kim, Seung-Tae Yang, Gye-Rae Tack
Abstract:
It is difficult to study the effect of various variables on cycle fitting through actual experiment. To overcome such difficulty, the forward dynamics of a musculoskeletal model was applied to cycle fitting in this study. The measured EMG data were compared with the muscle activities of the musculoskeletal model through forward dynamics. EMG data were measured from five cyclists who do not have musculoskeletal diseases during three minutes pedaling with a constant load (150 W) and cadence (90 RPM). The muscles used for the analysis were the Vastus Lateralis (VL), Tibialis Anterior (TA), Bicep Femoris (BF), and Gastrocnemius Medial (GM). Person’s correlation coefficients of the muscle activity patterns, the peak timing of the maximum muscle activities, and the total muscle activities were calculated and compared. BIKE3D model of AnyBody (Anybodytech, Denmark) was used for the musculoskeletal model simulation. The comparisons of the actual experiments with the simulation results showed significant correlations in the muscle activity patterns (VL: 0.789, TA: 0.503, BF: 0.468, GM: 0.670). The peak timings of the maximum muscle activities were distributed at particular phases. The total muscle activities were compared with the normalized muscle activities, and the comparison showed about 10% difference in the VL (+10%), TA (+9.7%), and BF (+10%), excluding the GM (+29.4%). Thus, it can be concluded that muscle activities of model & experiment showed similar results. The results of this study indicated that it was possible to apply the simulation of further improved musculoskeletal model to cycle fitting.Keywords: musculoskeletal modeling, EMG, cycle fitting, simulation
Procedia PDF Downloads 5705656 The Role of Bridging Stakeholder in Water Management: Examining Social Networks in Working Groups and Co-Management
Authors: Fariba Ebrahimi, Mehdi Ghorbani
Abstract:
Comprehensive water management considers economic, environmental, technical and social sustainability of water resources for future generations. Integrated water management implies cooperative approach and involves all stakeholders and also introduces issues to managers and decision makers. Solving these issues needs integrated and system approach according to the recognition of actors or key persons in necessary to apply cooperative management of water resources. Therefore, social network analysis can be used to demonstrate the most effective actors for environmental base decisions. The linkage of diverse sets of actors and knowledge systems across management levels and institutional boundaries often poses one of the greatest challenges in adaptive water management. Bridging stakeholder can facilitate interactions among actors in management settings by lowering the transaction costs of collaboration. This research examines how network connections between group members affect in co- management. Cohesive network structures allow groups to more effectively achieve their goals and objectives Strong; centralized leadership is a better predictor of working group success in achieving goals and objectives. Finally, geometric position of each actor was illustrated in the network. The results of the research based on between centrality index have a key and bridging actor in recognition of cooperative management of water resources in Darbandsar village and also will help managers and planners of water in the case of recognition to organization and implementation of sustainable management of water resources and water security.Keywords: co-management, water management, social network, bridging stakeholder, darbandsar village
Procedia PDF Downloads 3105655 Visualizing the Commercial Activity of a City by Analyzing the Data Information in Layers
Authors: Taras Agryzkov, Jose L. Oliver, Leandro Tortosa, Jose Vicent
Abstract:
This paper aims to demonstrate how network models can be used to understand and to deal with some aspects of urban complexity. As it is well known, the Theory of Architecture and Urbanism has been using for decades’ intellectual tools based on the ‘sciences of complexity’ as a strategy to propose theoretical approaches about cities and about architecture. In this sense, it is possible to find a vast literature in which for instance network theory is used as an instrument to understand very diverse questions about cities: from their commercial activity to their heritage condition. The contribution of this research consists in adding one step of complexity to this process: instead of working with one single primal graph as it is usually done, we will show how new network models arise from the consideration of two different primal graphs interacting in two layers. When we model an urban network through a mathematical structure like a graph, the city is usually represented by a set of nodes and edges that reproduce its topology, with the data generated or extracted from the city embedded in it. All this information is normally displayed in a single layer. Here, we propose to separate the information in two layers so that we can evaluate the interaction between them. Besides, both layers may be composed of structures that do not have to coincide: from this bi-layer system, groups of interactions emerge, suggesting reflections and in consequence, possible actions.Keywords: graphs, mathematics, networks, urban studies
