Search results for: design of network governance
16277 Self-Organizing Map Network for Wheeled Robot Movement Optimization
Authors: Boguslaw Schreyer
Abstract:
The paper investigates the application of the Kohonen’s Self-Organizing Map (SOM) to the wheeled robot starting and braking dynamic states. In securing wheeled robot stability as well as minimum starting and braking time, it is important to ensure correct torque distribution as well as proper slope of braking and driving moments. In this paper, a correct movement distribution has been formulated, securing optimum adhesion coefficient and good transversal stability of a wheeled robot. A neural tuner has been proposed to secure the above properties, although most of the attention is attached to the SOM network application. If the delay of the torque application or torque release is not negligible, it is important to change the rising and falling slopes of the torque. The road/surface condition is also paramount in robot dynamic states control. As the road conditions may randomly change in time, application of the SOM network has been suggested in order to classify the actual road conditions.Keywords: slip control, SOM network, torque distribution, wheeled Robot
Procedia PDF Downloads 12516276 Smart Forms and Intelligent Transportation Network Patterns, an Integrated Spatial Approach to Smart Cities and Intelligent Transport Systems in India Cities
Authors: Geetanjli Rani
Abstract:
The physical forms and network pattern of the city is expected to be enhanced with the advancement of technology. Reason being, the era of virtualisation and digital urban realm convergence with physical development. By means of comparative Spatial graphics and visuals of cities, the present paper attempts to revisit the very base of efficient physical forms and patterns to sync the emergence of virtual activities. Thus, the present approach to integrate spatial Smartness of Cities and Intelligent Transportation Systems is a brief assessment of smart forms and intelligent transportation network pattern to the dualism of physical and virtual urban activities. Finally, the research brings out that the grid iron pattern, radial, ring-radial, orbital etc. stands to be more efficient, effective and economical transit friendly for users, resource optimisation as well as compact urban and regional systems. Moreover, this paper concludes that the idea of flow and contiguity hidden in such smart forms and intelligent transportation network pattern suits to layering, deployment, installation and development of Intelligent Transportation Systems of Smart Cities such as infrastructure, facilities and services.Keywords: smart form, smart infrastructure, intelligent transportation network pattern, physical and virtual integration
Procedia PDF Downloads 15416275 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases
Authors: Hao-Hsiang Ku, Ching-Ho Chi
Abstract:
Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.Keywords: Hadoop, NoSQL, ontology, back propagation neural network, high distributed file system
Procedia PDF Downloads 26116274 Point-of-Interest Recommender Systems for Location-Based Social Network Services
Authors: Hoyeon Park, Yunhwan Keon, Kyoung-Jae Kim
Abstract:
Location Based Social Network services (LBSNs) is a new term that combines location based service and social network service (SNS). Unlike traditional SNS, LBSNs emphasizes empirical elements in the user's actual physical location. Point-of-Interest (POI) is the most important factor to implement LBSNs recommendation system. POI information is the most popular spot in the area. In this study, we would like to recommend POI to users in a specific area through recommendation system using collaborative filtering. The process is as follows: first, we will use different data sets based on Seoul and New York to find interesting results on human behavior. Secondly, based on the location-based activity information obtained from the personalized LBSNs, we have devised a new rating that defines the user's preference for the area. Finally, we have developed an automated rating algorithm from massive raw data using distributed systems to reduce advertising costs of LBSNs.Keywords: location-based social network services, point-of-interest, recommender systems, business analytics
Procedia PDF Downloads 22816273 Organization Development’s Role in Environmental, Social and Governance (ESG) Sustainability in the Private Organizations
Authors: Karmela Palma Samson
Abstract:
In recent years, there has been a growing interest in the implementation of Environmental, Social, and Governance (ESG) frameworks in private organizations. The COVID-19 pandemic and increasing global environmental concerns have further highlighted the importance of ESG practices in businesses. To be effective, the development and sustainability of ESG implementation require specific organizational functions. One such function is Organization Development (OD). This study aims to identify the roles of OD in the development, monitoring, and evaluation of ESG in private organizations. The role of OD in sustaining ESG implementation in private organizations was analyzed in this study. Qualitative research was conducted, which included interviews with OD practitioners to understand their role and challenges in maintaining ESG programs and initiatives. The study found that OD practitioners have low participation in managing ESG programs, initiatives, and indicators. However, the study also revealed that the OD function is crucial for the development, monitoring, and evaluation of ESG implementation in private organizations. In essence, the study highlights the importance of the OD function in ensuring the success of ESG implementation in private organizations. With their expertise in organizational development, OD practitioners can contribute significantly to the development, implementation, and evaluation of ESG initiatives. Therefore, private organizations should involve their OD departments in ESG implementation to ensure that they are sustainable, effective, and aligned with their organizational goals.Keywords: ESG, organization development, private sector, sustainability
Procedia PDF Downloads 8716272 Comparative Study on Manet Using Soft Computing Techniques
Authors: Amarjit Singh, Tripatdeep Singh Dua, Vikas Attri
Abstract:
Mobile Ad-hoc Network is a combination of several nodes that create dynamically a specific network without using any base infrastructure. In this study all the mobile nodes can depended upon each other to send any data. Mobile host can pick up data and forwarding to their destination path. Basically MANET depend upon their Quality of Service which is highly constraints to the user. To give better services we need to improve the QOS. In these days MANET QOS requirement to use soft computing techniques. These techniques depend upon their specific requirement and which exists using MANET concepts. Using a soft computing techniques various protocol and algorithms may be considered. In this paper, we provide comparative study review of existing work done in MANET using various kind of soft computing techniques. Our review research is based on their specific protocol or algorithm which provide concern solution of QOS need. We discuss about various protocol through which routing in MANET. In Second section we clear the concepts of Soft Computing and their types. In third section we review the MANET using different kind of soft computing techniques work done before. In forth section we need to understand the concept of QoS requirement which exists in MANET and we done comparative study on different protocol used before and last we conclude the purpose of using MANET with soft computing techniques metrics.Keywords: mobile ad-hoc network, fuzzy improved genetic approach, neural network, routing protocol, wireless mesh network
Procedia PDF Downloads 34816271 Sensor and Actuator Fault Detection in Connected Vehicles under a Packet Dropping Network
Authors: Z. Abdollahi Biron, P. Pisu
Abstract:
Connected vehicles are one of the promising technologies for future Intelligent Transportation Systems (ITS). A connected vehicle system is essentially a set of vehicles communicating through a network to exchange their information with each other and the infrastructure. Although this interconnection of the vehicles can be potentially beneficial in creating an efficient, sustainable, and green transportation system, a set of safety and reliability challenges come out with this technology. The first challenge arises from the information loss due to unreliable communication network which affects the control/management system of the individual vehicles and the overall system. Such scenario may lead to degraded or even unsafe operation which could be potentially catastrophic. Secondly, faulty sensors and actuators can affect the individual vehicle’s safe operation and in turn will create a potentially unsafe node in the vehicular network. Further, sending that faulty sensor information to other vehicles and failure in actuators may significantly affect the safe operation of the overall vehicular network. Therefore, it is of utmost importance to take these issues into consideration while designing the control/management algorithms of the individual vehicles as a part of connected vehicle system. In this paper, we consider a connected vehicle system under Co-operative Adaptive Cruise Control (CACC) and propose a fault diagnosis scheme that deals with these aforementioned challenges. Specifically, the conventional CACC algorithm is modified by adding a Kalman filter-based estimation algorithm to suppress the effect of lost information under unreliable network. Further, a sliding mode observer-based algorithm is used to improve the sensor reliability under faults. The effectiveness of the overall diagnostic scheme is verified via simulation studies.Keywords: fault diagnostics, communication network, connected vehicles, packet drop out, platoon
