Search results for: explainable machine learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8618

Search results for: explainable machine learning

7448 Image Ranking to Assist Object Labeling for Training Detection Models

Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman

Abstract:

Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.

Keywords: computer vision, deep learning, object detection, semiconductor

Procedia PDF Downloads 142
7447 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling

Authors: Amin Nezarat, Naeime Seifadini

Abstract:

Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.

Keywords: predicting, deep learning, neural network, urban trip

Procedia PDF Downloads 141
7446 Skills Development: The Active Learning Model of a French Computer Science Institute

Authors: N. Paparisteidi, D. Rodamitou

Abstract:

This article focuses on the skills development and path planning of students studying computer science in EPITECH: french private institute of Higher Education. The researchers examine students’ points of view and experience in a blended learning model based on a skills development curriculum. The study is based on the collection of four main categories of data: semi-participant observation, distribution of questionnaires, interviews, and analysis of internal school databases. The findings seem to indicate that a skills-based program on active learning enables students to develop their learning strategies as well as their personal skills and to actively engage in the creation of their career path and contribute to providing additional information to curricula planners and decision-makers about learning design in higher education.

Keywords: active learning, blended learning, higher education, skills development

Procedia PDF Downloads 107
7445 End-to-End Spanish-English Sequence Learning Translation Model

Authors: Vidhu Mitha Goutham, Ruma Mukherjee

Abstract:

The low availability of well-trained, unlimited, dynamic-access models for specific languages makes it hard for corporate users to adopt quick translation techniques and incorporate them into product solutions. As translation tasks increasingly require a dynamic sequence learning curve; stable, cost-free opensource models are scarce. We survey and compare current translation techniques and propose a modified sequence to sequence model repurposed with attention techniques. Sequence learning using an encoder-decoder model is now paving the path for higher precision levels in translation. Using a Convolutional Neural Network (CNN) encoder and a Recurrent Neural Network (RNN) decoder background, we use Fairseq tools to produce an end-to-end bilingually trained Spanish-English machine translation model including source language detection. We acquire competitive results using a duo-lingo-corpus trained model to provide for prospective, ready-made plug-in use for compound sentences and document translations. Our model serves a decent system for large, organizational data translation needs. While acknowledging its shortcomings and future scope, it also identifies itself as a well-optimized deep neural network model and solution.

Keywords: attention, encoder-decoder, Fairseq, Seq2Seq, Spanish, translation

Procedia PDF Downloads 179
7444 The Perspectives of Adult Learners Towards Online Learning

Authors: Jacqueline Żammit

Abstract:

Online learning has become more popular as a substitute for traditional classroom instruction because of the COVID-19 epidemic. The study aimed to investigate how adult Maltese language learners evaluated the benefits and drawbacks of online instruction. 35 adult participants provided data through semi-structured interviews with open-ended questions. NVivo software was used to analyze the interview data using the thematic analysis method in order to find themes and group the data based on common responses. The advantages of online learning that the participants mentioned included accessing subject content even without live learning sessions, balancing learning with household duties, and lessening vulnerability to problems like fatigue, time-wasting traffic, school preparation, and parking space constraints. Conversely, inadequate Internet access, inadequate IT expertise, a shortage of personal computers, and domestic distractions adversely affected virtual learning. Lack of an Internet connection, IT expertise, a personal computer, or a phone with Internet access caused inequality in access to online learning sessions. Participants thought online learning was a way to resume academic activity, albeit with drawbacks. In order to address the challenges posed by online learning, several solutions are proposed in the research's conclusion.

Keywords: adult learners, online education, e-learning, challenges of online learning, benefits ofonline learning

Procedia PDF Downloads 64
7443 H-Infinity Controller Design for the Switched Reluctance Machine

Authors: Siwar Fadhel, Imen Bahri, Man Zhang

Abstract:

The switched reluctance machine (SRM) has undeniable qualities in terms of low cost and mechanical robustness. However, its highly nonlinear character and its uncertain parameters justify the development of complicated controls. In this paper, authors present the design of a robust H-infinity current controller for an 8/6 SRM with taking into account the nonlinearity of the SRM and with rejection of disturbances. The electromagnetic torque is indirectly regulated through the current controller. To show the performances of this control, a robustness analysis is performed by comparing the H-infinity and PI controller simulation results. This comparison demonstrates better performances for the presented controller. The effectiveness and robustness of the presented controller are also demonstrated by experimental tests.