Procedia PDF Downloads 1845654 Security in Resource Constraints Network Light Weight Encryption for Z-MAC
Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy
Abstract:
Wireless sensor network was formed by a combination of nodes, systematically it transmitting the data to their base stations, this transmission data can be easily compromised if the limited processing power and the data consistency from these nodes are kept in mind; there is always a discussion to address the secure data transfer or transmission in actual time. This will present a mechanism to securely transmit the data over a chain of sensor nodes without compromising the throughput of the network by utilizing available battery resources available in the sensor node. Our methodology takes many different advantages of Z-MAC protocol for its efficiency, and it provides a unique key by sharing the mechanism using neighbor node MAC address. We present a light weighted data integrity layer which is embedded in the Z-MAC protocol to prove that our protocol performs well than Z-MAC when we introduce the different attack scenarios.Keywords: hybrid MAC protocol, data integrity, lightweight encryption, neighbor based key sharing, sensor node dataprocessing, Z-MAC
Procedia PDF Downloads 1445653 Effect of Probiotic and Prebiotic on Performance, Some Blood Parameters, and Intestine Morphology of Laying Hens
Authors: A. Zarei, M. Porkhalili, B. Gholamhosseini
Abstract:
In this experiment, sixty Hy-Line (W-36) laying hens were selected in 40weeks of age. Experimental diets were consumed for 12 weeks duration by them. The experimental design was completely randomized block included four treatments and each of them with five replications and three sample in each replicate. Treatments were as follow: Basal diet+probiotic, basal diet + prebiotic and basal diet+probiotic+ prebiotic. Performance traits were measured such as: hen production, egg weight, feed intake, feed conversion ratio ,shell thickness, shell strength, shell weight, hough unit, yolk color, and yolk cholesterol. Blood parameters like; Ca, cholesterol, triglyceride, VLDL and antibody titer and so morphological of intestine were determined. At the end of experimental period, after sampling from end of cecum, bacterial colony count was measured. Results showed; shell weight was significantly greater than other treatments in probiotic treatment.Yolk weight in prebiotic treatment was significantly greater than other treatments. The ratio of height of villi to dept of crypt cells in duodenum, jejunum, ileum and secum in prebiotic treatment were significantly greater. Results from the other traits were not significant between treatments, however there were totally good results in other traits with simultaneous usage of probiotic and prebiotic.Keywords: probiotic, prebiotic, laying hens, performance, blood parameters, intestine morphology
Procedia PDF Downloads 3235652 Hybrid Knowledge and Data-Driven Neural Networks for Diffuse Optical Tomography Reconstruction in Medical Imaging
Authors: Paola Causin, Andrea Aspri, Alessandro Benfenati
Abstract:
Diffuse Optical Tomography (DOT) is an emergent medical imaging technique which employs NIR light to estimate the spatial distribution of optical coefficients in biological tissues for diagnostic purposes, in a noninvasive and non-ionizing manner. DOT reconstruction is a severely ill-conditioned problem due to prevalent scattering of light in the tissue. In this contribution, we present our research in adopting hybrid knowledgedriven/data-driven approaches which exploit the existence of well assessed physical models and build upon them neural networks integrating the availability of data. Namely, since in this context regularization procedures are mandatory to obtain a reasonable reconstruction [1], we explore the use of neural networks as tools to include prior information on the solution. 2. Materials and Methods The idea underlying our approach is to leverage neural networks to solve PDE-constrained inverse problems of the form 𝒒 ∗ = 𝒂𝒓𝒈 𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃), (1) where D is a loss function which typically contains a discrepancy measure (or data fidelity) term plus other possible ad-hoc designed terms enforcing specific constraints. In the context of inverse problems like (1), one seeks the optimal set of physical parameters q, given the set of observations y. Moreover, 𝑦̃ is the computable approximation of y, which may be as well obtained from a neural network but also in a classic way via the resolution of a PDE with given input coefficients (forward problem, Fig.1 box ). Due to the severe ill conditioning of the reconstruction problem, we adopt a two-fold approach: i) we restrict the solutions (optical coefficients) to lie in a lower-dimensional subspace generated by auto-decoder type networks. This procedure forms priors of the solution (Fig.1 box ); ii) we use regularization procedures of type 𝒒̂ ∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃)+ 𝑹(𝒒), where 𝑹(𝒒) is a regularization functional depending on regularization parameters which can be fixed a-priori or learned via a neural network in a data-driven modality. To further improve the generalizability of the proposed framework, we also infuse physics knowledge via soft penalty constraints (Fig.1 box ) in the overall optimization procedure (Fig.1 box ). 3. Discussion and Conclusion DOT reconstruction is severely hindered by ill-conditioning. The combined use of data-driven and knowledgedriven elements is beneficial and allows to obtain improved results, especially with a restricted dataset and in presence of variable sources of noise.Keywords: inverse problem in tomography, deep learning, diffuse optical tomography, regularization
