Search results for: energy harvesting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8432

Search results for: energy harvesting

7262 Fault Detection and Isolation in Sensors and Actuators of Wind Turbines

Authors: Shahrokh Barati, Reza Ramezani

Abstract:

Due to the countries growing attention to the renewable energy producing, the demand for energy from renewable energy has gone up among the renewable energy sources; wind energy is the fastest growth in recent years. In this regard, in order to increase the availability of wind turbines, using of Fault Detection and Isolation (FDI) system is necessary. Wind turbines include of various faults such as sensors fault, actuator faults, network connection fault, mechanical faults and faults in the generator subsystem. Although, sensors and actuators have a large number of faults in wind turbine but have discussed fewer in the literature. Therefore, in this work, we focus our attention to design a sensor and actuator fault detection and isolation algorithm and Fault-tolerant control systems (FTCS) for Wind Turbine. The aim of this research is to propose a comprehensive fault detection and isolation system for sensors and actuators of wind turbine based on data-driven approaches. To achieve this goal, the features of measurable signals in real wind turbine extract in any condition. The next step is the feature selection among the extract in any condition. The next step is the feature selection among the extracted features. Features are selected that led to maximum separation networks that implemented in parallel and results of classifiers fused together. In order to maximize the reliability of decision on fault, the property of fault repeatability is used.

Keywords: FDI, wind turbines, sensors and actuators faults, renewable energy

Procedia PDF Downloads 378
7261 Utilization of a Composite of Oil Ash, Scoria, and Expanded Perlite with Polyethylene Glycol for Energy Storage Systems

Authors: Khaled Own Mohaisen, Md. Hasan Zahir, Salah U. Al-Dulaijan, Shamsad Ahmad, Mohammed Maslehuddin

Abstract:

Shape-stabilized phase change materials (ss-PCMs) for energy storage systems were developed using perlite, scoria, and oil ash as a carrier, with polyethylene glycol (PEG) with a molecular weight of 6000 as phase change material (PCM). Physical mixing using simple impregnation of ethanol evaporation technique method was carried out to fabricate the form stabilized PCM. The fabricated PCMs prevent leakage, reduce the supercooling effect and minimize recalescence problems of the PCM. The differential scanning calorimetry (DSC) results show that perlite composite (ExPP) has the highest latent heat of melting and freezing values of (141.6 J/g and 143.7 J/g) respectively, compared with oil ash (OAP) and scoria (SCP) composites. Moreover, ExPP has the highest impregnation ratio, energy storage efficiency, and energy storage capacity compared with OAP and SCP. However, OAP and SCP have higher thermal conductivity values compared to ExPP composites which accelerate the thermal storage response in the composite. These results were confirmed with DSC, and the characteristic of the PCMs was investigated by using XRD and FE-SEM techniques.

Keywords: expanded perlite, oil ash, scoria, energy storage material

Procedia PDF Downloads 57
7260 The Result of Suggestion for Low Energy Diet (1,000 kcal-1,200 kcal) in Obese Women to the effect on Body Weight, Waist Circumference, and BMI

Authors: S. Kumchoo

Abstract:

The result of suggestion for low energy diet (1,000-1,200 kcal) in obese women to the effect on body weight, waist circumference and body mass index (BMI) in this experiment. Quisi experimental research was used for this study and it is a One-group pretest-posttest designs measurement method. The aim of this study was body weight, waist circumference and body mass index (BMI) reduction by using low energy diet (1,000-1,200 kcal) in obese women, the result found that in 15 of obese women that contained their body mass index (BMI) ≥ 30, after they obtained low energy diet (1,000-1,200 kcal) within 2 weeks. The data were collected before and after of testing the results showed that the average of body weight decrease 3.4 kilogram, waist circumference value decrease 6.1 centimeter and the body mass index (BMI) decrease 1.3 kg.m2 from their previous body weight, waist circumference and body mass index (BMI) before experiment started. After this study, the volunteers got healthy and they can choose or select some food for themselves. For this study, the research can be improved for data development for forward study in the future.

Keywords: body weight, waist circumference, BMI, low energy diet

Procedia PDF Downloads 432
7259 Ensuring Uniform Energy Consumption in Non-Deterministic Wireless Sensor Network to Protract Networks Lifetime

Authors: Vrince Vimal, Madhav J. Nigam

Abstract:

Wireless sensor networks have enticed much of the spotlight from researchers all around the world, owing to its extensive applicability in agricultural, industrial and military fields. Energy conservation node deployment stratagems play a notable role for active implementation of Wireless Sensor Networks. Clustering is the approach in wireless sensor networks which improves energy efficiency in the network. The clustering algorithm needs to have an optimum size and number of clusters, as clustering, if not implemented properly, cannot effectively increase the life of the network. In this paper, an algorithm has been proposed to address connectivity issues with the aim of ensuring the uniform energy consumption of nodes in every part of the network. The results obtained after simulation showed that the proposed algorithm has an edge over existing algorithms in terms of throughput and networks lifetime.