Keywords: current regulation, experimentation, robust H-infinity control, switched reluctance machine

Procedia PDF Downloads 312
7442 Functional Neural Network for Decision Processing: A Racing Network of Programmable Neurons Where the Operating Model Is the Network Itself

Authors: Frederic Jumelle, Kelvin So, Didan Deng

Abstract:

In this paper, we are introducing a model of artificial general intelligence (AGI), the functional neural network (FNN), for modeling human decision-making processes. The FNN is composed of multiple artificial mirror neurons (AMN) racing in the network. Each AMN has a similar structure programmed independently by the users and composed of an intention wheel, a motor core, and a sensory core racing at a specific velocity. The mathematics of the node’s formulation and the racing mechanism of multiple nodes in the network will be discussed, and the group decision process with fuzzy logic and the transformation of these conceptual methods into practical methods of simulation and in operations will be developed. Eventually, we will describe some possible future research directions in the fields of finance, education, and medicine, including the opportunity to design an intelligent learning agent with application in AGI. We believe that FNN has a promising potential to transform the way we can compute decision-making and lead to a new generation of AI chips for seamless human-machine interactions (HMI).

Keywords: neural computing, human machine interation, artificial general intelligence, decision processing

Procedia PDF Downloads 129
7441 Approaches and Strategies Used to Increase Student Engagement in Blended Learning Courses

Authors: Pinar Ozdemir Ayber, Zeina Hojeij

Abstract:

Blended Learning (BL) is a rapidly growing teaching and learning approach, which brings together the best of both face-to-face and online learning to expand learning opportunities for students. However, there is limited research on the practices, opportunities and quality of instruction in Blended Classrooms, and on the role of the teaching faculty as well as the learners in these types of classes. This paper will highlight the researchers’ experiences and reflections on blending their classes. It will focus on the importance of designing effective lesson plans that emphasize learner engagement and motivation in alignment with course learning outcomes. In addition, it will identify the changing roles of the teacher and the learners and suggest appropriate variations to the traditional classroom setting taking into consideration the benefits and the challenges of the Blended Classroom. It is hoped that this paper would provide sufficient input for participants to reflect on ways they can blend their own lessons to promote ubiquitous learning and student autonomy. Practical tips and ideas will be shared with the participants on various strategies and technologies that were used in the researchers’ classes.

Keywords: blended learning, learner autonomy, learner engagement, learner motivation, mobile learning tools

Procedia PDF Downloads 306
7440 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System

Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García

Abstract:

In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.

Keywords: Intelligent Transportation Systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning

Procedia PDF Downloads 476
7439 Investigating the Effect of the Flipped Classroom Using E-Learning on Language Proficiency, Learner's Autonomy, and Class Participation of English Language Learners

Authors: Michelle Siao-Cing Guo

Abstract:

Technology is widely adopted to assist instruction and learning across disciplines. Traditional teaching method fails to capture the attention of the generation of digital native and does not accommodate diverse needs of today’s learners. The innovation in technology allows new pedagogical approaches. One approach that converts the traditional learning classroom to a more flexible learning time and space is known as the flipped classroom. This new pedagogy extends and enhances learning and accommodates different learning styles. The flipped classroom employs technology to offer course materials online 24 hours/day and to promote active class learning. However, will Taiwanese students who are used to more traditional instructional methods embrace the flipped classroom using E-learning? Will the flipped approach have an effect on Taiwanese students’ English mastery and learning autonomy? The researcher compares a flipped classroom model using E-learning and the traditional-lecture model. A pre- and post-test and a questionnaire were utilized to examine the effect of the flipped classroom on Taiwanese college students. The test results showed that the flipped approach had a positive effect on learners’ English proficiency level, topical knowledge, and willingness to participate in class. The questionnaire also demonstrates the acceptance of the new teaching model.