Procedia PDF Downloads 755651 Adequate Nutritional Support and Monitoring in Post-Traumatic High Output Duodenal Fistula
Authors: Richa Jaiswal, Vidisha Sharma, Amulya Rattan, Sushma Sagar, Subodh Kumar, Amit Gupta, Biplab Mishra, Maneesh Singhal
Abstract:
Background: Adequate nutritional support and daily patient monitoring have an independent therapeutic role in the successful management of high output fistulae and early recovery after abdominal trauma. Case presentation: An 18-year-old girl was brought to AIIMS emergency with alleged history of fall of a heavy weight (electric motor) over abdomen. She was evaluated as per Advanced Trauma Life Support(ATLS) protocols and diagnosed to have significant abdominal trauma. After stabilization, she was referred to Trauma center. Abdomen was guarded and focused assessment with sonography for trauma(FAST) was found positive. Complete duodenojejunal(DJ) junction transection was found at laparotomy, and end-to-end repair was done. However, patient was re-explored in view of biliary peritonitis on post-operative day3, and anastomotic leak was found with sloughing of duodenal end. Resection of non-viable segments was done followed by side-to-side anastomosis. Unfortunately, the anastomosis leaked again, this time due to a post-anastomotic kink, diagnosed on dye study. Due to hostile abdomen, the patient was planned for supportive care, with plan of build-up and delayed definitive surgery. Percutaneous transheptic biliary drainage (PTBD) and STSG were required in the course as well. Nutrition: In intensive care unit (ICU), major goals of nutritional therapy were to improve wound healing, optimize nutrition, minimize enteral feed associated complications, reduce biliary fistula output, and prepare the patient for definitive surgeries. Feeding jejunostomy (FJ) was started from day 4 at the rate of 30ml/h along with total parenteral nutrition (TPN) and intra-venous (IV) micronutrients support. Due to high bile output, bile refeed started from day 13.After 23 days of ICU stay, patient was transferred to general ward with body mass index (BMI)<11kg/m2 and serum albumin –1.5gm%. Patient was received in the ward in catabolic phase with high risk of refeeding syndrome. Patient was kept on FJ bolus feed at the rate of 30–50 ml/h. After 3–4 days, while maintaining patient diet book log it was observed that patient use to refuse feed at night and started becoming less responsive with every passing day. After few minutes of conversation with the patient for a couple of days, she complained about enteral feed discharge in urine, mild pain and sign of dumping syndrome. Dye study was done, which ruled out any enterovesical fistula and conservative management were planned. At this time, decision was taken for continuous slow rate feeding through commercial feeding pump at the rate of 2–3ml/min. Drastic improvement was observed from the second day in gastro-intestinal symptoms and general condition of the patient. Nutritional composition of feed, TPN and diet ranged between 800 and 2100 kcal and 50–95 g protein. After STSG, TPN was stopped. Periodic diet counselling was given to improve oral intake. At the time of discharge, serum albumin level was 2.1g%, weight – 38.6, BMI – 15.19 kg/m2. Patient got discharge on an oral diet. Conclusion: Successful management of post-traumatic proximal high output fistulae is a challenging task, due to impaired nutrient absorption and enteral feed associated complications. Strategic- and goal-based nutrition support can salvage such critically ill patients, as demonstrated in the present case.Keywords: nutritional monitoring, nutritional support, duodenal fistula, abdominal trauma
Procedia PDF Downloads 2625650 Exploring the Psychosocial Brain: A Retrospective Analysis of Personality, Social Networks, and Dementia Outcomes
Authors: Felicia N. Obialo, Aliza Wingo, Thomas Wingo
Abstract:
Psychosocial factors such as personality traits and social networks influence cognitive aging and dementia outcomes both positively and negatively. The inherent complexity of these factors makes defining the underlying mechanisms of their influence difficult; however, exploring their interactions affords promise in the field of cognitive aging. The objective of this study was to elucidate some of these interactions by determining the relationship between social network size and dementia outcomes and by determining whether personality traits mediate this relationship. The longitudinal Alzheimer’s Disease (AD) database provided by Rush University’s Religious Orders Study/Memory and Aging Project was utilized to perform retrospective regression and mediation analyses on 3,591 participants. Participants who