Keywords: Wireless Sensor network (WSN), Random Deployment, Clustering, Isolated Nodes, Networks Lifetime

Procedia PDF Downloads 313
7258 Providing Additional Advantages for STATCOM in Power Systems by Integration of Energy Storage Device

Authors: Reza Sedaghati

Abstract:

The use of Flexible AC Transmission System (FACTS) devices in a power system can potentially overcome limitations of the present mechanically controlled transmission system. Also, the advance of technology makes possible to include new energy storage devices in the electrical power system. The integration of Superconducting Magnetic Energy Storage (SMES) into Static Synchronous Compensator (STATCOM) can lead to increase their flexibility in improvement of power system dynamic behaviour by exchanging both active and reactive powers with power grids. This paper describes structure and behaviour of SMES, specifications and performance principles of the STATCOM/SMES compensator. Moreover, the benefits and effectiveness of integrated SMES with STATCOM in power systems is presented. Also, the performance of the STATCOM/SMES compensator is evaluated using an IEEE 3-bus system through the dynamic simulation by PSCAD/EMTDC software.

Keywords: STATCOM/SMES compensator, chopper, converter, energy storage system, power systems

Procedia PDF Downloads 534
7257 Solar Building Design Using GaAs PV Cells for Optimum Energy Consumption

Authors: Hadis Pouyafar, D. Matin Alaghmandan

Abstract:

Gallium arsenide (GaAs) solar cells are widely used in applications like spacecraft and satellites because they have a high absorption coefficient and efficiency and can withstand high-energy particles such as electrons and protons. With the energy crisis, there's a growing need for efficiency and cost-effective solar cells. GaAs cells, with their 46% efficiency compared to silicon cells 23% can be utilized in buildings to achieve nearly zero emissions. This way, we can use irradiation and convert more solar energy into electricity. III V semiconductors used in these cells offer performance compared to other technologies available. However, despite these advantages, Si cells dominate the market due to their prices. In our study, we took an approach by using software from the start to gather all information. By doing so, we aimed to design the optimal building that harnesses the full potential of solar energy. Our modeling results reveal a future; for GaAs cells, we utilized the Grasshopper plugin for modeling and optimization purposes. To assess radiation, weather data, solar energy levels and other factors, we relied on the Ladybug and Honeybee plugins. We have shown that silicon solar cells may not always be the choice for meeting electricity demands, particularly when higher power output is required. Therefore, when it comes to power consumption and the available surface area for photovoltaic (PV) installation, it may be necessary to consider efficient solar cell options, like GaAs solar cells. By considering the building requirements and utilizing GaAs technology, we were able to optimize the PV surface area.

Keywords: gallium arsenide (GaAs), optimization, sustainable building, GaAs solar cells

Procedia PDF Downloads 57
7256 Stationary Gas Turbines in Power Generation: Past, Present and Future Challenges

Authors: Michel Moliere

Abstract:

In the next decades, the thermal power generation segment will survive only if it achieves deep mutations, including drastical abatements of CO2 emissions and strong efficiency gains. In this challenging perspective, stationary gas turbines appear as serious candidates to lead the energy transition. Indeed, during the past decades, these turbomachines have made brisk technological advances in terms of efficiency, reliability, fuel flex (including the combustion of hydrogen), and the ability to hybridize with regenrables. It is, therefore, timely to summarize the progresses achieved by gas turbines in the recent past and to examine what are their assets to face the challenges of the energy transition.

Keywords: energy transition, gas turbines, decarbonization, power generation

Procedia PDF Downloads 183
7255 Evaluating Energy Transition of a complex of buildings in a historic site of Rome toward Zero-Emissions for a Sustainable Future

Authors: Silvia Di Turi, Nicolandrea Calabrese, Francesca Caffari, Giulia Centi, Francesca Margiotta, Giovanni Murano, Laura Ronchetti, Paolo Signoretti, Lisa Volpe, Domenico Palladino

Abstract:

Recent European policies have been set ambitious targets aimed at significantly reducing CO2 emissions by 2030, with a long-term vision of transforming existing buildings into Zero-Emissions Buildings (ZEmB) by 2050. This vision represents a key point for the energy transition as the whole building stock currently accounts for 36% of total energy consumption across the Europe, mainly due to their poor energy performance. The challenge towards Zero-Emissions Buildings is particularly felt in Italy, where a significant number of buildings with historical significance or situated within protected/constrained areas can be found. Furthermore, an estimated 70% of the national building stock are built before 1976, indicating a widespread issue of poor energy performance. Addressing the energy ineƯiciency of these buildings is crucial to refining a comprehensive energy renovation approach aimed at facilitating their energy transition. In this framework the current study focuses on analysing a challenging complex of buildings to be totally restored through significant energy renovation interventions. The goal is to recover these disused buildings situated in a significant archaeological zone of Rome, contributing to the restoration and reintegration of this historically valuable site, while also oƯering insights useful for achieving zeroemission requirements for buildings within such contexts. In pursuit of meeting the stringent zero-emission requirements, a comprehensive study was carried out to assess the complex of buildings, envisioning substantial renovation measures on building envelope and plant systems and incorporating renewable energy system solutions, always respecting and preserving the historic site. An energy audit of the complex of buildings was performed to define the actual energy consumption for each energy service by adopting the hourly calculation methods. Subsequently, significant energy renovation interventions on both building envelope and mechanical systems have been examined respecting the historical value and preservation of site. These retrofit strategies have been investigated with threefold aims: 1) to recover the existing buildings ensuring the energy eƯiciency of the whole complex of buildings, 2) to explore which solutions have allowed achieving and facilitating the ZEmB status, 3) to balance the energy transition requirements with the sustainable aspect in order to preserve the historic value of the buildings and site. This study has pointed out the potentiality and the technical challenges associated with implementing renovation solutions for such buildings, representing one of the first attempt towards realizing this ambitious target for this type of building.