Keywords: flipped classroom , E-learning, innovative teaching, technology

Procedia PDF Downloads 378
7438 The Use of Relaxation Training in Special Schools for Children With Learning Disabilities

Authors: Birgit Heike Spohn

Abstract:

Several authors (e.g., Krowatschek & Reid, 2011; Winkler, 1998) pronounce themselves in favor of the use of relaxation techniques in school because those techniques could help children to cope with stress, improve power of concentration, learning, and social behavior as well as class climate. Children with learning disabilities might profit from those techniques in a special way because they contribute to improved learning behavior. There is no study addressing the frequency of the use of relaxation techniques in special schools for children with learning disabilities in German speaking countries. The paper presents a study in which all teachers of special schools for children with learning disabilities in a district of South Germany (n = 625) were questioned about the use of relaxation techniques in school using a standardized questionnaire. Variables addressed were the use of these techniques in the classroom, aspects of their use (kind of relaxation technique, frequency, and regularity of their use), and potential influencing factors. The results are discussed, and implications for further research are drawn.

Keywords: special education, learning disabilities, relaxation training, concentration

Procedia PDF Downloads 112
7437 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry

Authors: Deepika Christopher, Garima Anand

Abstract:

To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.

Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications

Procedia PDF Downloads 61
7436 Irbid National University Students’ Beliefs about English Language Learning

Authors: Khaleel Bader Bataineh

Abstract:

Past studies have maintained that the Arab learners' beliefs about language learning hold vital effects on their performance. Thus, this study was carried out to investigate the language learning beliefs of Irbid National University students. It aimed at identifying the language learning beliefs according to gender. This study is a descriptive design that employed survey questionnaire of Language Learning Beliefs Inventory (BALLI). The data were elicited from 83 English major students during the class sessions. The data were analyzed using an SPSS program in which frequency analysis and t-test were performed to examine the students’ responses. Thus, the major findings of this research indicated that there is a variation in responses with regards to the subjects’ beliefs about English learning. Also, the findings show significant differences in four questionnaire items according to gender. It is hoped that the findings provide valuable insights to educators about the learners’ beliefs which assist them to develop the teaching and learning English language process in Jordan universities.

Keywords: foreign language, students’ beliefs, language learning, Arab students

Procedia PDF Downloads 492
7435 If You Can't Teach Yourself, No One Can

Authors: Timna Mayer

Abstract:

This paper explores the vast potential of self-directed learning in violin pedagogy. Based in practice and drawing on concepts from neuropsychology, the author, a violinist and teacher, outlines five learning principles. Self-directed learning is defined as an ongoing process based on problem detection, definition, and resolution. The traditional roles of teacher and student are reimagined within this context. A step-by-step guide to applied self-directed learning suggests a model for both teachers and students that realizes student independence in the classroom, leading to higher-level understanding and more robust performance. While the value of self-directed learning is well-known in general pedagogy, this paper is novel in applying the approach to the study of musical performance, a field which is currently dominated by habit and folklore, rather than informed by science.

Keywords: neuropsychology and musical performance, self-directed learning, strategic problem solving, violin pedagogy

Procedia PDF Downloads 154
7434 The Analysis of a Learning Media Prototype as Web Learning in Distance Education

Authors: Yudi Efendi, Hasanuddin

Abstract:

Web-based learning program is the complementary of Printed Teaching Material (BMP) that serves and helps students clarify the parts that require additional explanation or illustration. This research attempts to analyze a prototype of web-based learning program. A prototype of web-based learning program which is interactive is completed with exercises and formative tests. Using qualitative descriptive method, the research presents the analysis from the content expert and media expert. Besides, the interviews from tutors of Political and Social Sciences will be presented. The research also analyzes questionnaires from the students of English and literature program in Jakarta. The questionnaire deals with the display of the content, the audio video, the usability, and the navigation. In the long run, it is expected that the program could be recommended to use by the university as an ideal program.