Procedia PDF Downloads 23716270 Proposal of Commutation Protocol in Hybrid Sensors and Vehicular Networks for Intelligent Transport Systems
Authors: Taha Bensiradj, Samira Moussaoui
Abstract:
Hybrid Sensors and Vehicular Networks (HSVN), represent a hybrid network, which uses several generations of Ad-Hoc networks. It is used especially in Intelligent Transport Systems (ITS). The HSVN allows making collaboration between the Wireless Sensors Network (WSN) deployed on the border of the road and the Vehicular Network (VANET). This collaboration is defined by messages exchanged between the two networks for the purpose to inform the drivers about the state of the road, provide road safety information and more information about traffic on the road. Moreover, this collaboration created by HSVN, also allows the use of a network and the advantage of improving another network. For example, the dissemination of information between the sensors quickly decreases its energy, and therefore, we can use vehicles that do not have energy constraint to disseminate the information between sensors. On the other hand, to solve the disconnection problem in VANET, the sensors can be used as gateways that allow sending the messages received by one vehicle to another. However, because of the short communication range of the sensor and its low capacity of storage and processing of data, it is difficult to ensure the exchange of road messages between it and the vehicle, which can be moving at high speed at the time of exchange. This represents the time where the vehicle is in communication range with the sensor. This work is the proposition of a communication protocol between the sensors and the vehicle used in HSVN. The latter has as the purpose to ensure the exchange of road messages in the available time of exchange.Keywords: HSVN, ITS, VANET, WSN
Procedia PDF Downloads 36016269 Ta-DAH: Task Driven Automated Hardware Design of Free-Flying Space Robots
Authors: Lucy Jackson, Celyn Walters, Steve Eckersley, Mini Rai, Simon Hadfield
Abstract:
Space robots will play an integral part in exploring the universe and beyond. A correctly designed space robot will facilitate OOA, satellite servicing and ADR. However, problems arise when trying to design such a system as it is a highly complex multidimensional problem into which there is little research. Current design techniques are slow and specific to terrestrial manipulators. This paper presents a solution to the slow speed of robotic hardware design, and generalizes the technique to free-flying space robots. It presents Ta-DAH Design, an automated design approach that utilises a multi-objective cost function in an iterative and automated pipeline. The design approach leverages prior knowledge and facilitates the faster output of optimal designs. The result is a system that can optimise the size of the base spacecraft, manipulator and some key subsystems for any given task. Presented in this work is the methodology behind Ta-DAH Design and a number optimal space robot designs.Keywords: space robots, automated design, on-orbit operations, hardware design
Procedia PDF Downloads 7016268 Multilayer Perceptron Neural Network for Rainfall-Water Level Modeling
Authors: Thohidul Islam, Md. Hamidul Haque, Robin Kumar Biswas
Abstract:
Floods are one of the deadliest natural disasters which are very complex to model; however, machine learning is opening the door for more reliable and accurate flood prediction. In this research, a multilayer perceptron neural network (MLP) is developed to model the rainfall-water level relation, in a subtropical monsoon climatic region of the Bangladesh-India border. Our experiments show promising empirical results to forecast the water level for 1 day lead time. Our best performing MLP model achieves 98.7% coefficient of determination with lower model complexity which surpasses previously reported results on similar forecasting problems.Keywords: flood forecasting, machine learning, multilayer perceptron network, regression
Procedia PDF Downloads 17016267 Ethical Leadership: A Theological and Ethical Alternative to the Culture of Greed in South African Government
Authors: Mookgo Solomon Kgatle
Abstract:
Introductory Statement: The effect of corruption in South Africa has seriously constrained development of the national economy and has significantly inhibited good governance in the country. The significance of this paper is a demonstration that Corruption in a South African government is greatly influenced by the culture of greed by leaders in government. Many leaders in government are not satisfied with what they receive on monthly basis in the form of salaries and allowances. Thus, the quest to accumulate, as many material possessions by cabinet ministers and public servants is what is crippling the annual budget and disadvantaging the poor masses of our people including women, children and the elderly. Basic Methodology: In order to deal with this dilemma, this paper proposes ethical leadership as a theological and ethical alternative and antidote to the culture of greed in government. Research Findings: Ethical leadership is proposed because unlike the culture of greed, it is a leadership that is based on respect for ethical principles and standards and for the dignity and privileges of others. Ethical leadership is synonymous with principles like trust, morality, consideration, equality, and justice. Conclusion: The conclusion is that ethical leadership is one of the solutions that can assist the South African government to deal with the root causes of corruption, that is, the culture of greed.Keywords: ethical leadership, theological ethics, culture of greed, corruption, governance
Procedia PDF Downloads 18516266 The Effect of Corporate Governance to Islamic Banking Performance Using Maqasid Index Approach in Indonesia
Authors: Audia Syafa'atur Rahman, Rozali Haron
Abstract:
The practices of Islamic banking are more attuned to the goals of profit maximization rather than obtaining ethical profit. Ethical profit is obtained from interest-free earnings and to give an impact which benefits to the growth of society and economy. Good corporate governance practices are needed to assure the sustainability of Islamic banks in order to achieve Maqasid Shariah with the main purpose of boosting the well-being of people. The Maqasid Shariah performance measurement is used to measure the duties and responsibilities expected to be performed by Islamic banks. It covers not only unification dimension like financial measurement, but also many dimensions covered to reflect the main purpose of Islamic banks. The implementation of good corporate governance is essential because it covers the interests of the stakeholders and facilitates effective monitoring to encourage Islamic banks to utilize resources more efficiently in order to achieve the Maqasid Shariah. This study aims to provide the empirical evidence on the Maqasid performance of Islamic banks in relation to the Maqasid performance evaluation model, to examine the influence of SSB characteristics and board structures to Islamic Banks performance as measured by Maqasid performance evaluation model. By employing the simple additive weighting method, Maqasid index for all the Islamic Banks in Indonesia within 2012 to 2016 ranged from above 11% to 28%. The Maqasid Syariah performance index where results reached above 20% are obtained by Islamic Banks such as Bank Muamalat Indonesia, Bank Panin Syariah, and Bank BRI Syariah. The consistent achievement above 23% is achieved by BMI. Other Islamic Banks such as Bank Victoria Syariah, Bank Jabar Banten Syariah, Bank BNI Syariah, Bank Mega Syariah, BCA Syariah, and Maybank Syariah Indonesia shows a fluctuating value of the Maqasid performance index every year. The impact of SSB characteristics and board structures are tested using random-effects generalized least square. The findings indicate that SSB characteristics (Shariah Supervisory Board size, Shariah Supervisory Board cross membership, Shariah Supervisory Board Education, and Shariah Supervisory Board reputation) and board structures (Board size and Board independence) have an essential role in improving the performance of Islamic Banks. The findings denote Shariah Supervisory Board with smaller size, higher portion of Shariah Supervisory Board cross membership; lesser Shariah Supervisory Board holds doctorate degree, lesser reputable scholar, more members on board of directors, and less independence non-executive directors will enhance the performance of Islamic Banks.Keywords: Maqasid Shariah, corporate governance, Islamic banks, Shariah supervisory board
Procedia PDF Downloads 23916265 Minimization of Denial of Services Attacks in Vehicular Adhoc Networking by Applying Different Constraints
Authors: Amjad Khan
Abstract:
The security of Vehicular ad hoc networking is of great importance as it involves serious life threats. Thus to provide secure communication amongst Vehicles on road, the conventional security system is not enough. It is necessary to prevent the network resources from wastage and give them protection against malicious nodes so that to ensure the data bandwidth availability to the legitimate nodes of the network. This work is related to provide a non conventional security system by introducing some constraints to minimize the DoS (Denial of services) especially data and bandwidth. The data packets received by a node in the network will pass through a number of tests and if any of the test fails, the node will drop those data packets and will not forward it anymore. Also if a node claims to be the nearest node for forwarding emergency messages then the sender can effectively identify the true or false status of the claim by using these constraints. Consequently the DoS(Denial of Services) attack is minimized by the instant availability of data without wasting the network resources.Keywords: black hole attack, grey hole attack, intransient traffic tempering, networking