Keywords: energy conservation and transition, complex of buildings in historic site, zero-emission buildings, energy efficiency recovery

Procedia PDF Downloads 35
7254 Pulsed Electric Field as Pretreatment for Different Drying Method in Chilean Abalone (Concholepas Concholepas) Mollusk: Effects on Product Physical Properties and Drying Methods Sustainability

Authors: Luis González-Cavieres, Mario Perez-Won, Anais Palma-Acevedo, Gipsy Tabilo-Munizaga, Erick Jara-Quijada, Roberto Lemus-Mondaca

Abstract:

In this study, pulsed electric field (PEF: 2.0 kV/cm) was used as pretreatment in drying methods, vacuum microwave (VMD); freeze-drying (FD); and hot air (HAD), in Chilean abalone mollusk. Drying parameters, quality, energy consumption, and Sustainability parameters were evaluated. PEF+VMD showed better values than the other drying systems, with drying times 67% and 83% lower than PEF+FD and FD. In the quality parameters, PEF+FD showed a significantly lower value for hardness (250 N), and a lower change of color value (ΔE = 12). In the case of HAD, the PEF application did not significantly influence its processing. In energy parameters, VMD and PEF+VMD reduced energy consumption and CO2 emissions.

Keywords: PEF technology, vacuum microwave drying, energy consumption, CO2 emissions

Procedia PDF Downloads 55
7253 A Theoretical Study of and Phase Change Material Layered Roofs under Specific Climatic Regions in Turkey and the United Kingdom

Authors: Tugba Gurler, Irfan Kurtbas

Abstract:

Roof influences considerably energy demand of buildings. In order to reduce this energy demand, various solutions have been proposed, such as roofs with variable thermal insulation, cool roofs, green roofs, heat exchangers and ventilated roofs, and phase change material (PCM) layered roofs. PCMs suffer from relatively low thermal conductivity despite of their promise of the energy-efficiency initiatives for thermal energy storage (TES). This study not only presents the thermal performance of the concrete roof with PCM layers but also evaluates the products with different design configurations and thicknesses under Central Anatolia Region, Turkey and Nottinghamshire, UK weather conditions. System design limitations and proposed prediction models are discussed in this study. A two-dimensional numerical model has been developed, and governing equations have been solved at each time step. Upper surfaces of the roofs have been modelled with heat flux conditions, while lower surfaces of the roofs with boundary conditions. In addition, suitable roofs have been modeled under symmetry boundary conditions. The results of the designed concrete roofs with PCM layers have been compared with common concrete roofs in Turkey. The UK and the numerical modeling results have been validated with the data given in the literature.

Keywords: phase change material, regional energy demand, roof layers, thermal energy storage

Procedia PDF Downloads 79
7252 Mitochondrial Energy Utilization is Unchanged with Age in the Trophocytes and Oenocytes of Queen Honeybees (Apis mellifera)

Authors: Chia-Ying Yen, Chin-Yuan Hsu

Abstract:

The lifespans of queen honeybees (Apis mellifera) are much longer than those of worker bees. The expression, concentration, and activity of mitochondrial energy-utilized molecules decreased with age in the trophocytes and oenocytes of worker bees, but they are unknown in queen bees. In this study, the expression, concentration, and activity of mitochondrial energy-utilized molecules were evaluated in the trophocytes and oenocytes of young and old queen bees by biochemical techniques. The results showed that mitochondrial density and mitochondrial membrane potential; nicotinamide adenine dinucleotide (NAD+), nicotinamide adenine dinucleotide reduced form (NADH), and adenosine triphosphate (ATP) levels; the NAD+/NADH ratio; and relative expression of NADH dehydrogenase 1 and ATP synthase normalized against mitochondrial density were not significantly different between young and old queen bees. These findings reveal that mitochondrial energy utilization maintains a young status in the trophocytes and oenocytes of old queen bees and that trophocytes and oenocytes have aging-delaying mechanisms and can be used to study cellular longevity.

Keywords: aging, longevity, mitochondrial energy, queen bees

Procedia PDF Downloads 455
7251 Collapse Capacity and Energy Absorption Mechanism of High Rise Steel Moment Frame Considering Aftershock Effects

Authors: Mohammadmehdi Torfehnejad, Serhan Sensoy

Abstract:

Many structures sustain damage during a mainshock earthquake but undergo severe damage under aftershocks following the mainshock. Past researches have studied aftershock effects through different methodologies, but few structural systems have been evaluated for these effects. Collapse capacity and energy absorption mechanism of the Special Steel Moment Frame (SSMF) system is evaluated in this study, under aftershock earthquakes when prior damage is caused by the mainshock. A twenty-story building is considered in assessing the residual collapse capacity and energy absorption mechanism under aftershock excitation. In addition, various levels of mainshock damage are considered and reflected through two different response parameters. Aftershock collapse capacity is estimated using incremental dynamic analysis (IDA) applied following the mainshock. The study results reveal that the collapse capacity of high-rise structures undergoes a remarkable reduction for high level of mainshock damage. The energy absorption in the columns is decreased by increasing the level of mainshock damage.