Keywords: web learning, prototype, content expert, media expert

Procedia PDF Downloads 248
7433 Day Ahead and Intraday Electricity Demand Forecasting in Himachal Region using Machine Learning

Authors: Milan Joshi, Harsh Agrawal, Pallaw Mishra, Sanand Sule

Abstract:

Predicting electricity usage is a crucial aspect of organizing and controlling sustainable energy systems. The task of forecasting electricity load is intricate and requires a lot of effort due to the combined impact of social, economic, technical, environmental, and cultural factors on power consumption in communities. As a result, it is important to create strong models that can handle the significant non-linear and complex nature of the task. The objective of this study is to create and compare three machine learning techniques for predicting electricity load for both the day ahead and intraday, taking into account various factors such as meteorological data and social events including holidays and festivals. The proposed methods include a LightGBM, FBProphet, combination of FBProphet and LightGBM for day ahead and Motifs( Stumpy) based on Mueens algorithm for similarity search for intraday. We utilize these techniques to predict electricity usage during normal days and social events in the Himachal Region. We then assess their performance by measuring the MSE, RMSE, and MAPE values. The outcomes demonstrate that the combination of FBProphet and LightGBM method is the most accurate for day ahead and Motifs for intraday forecasting of electricity usage, surpassing other models in terms of MAPE, RMSE, and MSE. Moreover, the FBProphet - LightGBM approach proves to be highly effective in forecasting electricity load during social events, exhibiting precise day ahead predictions. In summary, our proposed electricity forecasting techniques display excellent performance in predicting electricity usage during normal days and special events in the Himachal Region.

Keywords: feature engineering, FBProphet, LightGBM, MASS, Motifs, MAPE

Procedia PDF Downloads 75
7432 Ubiquitous Collaborative Mobile Learning (UCML): A Flexible Instructional Design Model for Social Learning

Authors: Hameed Olalekan Bolaji

Abstract:

The digital natives are driving the trends of literacy in the use of electronic devices for learning purposes. This has reconfigured the context of learning in the exploration of knowledge in a social learning environment. This study explores the impact of Ubiquitous Collaborative Mobile Learning (UCML) instructional design model in a quantitative designed-based research approach. The UCML model was a synergetic blend of four models that are relevant to the design of instructional content for a social learning environment. The UCML model serves as the treatment and instructions were transmitted via mobile device based on the principle of ‘bring your own device’ (BYOD) to promote social learning. Three research questions and two hypotheses were raised to guide the conduct of this study. A researcher-designed questionnaire was used to collate data and the it was subjected to reliability of Cronbach Alpha which yielded 0.91. Descriptive statistics of mean and standard deviation were used to answer research questions while inferential statistics of independent sample t-test was used to analyze the hypotheses. The findings reveal that the UCML model was adequately evolved and it promotes social learning its design principles through the use of mobile devices.

Keywords: collaboration, mobile device, social learning, ubiquitous

Procedia PDF Downloads 161
7431 Analysis of Q-Learning on Artificial Neural Networks for Robot Control Using Live Video Feed

Authors: Nihal Murali, Kunal Gupta, Surekha Bhanot

Abstract:

Training of artificial neural networks (ANNs) using reinforcement learning (RL) techniques is being widely discussed in the robot learning literature. The high model complexity of ANNs along with the model-free nature of RL algorithms provides a desirable combination for many robotics applications. There is a huge need for algorithms that generalize using raw sensory inputs, such as vision, without any hand-engineered features or domain heuristics. In this paper, the standard control problem of line following robot was used as a test-bed, and an ANN controller for the robot was trained on images from a live video feed using Q-learning. A virtual agent was first trained in simulation environment and then deployed onto a robot’s hardware. The robot successfully learns to traverse a wide range of curves and displays excellent generalization ability. Qualitative analysis of the evolution of policies, performance and weights of the network provide insights into the nature and convergence of the learning algorithm.