were cognitively impaired at baseline were excluded, and analyses were adjusted for age, sex, common chronic diseases, and vascular risk factors. Dementia outcome measures included cognitive trajectory, clinical dementia diagnosis, and postmortem beta-amyloid plaque (AB), and neurofibrillary tangle (NT) accumulation. Personality traits included agreeableness (A), conscientiousness (C), extraversion (E), neuroticism (N), and openness (O). The results show a positive correlation between social network size and cognitive trajectory (p-value = 0.004) and a negative relationship between social network size and odds of dementia diagnosis (p = 0.024/ Odds Ratio (OR) = 0.974). Only neuroticism mediates the positive relationship between social network size and cognitive trajectory (p < 2e-16). Agreeableness, extraversion, and neuroticism all mediate the negative relationship between social network size and dementia diagnosis (p=0.098, p=0.054, and p < 2e-16, respectively). All personality traits are independently associated with dementia diagnosis (A: p = 0.016/ OR = 0.959; C: p = 0.000007/ OR = 0.945; E: p = 0.028/ OR = 0.961; N: p = 0.000019/ OR = 1.036; O: p = 0.027/ OR = 0.972). Only conscientiousness and neuroticism are associated with postmortem AD pathologies; specifically, conscientiousness is negatively associated (AB: p = 0.001, NT: p = 0.025) and neuroticism is positively associated with pathologies (AB: p = 0.002, NT: p = 0.002). These results support the study’s objectives, demonstrating that social network size and personality traits are strongly associated with dementia outcomes, particularly the odds of receiving a clinical diagnosis of dementia. Personality traits interact significantly and beneficially with social network size to influence the cognitive trajectory and future dementia diagnosis. These results reinforce previous literature linking social network size to dementia risk and provide novel insight into the differential roles of individual personality traits in cognitive protection.Keywords: Alzheimer’s disease, cognitive trajectory, personality traits, social network size
Procedia PDF Downloads 1305649 Harmonization of Accreditation Standards in Education of Central Asian Countries: Theoretical Aspect
Authors: Yskak Nabi, Onolkan Umankulova, Ilyas Seitov
Abstract:
Tempus project about “Central Asian network for quality assurance – CANQA” had been implemented in 2009-2012. As the result of the project, two accreditation agencies were established: the agency for quality assurance in the field of education, “EdNet” in Kyrgyzstan, center of progressive technologies in Tajikistan. The importance of the research studies of the project is supported by the idea that the creation of Central-Asian network for quality assurance in education is still relevant, and results of the International forum “Global in regional: Kazakhstan in Bologna process and EU projects,” that was held in Nur-Sultan in October 2020, proves this. At the same time, the previous experience of the partnership between accreditation agencies of Central Asia shows that recommendations elaborated within the CANQA project were not theoretically justified. But there are a number of facts and arguments that prove the practical appliance of these recommendations. In this respect, joint activities of accreditation agencies of Kyrgyzstan and Kazakhstan are representative. For example, independent Kazakh agency of accreditation and rating successfully conducts accreditation of Kyrgyz universities; based on the memorandum about joint activity between the agency for quality assurance in the field of education “EdNet” (Kyrgyzstan) and Astana accreditation agency (Kazakhstan), the last one provides its experts for accreditation procedures in EdNet. Exchange of experience among the agencies shows an effective approach towards adaptation of European standards to the reality of education systems of Central Asia with consideration of not only a legal framework but also from the point of European practices view. Therefore, the relevance of the research is identified as there is a practical partnership between accreditation agencies of Central Asian countries, but the absence of theoretical justification of integrational processes in the accreditation field. As a result, the following hypothesis was put forward: “if to develop theoretical aspects for harmonization of accreditation standards, then integrational processes would be improved since the implementation of Bologna process principles would be supported with wider possibilities, and particularly, students and academic mobility would be improved.” Indeed, for example, in Kazakhstan, the total share of foreign students was 5,04% in 2020, and most of them are coming from Kyrgyzstan, Tajikistan, and Uzbekistan, and if integrational processes will be improved, then this share can increase.Keywords: accreditation standards in education, Central Asian countries, pedagogical theory, model
Procedia PDF Downloads 2015648 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations
Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu
Abstract:
Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10
Procedia PDF Downloads 1135647 Efficiency of Natural Metabolites on Quality Milk Production in Mixed Breed Cows.