Keywords: seismic collapse, mainshock-aftershock effect, incremental dynamic analysis, energy absorption

Procedia PDF Downloads 108
7250 Dynamic Interaction between Renwable Energy Consumption and Sustainable Development: Evidence from Ecowas Region

Authors: Maman Ali M. Moustapha, Qian Yu, Benjamin Adjei Danquah

Abstract:

This paper investigates the dynamic interaction between renewable energy consumption (REC) and economic growth using dataset from the Economic Community of West African States (ECOWAS) from 2002 to 2016. For this study the Autoregressive Distributed Lag- Bounds test approach (ARDL) was used to examine the long run relationship between real gross domestic product and REC, while VECM based on Granger causality has been used to examine the direction of Granger causality. Our empirical findings indicate that REC has significant and positive impact on real gross domestic product. In addition, we found that REC and the percentage of access to electricity had unidirectional Granger causality to economic growth while carbon dioxide emission has bidirectional Granger causality to economic growth. Our findings indicate also that 1 per cent increase in the REC leads to an increase in Real GDP by 0.009 in long run. Thus, REC can be a means to ensure sustainable economic growth in the ECOWAS sub-region. However, it is necessary to increase further support and investments on renewable energy production in order to speed up sustainable economic development throughout the region

Keywords: Economic Growth, Renewable Energy, Sustainable Development, Sustainable Energy

Procedia PDF Downloads 173
7249 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management

Authors: M. Graus, K. Westhoff, X. Xu

Abstract:

The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.

Keywords: data analytics, green production, industrial energy management, optimization, renewable energies, simulation

Procedia PDF Downloads 415
7248 Nexus between Energy, Environment and Economic Growth: Sectoral Analysis from Pakistan

Authors: Muhammad Afzal, Muhammad Sajjad

Abstract:

Climate change has become a global environmental challenge and it has affected the world’s economy. Its impact is widespread across all major sectors of the economy i.e. agriculture, industry, and services sectors. This study attempts to measure the long run as well as the short-run dynamic between energy; environment and economic growth by using Autoregressive Distributed Lag (ARDL) bound testing approach at aggregate as well as sectoral level. We measured the causal relationship between electricity consumption, fuel consumption, CO₂ emission, and real Gross Domestic Product (GDP) for the period of 1980 to 2016 for Pakistan. Our co-integration results reveal that all the variables are co-integrated at aggregate as well as at sectoral level. Electricity consumption shows two-way casual relation at for industry, services and aggregate level. The inverted U-Curve hypothesis tested the relationship between greenhouse gas emissions and per capita GDP and results supported the Environment Kuznet Curve (EKC) hypothesis. This study cannot ignore the importance of energy for economic growth but prefers to focus on renewable and green energy to pave on the trajectory of development.

Keywords: climate change, economic growth, energy, environment

Procedia PDF Downloads 146
7247 Reflector Arrangement Effect on Ultraviolet Lamp Performance by CFX Simulation

Authors: William Sidharta, Chin-Tu Lu

Abstract:

Fluorescent ultraviolet lamp generates ultraviolet light which is commonly used in industrial field with certain purposes especially for curing process. Due to the value of inefficiency, there are changes in energy from electrical energy to the heat energy and this would make a defect on the industrial product caused by high temperature of lamp tube during ultraviolet light emission. The condition of industrial scale is further worsening, since commonly using dozens of fluorescent ultraviolet lamps to support huge production process and then it will generates much more heat energy. The maximum temperature of fluorescent ultraviolet lamp will get affected by arranging the lamp tube reflector and this study presents CFX simulation results of the maximum lamp tube temperature with some different reflector arrangements on purely natural convection phenomena. There exists certain spaces value of the reflector and the lamp tube to obtaining lower maximum temperature of the fluorescent ultraviolet lamp.

Keywords: CFX simulation, fluorescent UV lamp, lamp tube reflector, UV light

Procedia PDF Downloads 442
7246 A Practical Protection Method for Parallel Transmission-Lines Based on the Fault Travelling-Waves

Authors: Mohammad Reza Ebrahimi

Abstract:

In new restructured power systems, swift fault detection is very important. The parallel transmission-lines are vastly used in this kind of power systems because of high amount of energy transferring. In this paper, a method based on the comparison of two schemes, i.e., i) maximum magnitude of travelling-wave (TW) energy ii) the instants of maximum energy occurrence at the circuits of parallel transmission-line is proposed. Using the travelling-wave of fault in order to faulted line identification this method has noticeable operation time. Moreover, the algorithm can cover for identification of faults as external or internal faults. For an internal fault, the exact location of the fault can be estimated confidently. A lot of simulations have been done with PSCAD/EMTDC to verify the performance of the proposed algorithm.