Keywords: artificial neural networks, q-learning, reinforcement learning, robot learning

Procedia PDF Downloads 374
7430 Influences Driving the Teachers’ Adoption of Mobile Learning

Authors: L. A. Alfarani, M. McPherson, N. Morris

Abstract:

The growth of mobile learning depends primarily on the participation of teachers and their belief in the possibilities that this technology has for enhancing learning. The need to integrate technology into education seems clear-cut, however, its acceptance in Saudi higher education remains low. Thus, determining the particular factors that affect faculty acceptance of technology is vital. This paper focuses on TAM which depends on two factors: perceived usefulness and perceived ease of use, this theory are used to predict faculty members’ behavioural intentions towards using mobile learning technology. 279 faculty members in one Saudi university have responded to the online questionnaire. The findings have revealed that there is a statistically significant difference in both usefulness and ease of using m-learning factors.

Keywords: TAM theory, mobile learning technology acceptance, usefulness, ease of use

Procedia PDF Downloads 529
7429 Influencers of E-Learning Readiness among Palestinian Secondary School Teachers: An Explorative Study

Authors: Fuad A. A. Trayek, Tunku Badariah Tunku Ahmad, Mohamad Sahari Nordin, Mohammed AM Dwikat

Abstract:

This paper reports on the results of an exploratory factor analysis procedure applied on the e-learning readiness data obtained from a survey of four hundred and seventy-nine (N = 479) teachers from secondary schools in Nablus, Palestine. The data were drawn from a 23-item Likert questionnaire measuring e-learning readiness based on Chapnick's conception of the construct. Principal axis factoring (PAF) with Promax rotation applied on the data extracted four distinct factors supporting four of Chapnick's e-learning readiness dimensions, namely technological readiness, psychological readiness, infrastructure readiness and equipment readiness. Together these four dimensions explained 56% of the variance. These findings provide further support for the construct validity of the items and for the existence of these four factors that measure e-learning readiness.

Keywords: e-learning, e-learning readiness, technological readiness, psychological readiness, principal axis factoring

Procedia PDF Downloads 403
7428 Active Learning Strategies to Develop Student Skills in Information Systems for Management

Authors: Filomena Lopes, Sandra Fernandes

Abstract:

Active learning strategies are at the center of any change process aimed to improve the development of student skills. This paper aims to analyse the impact of teaching strategies, including problem-based learning (PBL), in the curricular unit of information system for management, based on students’ perceptions of how they contribute to develop the desired learning outcomes of the curricular unit. This course is part of the 1st semester and 3rd year of the graduate degree program in management at a private higher education institution in Portugal. The methodology included an online questionnaire to students (n=40). Findings from students reveal a positive impact of the teaching strategies used. In general, 35% considered that the strategies implemented in the course contributed to the development of courses’ learning objectives. Students considered PBL as the learning strategy that better contributed to enhance the courses’ learning outcomes. This conclusion brings forward the need for further reflection and discussion on the impact of student feedback on teaching and learning processes.

Keywords: higher education, active learning strategies, skills development, student assessment

Procedia PDF Downloads 65
7427 A Method to Predict the Thermo-Elastic Behavior of Laser-Integrated Machine Tools

Authors: C. Brecher, M. Fey, F. Du Bois-Reymond, S. Neus

Abstract:

Additive manufacturing has emerged into a fast-growing section within the manufacturing technologies. Established machine tool manufacturers, such as DMG MORI, recently presented machine tools combining milling and laser welding. By this, machine tools can realize a higher degree of flexibility and a shorter production time. Still there are challenges that have to be accounted for in terms of maintaining the necessary machining accuracy - especially due to thermal effects arising through the use of high power laser processing units. To study the thermal behavior of laser-integrated machine tools, it is essential to analyze and simulate the thermal behavior of machine components, individual and assembled. This information will help to design a geometrically stable machine tool under the influence of high power laser processes. This paper presents an approach to decrease the loss of machining precision due to thermal impacts. Real effects of laser machining processes are considered and thus enable an optimized design of the machine tool, respective its components, in the early design phase. Core element of this approach is a matched FEM model considering all relevant variables arising, e.g. laser power, angle of laser beam, reflective coefficients and heat transfer coefficient. Hence, a systematic approach to obtain this matched FEM model is essential. Indicating the thermal behavior of structural components as well as predicting the laser beam path, to determine the relevant beam intensity on the structural components, there are the two constituent aspects of the method. To match the model both aspects of the method have to be combined and verified empirically. In this context, an essential machine component of a five axis machine tool, the turn-swivel table, serves as the demonstration object for the verification process. Therefore, a turn-swivel table test bench as well as an experimental set-up to measure the beam propagation were developed and are described in the paper. In addition to the empirical investigation, a simulative approach of the described types of experimental examination is presented. Concluding, it is shown that the method and a good understanding of the two core aspects, the thermo-elastic machine behavior and the laser beam path, as well as their combination helps designers to minimize the loss of precision in the early stages of the design phase.

Keywords: additive manufacturing, laser beam machining, machine tool, thermal effects

Procedia PDF Downloads 268
7426 Enhancing Financial Security: Real-Time Anomaly Detection in Financial Transactions Using Machine Learning

Authors: Ali Kazemi

Abstract:

The digital evolution of financial services, while offering unprecedented convenience and accessibility, has also escalated the vulnerabilities to fraudulent activities. In this study, we introduce a distinct approach to real-time anomaly detection in financial transactions, aiming to fortify the defenses of banking and financial institutions against such threats. Utilizing unsupervised machine learning algorithms, specifically autoencoders and isolation forests, our research focuses on identifying irregular patterns indicative of fraud within transactional data, thus enabling immediate action to prevent financial loss. The data we used in this study included the monetary value of each transaction. This is a crucial feature as fraudulent transactions may have distributions of different amounts than legitimate ones, such as timestamps indicating when transactions occurred. Analyzing transactions' temporal patterns can reveal anomalies (e.g., unusual activity in the middle of the night). Also, the sector or category of the merchant where the transaction occurred, such as retail, groceries, online services, etc. Specific categories may be more prone to fraud. Moreover, the type of payment used (e.g., credit, debit, online payment systems). Different payment methods have varying risk levels associated with fraud. This dataset, anonymized to ensure privacy, reflects a wide array of transactions typical of a global banking institution, ranging from small-scale retail purchases to large wire transfers, embodying the diverse nature of potentially fraudulent activities. By engineering features that capture the essence of transactions, including normalized amounts and encoded categorical variables, we tailor our data to enhance model sensitivity to anomalies. The autoencoder model leverages its reconstruction error mechanism to flag transactions that deviate significantly from the learned normal pattern, while the isolation forest identifies anomalies based on their susceptibility to isolation from the dataset's majority. Our experimental results, validated through techniques such as k-fold cross-validation, are evaluated using precision, recall, and the F1 score alongside the area under the receiver operating characteristic (ROC) curve. Our models achieved an F1 score of 0.85 and a ROC AUC of 0.93, indicating high accuracy in detecting fraudulent transactions without excessive false positives. This study contributes to the academic discourse on financial fraud detection and provides a practical framework for banking institutions seeking to implement real-time anomaly detection systems. By demonstrating the effectiveness of unsupervised learning techniques in a real-world context, our research offers a pathway to significantly reduce the incidence of financial fraud, thereby enhancing the security and trustworthiness of digital financial services.