Authors: Mariam Azam, Sajjad Ur Rahman, Mukarram Bashir, Muhammad Tahir, Seemal Javaid, Jawad, Aoun Muhammad, Muhammad Zohaib, Hannan Khan
Abstract:
Products of microbial origin are of great importance as they have proved their value in healthcare and nutrition, use of these microbial metabolites acquired from partially fermented soya hulls and wheat bran along with Saccharomyces cerevisiae (DL-22 S/N) substantiates to be a great source for an increase in the total milk production and quality yield.1×109 CFU/ml cells of Saccharomyces cerevisiae (DL-22 S/N) were further grown under in-vivo conditions for the assessment of quality milk production. Two groups with twelve cows, each having the same physical characteristics (Group A and Group B), were under study, Group A was daily fed with 12gm of biological metabolites and 22% protein-pelleted feed. On the other hand, the animals of Group B were provided with no metabolites in their feed. In thirty days of trial, improvement in the overall health, body score, milk protein, milk fat, yield, incidence rate of mastitis, ash, and solid not fat (SNF) was observed. The collected data showed that the average quality milk production was elevated up to 0.45 liter/h/d. However, a reduction in the milk fats up to 0.45% and uplift in the SNF value up to 0.53% of cow milk was also observed. At the same time, the incidence rate of mastitis recorded for the animals under trial was reduced to half, and improved non specific immunity was reported.Keywords: microbial metabolites, post-biotics, animal supplements, animal nutrition, proteins, animal production, fermentation
Procedia PDF Downloads 1025646 Technologic Information about Photovoltaic Applied in Urban Residences
Authors: Stephanie Fabris Russo, Daiane Costa Guimarães, Jonas Pedro Fabris, Maria Emilia Camargo, Suzana Leitão Russo, José Augusto Andrade Filho
Abstract:
Among renewable energy sources, solar energy is the one that has stood out. Solar radiation can be used as a thermal energy source and can also be converted into electricity by means of effects on certain materials, such as thermoelectric and photovoltaic panels. These panels are often used to generate energy in homes, buildings, arenas, etc., and have low pollution emissions. Thus, a technological prospecting was performed to find patents related to the use of photovoltaic plates in urban residences. The patent search was based on ESPACENET, associating the keywords photovoltaic and home, where we found 136 patent documents in the period of 1994-2015 in the fields title and abstract. Note that the years 2009, 2010, 2011, 2012, 2013 and 2014 had the highest number of applicants, with respectively, 11, 13, 23, 29, 15 and 21. Regarding the country that deposited about this technology, it is clear that China leads with 67 patent deposits, followed by Japan with 38 patents applications. It is important to note that most depositors, 50% are companies, 44% are individual inventors and only 6% are universities. On the International Patent classification (IPC) codes, we noted that the most present classification in results was H02J3/38, which represents provisions in parallel to feed a single network by two or more generators, converters or transformers. Among all categories, there is the H session, which means Electricity, with 70% of the patents.Keywords: photovoltaic, urban residences, technology forecasting, prospecting
Procedia PDF Downloads 3015645 The Contribution of the Livestock Marketing Programme in Improving Household Food Security in Communal Areas of Umzimkhulu Local Municipality, Kwa-Zulu Natal
Authors: Sibongiseni Peacock, Denver Naidoo, Sikhalazo Dube
Abstract:
The study investigates the impact of the National Red Meat Development Programme on household food security in rural areas of uMzimkhulu. Self-administered questionnaires were employed to gather data from 77 smallholder beef farmers participating in the St. Paul feedlot project. Data analysis utilized the Household Food Insecurity Access Scale (HFIAS) developed by USAID to assess the household food security status of St. Paul feedlot beneficiaries, with descriptive statistics employed for result analysis. Findings indicate that the majority (80.50%) of beneficiaries experienced food insecurity, while (19.50%) were classified as food secure, with most participants falling within the category of moderate food insecurity. Food insecurity predominantly stemmed from challenges faced by farmers unable to sell their cattle or whose cattle were not market-ready due to bureaucratic obstacles hindering the programme. Farmers identified feed shortages as the primary constraint, resulting in missed income opportunities. These findings underscore the critical need to address feed challenges and bureaucratic barriers to enhance the efficacy of the National Red Meat Development Programme in promoting household food security in rural areas.Keywords: National Red Meat Development, household food security, St. Paul feedlot, livestock, HFIAS
Procedia PDF Downloads 555644 Optimizing the Location of Parking Areas Adapted for Dangerous Goods in the European Road Transport Network
Authors: María Dolores Caro, Eugenio M. Fedriani, Ángel F. Tenorio
Abstract:
The transportation of dangerous goods by lorries throughout Europe must be done by using the roads conforming the European Road Transport Network. In this network, there are several parking areas where lorry drivers can park to rest according to the regulations. According to the "European Agreement concerning the International Carriage of Dangerous Goods by Road", parking areas where lorries transporting dangerous goods can park to rest, must follow several security stipulations to keep safe the rest of road users. At this respect, these lorries must be parked in adapted areas with strict and permanent surveillance measures. Moreover, drivers must satisfy several restrictions about resting and driving time. Under these facts, one may expect that there exist enough parking areas for the transport of this type of goods in order to obey the regulations prescribed by the European Union and its member countries. However, the already-existing parking areas are not sufficient to cover all the stops required by drivers transporting dangerous goods. Our main goal is, starting from the already-existing parking areas and the loading-and-unloading location, to provide an optimal answer to the following question: how many additional parking areas must be built and where must they be located to assure that lorry drivers can transport dangerous goods following all the stipulations about security and safety for their stops? The sense of the word “optimal” is due to the fact that we give a global solution for the location of parking areas throughout the whole European Road Transport Network, adjusting the number of additional areas to be as lower as possible. To do so, we have modeled the problem using graph theory since we are working with a road network. As nodes, we have considered the locations of each already-existing parking area, each loading-and-unloading area each road bifurcation. Each road connecting two nodes is considered as an edge in the graph whose weight corresponds to the distance between both nodes in the edge. By applying a new efficient algorithm, we have found the additional nodes for the network representing the new parking areas adapted for dangerous goods, under the fact that the distance between two parking areas must be less than or equal to 400 km.Keywords: trans-european transport network, dangerous goods, parking areas, graph-based modeling
Procedia PDF Downloads 2815643 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks
Authors: Yong Zhao, Jian He, Cheng Zhang
Abstract:
Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.Keywords: feature extraction, heart rate variability, hypertension, residual networks
Procedia PDF Downloads 1115642 Analysis and Design Modeling for Next Generation Network Intrusion Detection and Prevention System
Authors: Nareshkumar Harale, B. B. Meshram
Abstract:
The continued exponential growth of successful cyber intrusions against today’s businesses has made it abundantly clear that traditional perimeter security measures are no longer adequate and effective. We evolved the network trust architecture from trust-untrust to Zero-Trust, With Zero Trust, essential security capabilities are deployed in a way that provides policy enforcement and protection for all users, devices, applications, data resources, and the communications traffic between them, regardless of their location. Information exchange over the Internet, in spite of inclusion of advanced security controls, is always under innovative, inventive and prone to cyberattacks. TCP/IP protocol stack, the adapted standard for communication over network, suffers from inherent design vulnerabilities such as communication and session management protocols, routing protocols and security protocols are the major cause of major attacks. With the explosion of cyber security threats, such as viruses, worms, rootkits, malwares, Denial of Service attacks, accomplishing efficient and effective intrusion detection and prevention is become crucial and challenging too. In this paper, we propose a design and analysis model for next generation network intrusion detection and protection system as part of layered security strategy. The proposed system design provides intrusion detection for wide range of attacks with layered architecture and framework. The proposed network intrusion classification framework deals with cyberattacks on standard TCP/IP protocol, routing protocols and security protocols. It thereby forms the basis for detection of attack classes and applies signature based matching for known cyberattacks and data mining based machine learning approaches for unknown cyberattacks. Our proposed implemented software can effectively detect attacks even when malicious connections are hidden within normal events. The unsupervised learning algorithm applied to network audit data trails results in unknown intrusion detection. Association rule mining algorithms generate new rules from collected audit trail data resulting in increased intrusion prevention though integrated firewall systems. Intrusion response mechanisms can be initiated in real-time thereby minimizing the impact of network intrusions. Finally, we have shown that our approach can be validated and how the analysis results can be used for detecting and protection from the new network anomalies.Keywords: network intrusion detection, network intrusion prevention, association rule mining, system analysis and design
Procedia PDF Downloads 228