Keywords: travelling-wave, maximum energy, parallel transmission-line, fault location

Procedia PDF Downloads 159
7245 Harnessing the Generation of Ferromagnetic and Silver Nanostructures from Tropical Aquatic Microbial Nanofactories

Authors: Patricia Jayshree Jacob, Mas Jaffri Masarudinb, Mohd Zobir Hussein, Raha Abdul Rahim

Abstract:

Iron based ferromagnetic nanoparticles (IONP) and silver nanostructures (AgNP) have found a wide range of application in antimicrobial therapy, cell targeting, and environmental applications. As such, the design of well-defined monodisperse IONPs and AgNPs have become an essential tool in nanotechnology. Fabrication of these nanostructures using conventional methods is not environmentally conducive and weigh heavily on energy and outlays. Selected microorganisms possess the innate ability to reduce metallic ions in colloidal aqueous solution to generate nanoparticles. Hence, harnessing this potential is a way forward in constructing microbial nano-factories, capable of churning out high yields of well-defined IONP’s and AgNP's with physicochemical characteristics on par with the best synthetically produced nanostructures. In this paper, we report the isolation and characterization of bacterial strains isolated from the tropical marine and freshwater ecosystems of Malaysia that demonstrated facile and rapid generation of ferromagnetic nanoparticles and silver nanostructures when precursors such as FeCl₃.6H₂O and AgNO₃ were added to the cell-free bacterial lysate in colloidal solution. Characterization of these nanoparticles was carried out using FESEM, UV Spectrophotometer, XRD, DLS and FTIR. This aerobic bioprocess was carried out at ambient temperature and humidity and has the potential to be developed for environmental friendly, cost effective large scale production of IONP’s. A preliminary bioprocess study on the harvesting time, incubation temperature and pH was also carried out to determine pertinent abiotic parameters contributing to the optimal production of these nanostructures.

Keywords: iron oxide nanoparticles, silver nanoparticles, biosynthesis, aquatic bacteria

Procedia PDF Downloads 258
7244 Kinetic Studies on CO₂ Gasification of Low and High Ash Indian Coals in Context of Underground Coal Gasification

Authors: Geeta Kumari, Prabu Vairakannu

Abstract:

Underground coal gasification (UCG) technology is an efficient and an economic in-situ clean coal technology, which converts unmineable coals into calorific valuable gases. This technology avoids ash disposal, coal mining, and storage problems. CO₂ gas can be a potential gasifying medium for UCG. CO₂ is a greenhouse gas and, the liberation of this gas to the atmosphere from thermal power plant industries leads to global warming. Hence, the capture and reutilization of CO₂ gas are crucial for clean energy production. However, the reactivity of high ash Indian coals with CO₂ needs to be assessed. In the present study, two varieties of Indian coals (low ash and high ash) are used for thermogravimetric analyses (TGA). Two low ash north east Indian coals (LAC) and a typical high ash Indian coal (HAC) are procured from the coal mines of India. Low ash coal with 9% ash (LAC-1) and 4% ash (LAC-2) and high ash coal (HAC) with 42% ash are used for the study. TGA studies are carried out to evaluate the activation energy for pyrolysis and gasification of coal under N₂ and CO₂ atmosphere. Coats and Redfern method is used to estimate the activation energy of coal under different temperature regimes. Volumetric model is assumed for the estimation of the activation energy. The activation energy estimated under different temperature range. The inherent properties of coals play a major role in their reactivity. The results show that the activation energy decreases with the decrease in the inherent percentage of coal ash due to the ash layer hindrance. A reverse trend was observed with volatile matter. High volatile matter of coal leads to the estimation of low activation energy. It was observed that the activation energy under CO₂ atmosphere at 400-600°C is less as compared to N₂ inert atmosphere. At this temperature range, it is estimated that 15-23% reduction in the activation energy under CO₂ atmosphere. This shows the reactivity of CO₂ gas with higher hydrocarbons of the coal volatile matters. The reactivity of CO₂ with the volatile matter of coal might occur through dry reforming reaction in which CO₂ reacts with higher hydrocarbon, aromatics of the tar content. The observed trend of Ea in the temperature range of 150-200˚C and 400-600˚C is HAC > LAC-1 >LAC-2 in both N₂ and CO₂ atmosphere. At the temperature range of 850-1000˚C, higher activation energy is estimated when compared to those values in the temperature range of 400-600°C. Above 800°C, char gasification through Boudouard reaction progressed under CO₂ atmosphere. It was observed that 8-20 kJ/mol of activation energy is increased during char gasification above 800°C compared to volatile matter pyrolysis between the temperature ranges of 400-600°C. The overall activation energy of the coals in the temperature range of 30-1000˚C is higher in N₂ atmosphere than CO₂ atmosphere. It can be concluded that higher hydrocarbons such as tar effectively undergoes cracking and reforming reactions in presence of CO₂. Thus, CO₂ gas is beneficial for the production of high calorific value syngas using high ash Indian coals.