Keywords: anomaly detection, financial fraud, machine learning, autoencoders, isolation forest, transactional data analysis

Procedia PDF Downloads 62
7425 The Cooperative Learning Management in the Course of Principles of Mathematics for Graduate Level

Authors: Komon Paisal

Abstract:

The aim of this research was to create collaborative learning activities in the course of Principles of Mathematics for graduate level by investigating the students’ ability in proving the mathematics principles as well as their attitudes towards the activities. The samples composed of 2 main group; lecturers and students. The lecturers consisted of 3 teachers who taught the course of Principles of Mathematics at Rajabhat Suan Sunandha Unicersity in the academic year 2012. The students consisted of 32 students joining the cooperative learning activities in the subject of Principles of Mathematics in the academic year 2012. The research tools included activity plan for cooperative learning, testing on mathematics with the reliability of 0.8067 and the attitude questionnaires reported by the students. The results showed that: 1) the efficiency of the developed cooperative learning activities was 69.76/ 68.57 which was lower than the set criteria at 70/70. 2) The students joining the cooperative learning activities were able to prove the principles of mathematics at the average of 70%. 3) The students joining the cooperative learning activities reported moderate attitude towards the activities.

Keywords: instructional design, pedagogical, teaching strategies, learning strategies

Procedia PDF Downloads 274
7424 Usage and Benefits of Handheld Devices as Educational Tools in Higher Institutions of Learning in Lagos State, Nigeria

Authors: Abiola A. Sokoya

Abstract:

Handheld devices are now in use as educational tools for learning in most of the higher institutions, because of the features and functions which can be used in an academic environment. This study examined the usage and the benefits of handheld devices as learning tools. A structured questionnaire was used to collect data, while the data collected was analyzed using simple percentage. It was, however, observed that handheld devices offer numerous functions and application for learning, which could improve academic performance of students. Students are now highly interested in using handheld devices for mobile learning apart from making and receiving calls. The researchers recommended that seminars be organized for students on functions of some common handheld devices that can aid learning for academic purposes. It is also recommended that management of each higher institution should make appropriate policies in-line with the usage of handheld technologies to enhance mobile learning. Government should ensure that appropriate policies and regulations are put in place for the importation of high quality handheld devices into the country, Nigeria being a market place for the technologies. By this, using handheld devices for mobile learning will be enhanced.

Keywords: handheld devices, educational tools, mobile e- learning, usage, benefits

Procedia PDF Downloads 232
7423 The effect of Reflective Thinking on Iranian EFL Learners’ Language Learning Strategy Use, L2 Proficiency, and Beliefs about Second Language Learning and Teaching

Authors: Mohammad Hadi Mahmoodi, Mojtaba Farahani

Abstract:

The present study aimed at investigating whether reflective thinking differentiates Iranian EFL learners regarding language learning strategy use, beliefs about language learning and teaching, and L2 proficiency. To this end, the researcher adopted a mixed method approach. First, 94 EFL learners were asked to complete Reflective Thinking Questionnaire (Kember et al., 2000), Beliefs about Language Learning and Teaching Inventory (Horwitz, 1985), Strategy Inventory for Language Learning (Oxford, 1990), and Oxford Quick Placement Test. The results of three separate one-way ANOVAs indicated that reflective thinking significantly differentiates Iranian EFL learners concerning: (a)language learning strategy use, (b) beliefs about language learning and teaching, and (c) general language proficiency. Furthermore, to see where the differences lay, three separate post-hoc Tukey tests were run the results of which showed that learners with different levels of reflectivity (high, mid, and low) were significantly different from each other in all three dependent variables. Finally, to increase the validity of the findings thirty of the participants were interviewed and the results were analyzed through template organizing style method (Crabtree & Miller, 1999). The results of the interview analysis supported the results of quantitative data analysis.

Keywords: reflective thinking, language learning strategy use, beliefs toward language learning and teaching

Procedia PDF Downloads 660
7422 The Relationship between Organization Culture and Organization Learning in Three Different Types of Companies

Authors: Mahmoud Timar, Javad Joukar Borazjani

Abstract:

A dynamic organization helps the management to overcome both internal and external uncertainties and complexities of the organization with more confidence and efficiency. Regarding this issue, in this paper, the influence of organizational culture factors over organizational learning components, which both of them are considered as important characteristics of a dynamic organization, has been studied in three subsidiary companies (production, consultation and service) of National Iranian Oil Company, and moreover we also tried to identify the most dominant culture in these three subsidiaries. Analysis of 840 received questionnaires by SPSS shows that there is a significant relationship between the components of organizational culture and organizational learning; however the rate of relationship between these two factors was different among the examined companies. By the use of Regression, it has been clarified that in the servicing company the highest relationship is between mission and learning environment, while in production division, there is a significant relationship between adaptability and learning needs satisfaction and however in consulting company the highest relationship is between involvement and applying learning in workplace.