Keywords: clean coal technology, CO₂ gasification, activation energy, underground coal gasification

Procedia PDF Downloads 148
7243 Transfer of Electrical Energy by Magnetic Induction

Authors: Carlos Oliveira Santiago Filho, Ciro Egoavil, Eduardo Oliveira, Jéferson Galdino, Moises Galileu, Tiago Oliveira Correa

Abstract:

Transfer of Electrical Energy through resonant inductive magnetic coupling is demonstrated experimentally in a system containing coil primary for transmission and secondary reception. The topology used in the prototype of the Class-E amplifier, has been identified as optimal for power transfer applications. Characteristic of the inductor and the load are defined by the requirements of the resonant inductive system. The frequency limitation the of circuit restricts unloaded “Q-Factor”, quality factor of the coils and thus the link efficiency. With a suitable circuit, copper coil unloaded Q-Factors of over 1,000 can be achieved in the low Mhz region, enabling a cost-effective high Q coil assembly. The circuit is capable system capable of transmitting energy with direct current to load efficiency above 60% at 2 Mhz.

Keywords: magnetic induction, transfer of electrical energy, magnetic coupling, Q-Factor

Procedia PDF Downloads 488
7242 Hydrothermal Synthesis of Carbon Sphere/Nickel Cobalt Sulfide Core/Shell Microstructure and Its Electrochemical Performance

Authors: Charmaine Lamiel, Van Hoa Nguyen, Marjorie Baynosa, Jae-Jin Shim

Abstract:

Electrochemical supercapacitors have attracted considerable attention because of their high potential as an efficient energy storage system. The combination of carbon-based material and transition metal oxides/sulfides are studied because they have long and improved cycle life as well as high energy and power densities. In this study, a hierarchical mesoporous carbon sphere/nickel cobalt sulfide (CS/Ni-Co-S) core/shell structure was synthesized using a facile hydrothermal method without any further sulfurization or post-heat treatment. The CS/Ni-Co-S core/shell microstructures exhibited a high capacitance of 724 F g−1 at 2 A g−1 in a 6 M KOH electrolyte. After 2000 charge-discharge cycles, it retained 86.1% of its original capacitance, with high Coulombic efficiency of 97.9%. The electrode exhibited a high energy density of 58.0 Wh kg−1 at an energy density of 1440 W kg−1, and high power density of 7200 W kg−1 at an energy density of 34.2 Wh kg−1. The successful synthesis was considered to be simple and cost-effective which supports the viability of this composite as an alternative activated material for high performance supercapacitors.

Keywords: carbon sphere, electrochemical, hydrothermal, nickel cobalt sulfide, supercapacitor

Procedia PDF Downloads 279
7241 Photovoltaic Solar Energy in Public Buildings: A Showcase for Society

Authors: Eliane Ferreira da Silva

Abstract:

This paper aims to mobilize and sensitize public administration leaders to good practices and encourage investment in the PV system in Brazil. It presents a case study methodology for dimensioning the PV system in the roofs of the public buildings of the Esplanade of the Ministries, Brasilia, capital of the country, with predefined resources, starting with the Sustainable Esplanade Project (SEP), of the exponential growth of photovoltaic solar energy in the world and making a comparison with the solar power plant of the Ministry of Mines and Energy (MME), active since: 6/10/2016. In order to do so, it was necessary to evaluate the energy efficiency of the buildings in the period from January 2016 to April 2017, (16 months) identifying the opportunities to reduce electric energy expenses, through the adjustment of contracted demand, the tariff framework and correction of existing active energy. The instrument used to collect data on electric bills was the e-SIC citizen information system. The study considered in addition to the technical and operational aspects, the historical, cultural, architectural and climatic aspects, involved by several actors. Identifying the reductions of expenses, the study directed to the following aspects: Case 1) economic feasibility for exchanges of common lamps, for LED lamps, and, Case 2) economic feasibility for the implementation of photovoltaic solar system connected to the grid. For the case 2, PV*SOL Premium Software was used to simulate several possibilities of photovoltaic panels, analyzing the best performance, according to local characteristics, such as solar orientation, latitude, annual average solar radiation. A simulation of an ideal photovoltaic solar system was made, with due calculations of its yield, to provide a compensation of the energy expenditure of the building - or part of it - through the use of the alternative source in question. The study develops a methodology for public administration, as a major consumer of electricity, to act in a responsible, fiscalizing and incentive way in reducing energy waste, and consequently reducing greenhouse gases.

Keywords: energy efficiency, esplanade of ministries, photovoltaic solar energy, public buildings, sustainable building

Procedia PDF Downloads 109
7240 Retrofitting Residential Buildings for Energy Efficiency: An Experimental Investigation

Authors: Naseer M. A.

Abstract:

Buildings are major consumers of energy in both their construction and operation. They account for 40% of World’s energy use. It is estimated that 40-60% of this goes for conditioning the indoor environment. In India, like many other countries, the residential buildings have a major share (more than 50%) in the building sector. Of these, single-family units take a mammoth share. The single-family dwelling units in the urban and fringe areas are built in two stories to minimize the building foot print on small land parcels. And quite often, the bedrooms are located in the first floors. The modern buildings are provided with reinforced concrete (RC) roofs that absorb heat throughout the day and radiate the heat into the interiors during the night. The rooms that are occupied in the night, like bedrooms, are having their indoors uncomfortable. This has resulted in the use of active systems like air-conditioners and air coolers, thereby increasing the energy use. An investigation conducted by monitoring the thermal comfort condition in the residential building with RC roofs have proved that the indoors are really uncomfortable in the night hours. A sustainable solution to improve the thermal performance of the RC roofs was developed by an experimental study by continuously monitoring the thermal comfort parameters during summer (the period that is most uncomfortable in temperate climate). The study conducted in the southern peninsular India, prove that retrofitting of existing residential building can give a sustainable solution in abating the ever increasing energy demand especially when it is a fact that these residential buildings that are built for a normal life span of 40 years would continue to consume the energy for the rest of its useful life.

Keywords: energy efficiency, thermal comfort, retrofitting, residential buildings

Procedia PDF Downloads 230
7239 2D titanium, vanadium carbide MXene, and Polyaniline heterostructures for electrochemical energy storage

Authors: Ayomide A Sijuade, Nafiza Anjum

Abstract:

The rising demand to meet the need for clean and sustainable energy solutions has led the market to create effective energy storage technologies. In this study, we look at the possibility of using a heterostructure made of polyaniline (PANI), titanium carbide (Ti₃C₂), and vanadium carbide (V₂C) for energy storage devices. V₂C is a two-dimensional transition metal carbide with remarkable mechanical and electrical conductivity. Ti₃C2 has solid thermal conductivity and mechanical strength. PANI, on the other hand, is a conducting polymer with customizable electrical characteristics and environmental stability. Layer-by-layer assembly creates the heterostructure of V₂C, Ti₃C₂, and PANI, allowing for precise film thickness and interface quality control. Structural and morphological characterization is carried out using X-ray diffraction, scanning electron microscopy, and atomic force microscopy. For energy storage applications, the heterostructure’s electrochemical performance is assessed. Electrochemical experiments, such as cyclic voltammetry and galvanostatic charge-discharge tests, examine the heterostructure’s charge storage capacity, cycle stability, and rate performance. Comparing the heterostructure to the individual components reveals better energy storage capabilities. V₂C, Ti₃C₂, and PANI synergize to increase specific capacitance, boost charge storage, and prolong cycling stability. The heterostructure’s unique arrangement of 2D materials and conducting polymers promotes effective ion diffusion and charge transfer processes, improving the effectiveness of energy storage. The heterostructure also exhibits remarkable electrochemical stability, which minimizes capacity loss after repeated cycling. The longevity and long-term dependability of energy storage systems depend on this quality. By examining the potential of V₂C, Ti₃C₂, and PANI heterostructures, the results of this study expand energy storage technology. These materials’ specialized integration and design show potential for use in hybrid energy storage systems, lithium-ion batteries, and supercapacitors. Overall, the development of high-performance energy storage devices utilizing V₂C, Ti₃C₂, and PANI heterostructures is clarified by this research, opening the door to the realization of effective, long-lasting, and eco-friendly energy storage solutions to satisfy the demands of the modern world.

Keywords: MXenes, energy storage materials, conductive polymers, composites

Procedia PDF Downloads 30
7238 The Effects of Plantation Size and Internal Transport on Energy Efficiency of Biofuel Production

Authors: Olga Orynycz, Andrzej Wasiak

Abstract:

Mathematical model describing energetic efficiency (defined as a ratio of energy obtained in the form of biofuel to the sum of energy inputs necessary to facilitate production) of agricultural subsystem as a function of technological parameters was developed. Production technology is characterized by parameters of machinery, topological characteristics of the plantation as well as transportation routes inside and outside of plantation. The relationship between the energetic efficiency of agricultural and industrial subsystems is also derived. Due to the assumed large area of the individual field, the operations last for several days increasing inter-fields routes because of several returns. The total distance driven outside of the fields is, however, small as compared to the distance driven inside of the fields. This results in small energy consumption during inter-fields transport that, however, causes a substantial decrease of the energetic effectiveness of the whole system.

Keywords: biofuel, energetic efficiency, EROEI, mathematical modelling, production system

Procedia PDF Downloads 328
7237 An Overview of Thermal Storage Techniques for Solar Thermal Applications

Authors: Talha Shafiq

Abstract:

The traditional electricity operation in solar thermal plants is designed to operate on a single path initiating at power plant and executes at the consumer. Due to lack of energy storage facilities during this operation, a decrease in the efficiency is often observed with the power plant performance. This paper reviews the significance of energy storage in supply design and elaborates various methods that can be adopted in this regard which are equally cost effective and environmental friendly. Moreover, various parameters in thermal storage technique are also critically analyzed to clarify the pros and cons in this facility. Discussing the different thermal storage system, their technical and economical evaluation has also been reviewed.