Keywords: denison model, culture, leaning, organizational culture, organizational learning

Procedia PDF Downloads 379
7421 Navigating the VUCA World with a Strong Heart and Mind: How to Build Passion and Character

Authors: Shynn Lim, Ching Tan

Abstract:

The paper presents the PASSION Programme designed by a government school in Singapore, guided by national goals as well as research-based pedagogies that aims to nurture students to become lifelong learners with the strength of character. The design and enactment of the integrated approach to develop in students good character, resilience and social-emotional well-being, future readiness, and active citizenship is guided by a set of principles that amalgamates Biesta’s domains of purposes of education and authentic learning. Data in terms of evidence of students’ learning and students’ feedback were collected, analysed, and suggests that the learning experience benefitted students by boosting their self-confidence, self-directed and collaborative learning skills, as well as empathy.

Keywords: lifelong learning, character and citizenship education, education and career guidance, 21CC, teaching and learning empathy

Procedia PDF Downloads 150
7420 Human-Machine Cooperation in Facial Comparison Based on Likelihood Scores

Authors: Lanchi Xie, Zhihui Li, Zhigang Li, Guiqiang Wang, Lei Xu, Yuwen Yan

Abstract:

Image-based facial features can be classified into category recognition features and individual recognition features. Current automated face recognition systems extract a specific feature vector of different dimensions from a facial image according to their pre-trained neural network. However, to improve the efficiency of parameter calculation, an algorithm generally reduces the image details by pooling. The operation will overlook the details concerned much by forensic experts. In our experiment, we adopted a variety of face recognition algorithms based on deep learning, compared a large number of naturally collected face images with the known data of the same person's frontal ID photos. Downscaling and manual handling were performed on the testing images. The results supported that the facial recognition algorithms based on deep learning detected structural and morphological information and rarely focused on specific markers such as stains and moles. Overall performance, distribution of genuine scores and impostor scores, and likelihood ratios were tested to evaluate the accuracy of biometric systems and forensic experts. Experiments showed that the biometric systems were skilled in distinguishing category features, and forensic experts were better at discovering the individual features of human faces. In the proposed approach, a fusion was performed at the score level. At the specified false accept rate, the framework achieved a lower false reject rate. This paper contributes to improving the interpretability of the objective method of facial comparison and provides a novel method for human-machine collaboration in this field.

Keywords: likelihood ratio, automated facial recognition, facial comparison, biometrics

Procedia PDF Downloads 132
7419 Speed Breaker/Pothole Detection Using Hidden Markov Models: A Deep Learning Approach

Authors: Surajit Chakrabarty, Piyush Chauhan, Subhasis Panda, Sujoy Bhattacharya

Abstract:

A large proportion of roads in India are not well maintained as per the laid down public safety guidelines leading to loss of direction control and fatal accidents. We propose a technique to detect speed breakers and potholes using mobile sensor data captured from multiple vehicles and provide a profile of the road. This would, in turn, help in monitoring roads and revolutionize digital maps. Incorporating randomness in the model formulation for detection of speed breakers and potholes is crucial due to substantial heterogeneity observed in data obtained using a mobile application from multiple vehicles driven by different drivers. This is accomplished with Hidden Markov Models, whose hidden state sequence is found for each time step given the observables sequence, and are then fed as input to LSTM network with peephole connections. A precision score of 0.96 and 0.63 is obtained for classifying bumps and potholes, respectively, a significant improvement from the machine learning based models. Further visualization of bumps/potholes is done by converting time series to images using Markov Transition Fields where a significant demarcation among bump/potholes is observed.

Keywords: deep learning, hidden Markov model, pothole, speed breaker

Procedia PDF Downloads 151