Keywords: thermal energy storage, sensible heat storage, latent heat storage, thermochemical heat storage

Procedia PDF Downloads 536
7236 Electronic Structure Calculation of AsSiTeB/SiAsBTe Nanostructures Using Density Functional Theory

Authors: Ankit Kargeti, Ravikant Shrivastav, Tabish Rasheed

Abstract:

The electronic structure calculation for the nanoclusters of AsSiTeB/SiAsBTe quaternary semiconductor alloy belonging to the III-V Group elements was performed. Motivation for this research work was to look for accurate electronic and geometric data of small nanoclusters of AsSiTeB/SiAsBTe in the gaseous form. The two clusters, one in the linear form and the other in the bent form, were studied under the framework of Density Functional Theory (DFT) using the B3LYP functional and LANL2DZ basis set with the software packaged Gaussian 16. We have discussed the Optimized Energy, Frontier Orbital Energy Gap in terms of HOMO-LUMO, Dipole Moment, Ionization Potential, Electron Affinity, Binding Energy, Embedding Energy, Density of States (DoS) spectrum for both structures. The important findings of the predicted nanostructures are that these structures have wide band gap energy, where linear structure has band gap energy (Eg) value is 2.375 eV and bent structure (Eg) value is 2.778 eV. Therefore, these structures can be utilized as wide band gap semiconductors. These structures have high electron affinity value of 4.259 eV for the linear structure and electron affinity value of 3.387 eV for the bent structure form. It shows that electron acceptor capability is high for both forms. The widely known application of these compounds is in the light emitting diodes due to their wide band gap nature.

Keywords: density functional theory, DFT, density functional theory, nanostructures, HOMO-LUMO, density of states

Procedia PDF Downloads 93
7235 Kinetics and Mechanism Study of Photocatalytic Degradation Using Heterojunction Semiconductors

Authors: Ksenija Milošević, Davor Lončarević, Tihana Mudrinić, Jasmina Dostanić

Abstract:

Heterogeneous photocatalytic processes have gained growing interest as an efficient method to generate hydrogen by using clean energy sources and degrading various organic pollutants. The main obstacles that restrict efficient photoactivity are narrow light-response range and high rates of charge carrier recombination. The formation of heterojunction by combining a semiconductor with low VB and a semiconductor with high CB and a suitable band gap was found to be an efficient method to prepare more sensible materials with improved charge separation, appropriate oxidation and reduction ability, and enhanced visible-light harvesting. In our research, various binary heterojunction systems based on the wide-band gap (TiO₂) and narrow bandgap (g-C₃N₄, CuO, and Co₂O₃) photocatalyst were studied. The morphology, optical, and electrochemical properties of the photocatalysts were analyzed by X-ray diffraction (XRD), scanning electron microscopy (FE-SEM), N₂ physisorption, diffuse reflectance measurements (DRS), and Mott-Schottky analysis. The photocatalytic performance of the synthesized catalysts was tested in single and simultaneous systems. The synthesized photocatalysts displayed good adsorption capacity and enhanced visible-light photocatalytic performance. The mutual interactions of pollutants on their adsorption and degradation efficiency were investigated. The interfacial connection between photocatalyst constituents and the mechanism of the transport pathway of photogenerated charge species was discussed. A radical scavenger study revealed the interaction mechanisms of the photocatalyst constituents in single and multiple pollutant systems under solar and visible light irradiation, indicating the type of heterojunction system (Z scheme or type II).

Keywords: bandgap alignment, heterojunction, photocatalysis, reaction mechanism

Procedia PDF Downloads 80
7234 Estimating the Potential of Solar Energy: A Moroccan Case Study

Authors: Fakhreddin El Wali Elalaoui, Maatouk Mustapha

Abstract:

The problem of global climate change isbecoming more and more serious. Therefore, there is a growing interest in renewable energy sources to minimize the impact of this phenomenon. Environmental policies are changing in different countries, including Morocco, with a greater focus on the integration and development of renewable energy projects. The purpose of this paper is to evaluate the potential of solar power plants in Morocco based on two technologies: concentrated solar power (CSP) and photovoltaics (PV). In order to perform an accurate search, we must follow a certain method to select the correct criteria. Four selection criteria were retained: climate, topography, location, and water resources. AnalyticHierarchy Process (AHP) was used to calculate the weight/importance of each criterion. Once obtained, weights are applied to the map for each criterion to produce a final ranking that ranks regions according to their potential. The results show that Morocco has strong potential for both technologies, especially in the southern region. Finally, this work is the first in the field to include the whole of Morocco in the study area.

Keywords: PV, Csp, solar energy, GIS

Procedia PDF Downloads 64
7233 Small Wind Turbine Hybrid System for Remote Application: Egyptian Case Study

Authors: M. A. Badr, A. N. Mohib, M. M. Ibrahim

Abstract:

The objective of this research is to study the technical and economic performance of wind/diesel/battery (W/D/B) system supplying a remote small gathering of six families using HOMER software package. The electrical energy is to cater for the basic needs for which the daily load pattern is estimated. Net Present Cost (NPC) and Cost of Energy (COE) are used as economic criteria, while the measure of performance is % of power shortage. Technical and economic parameters are defined to estimate the feasibility of the system under study. Optimum system configurations are estimated for two sites. Using HOMER software, the simulation results showed that W/D/B systems are economical for the assumed community sites as the price of generated electricity is about 0.308 $/kWh, without taking external benefits into considerations. W/D/B systems are more economical than W/B or diesel alone systems, as the COE is 0.86 $/kWh for W/B and 0.357 $/kWh for diesel alone.

Keywords: optimum energy systems, remote electrification, renewable energy, wind turbine systems

Procedia PDF Downloads 383