Procedia PDF Downloads 28316264 Hybrid Heat Pump for Micro Heat Network
Authors: J. M. Counsell, Y. Khalid, M. J. Stewart
Abstract:
Achieving nearly zero carbon heating continues to be identified by UK government analysis as an important feature of any lowest cost pathway to reducing greenhouse gas emissions. Heat currently accounts for 48% of UK energy consumption and approximately one third of UK’s greenhouse gas emissions. Heat Networks are being promoted by UK investment policies as one means of supporting hybrid heat pump based solutions. To this effect the RISE (Renewable Integrated and Sustainable Electric) heating system project is investigating how an all-electric heating sourceshybrid configuration could play a key role in long-term decarbonisation of heat. For the purposes of this study, hybrid systems are defined as systems combining the technologies of an electric driven air source heat pump, electric powered thermal storage, a thermal vessel and micro-heat network as an integrated system. This hybrid strategy allows for the system to store up energy during periods of low electricity demand from the national grid, turning it into a dynamic supply of low cost heat which is utilized only when required. Currently a prototype of such a system is being tested in a modern house integrated with advanced controls and sensors. This paper presents the virtual performance analysis of the system and its design for a micro heat network with multiple dwelling units. The results show that the RISE system is controllable and can reduce carbon emissions whilst being competitive in running costs with a conventional gas boiler heating system.Keywords: gas boilers, heat pumps, hybrid heating and thermal storage, renewable integrated and sustainable electric
Procedia PDF Downloads 41816263 Oil Reservoir Asphalting Precipitation Estimating during CO2 Injection
Authors: I. Alhajri, G. Zahedi, R. Alazmi, A. Akbari
Abstract:
In this paper, an Artificial Neural Network (ANN) was developed to predict Asphaltene Precipitation (AP) during the injection of carbon dioxide into crude oil reservoirs. In this study, the experimental data from six different oil fields were collected. Seventy percent of the data was used to develop the ANN model, and different ANN architectures were examined. A network with the Trainlm training algorithm was found to be the best network to estimate the AP. To check the validity of the proposed model, the model was used to predict the AP for the thirty percent of the data that was unevaluated. The Mean Square Error (MSE) of the prediction was 0.0018, which confirms the excellent prediction capability of the proposed model. In the second part of this study, the ANN model predictions were compared with modified Hirschberg model predictions. The ANN was found to provide more accurate estimates compared to the modified Hirschberg model. Finally, the proposed model was employed to examine the effect of different operating parameters during gas injection on the AP. It was found that the AP is mostly sensitive to the reservoir temperature. Furthermore, the carbon dioxide concentration in liquid phase increases the AP.Keywords: artificial neural network, asphaltene, CO2 injection, Hirschberg model, oil reservoirs
Procedia PDF Downloads 36316262 Determine of Design Variables and Target Reliability Indexes of Underground Structure
Authors: Yo-Seph Byun, Gyu-Phil Lee, Young-Bin Park, Gye-Chun Cho, Seong-Won Lee
Abstract:
In Korea, a study on Limit State Design (LSD) for underground structures is being conducted in order to perform more effective design. In this study, as a result of MCS (Monte-Carlo Simulation) technique, failure probabilities of the structure during normal and earthquake are estimated in reliability analysis. Target reliability indexes are determined depending on load combinations for underground structure, and then, design variables such as load and material factors in LSD are decided. As a result, through the research in order to determine more reliable design variables, a specification of LSD for underground structures is able to be developed.Keywords: design variable, limit state design, target reliability index, underground structure
Procedia PDF Downloads 28216261 The Implementation of a Numerical Technique to Thermal Design of Fluidized Bed Cooler
Authors: Damiaa Saad Khudor
Abstract:
The paper describes an investigation for the thermal design of a fluidized bed cooler and prediction of heat transfer rate among the media categories. It is devoted to the thermal design of such equipment and their application in the industrial fields. It outlines the strategy for the fluidization heat transfer mode and its implementation in industry. The thermal design for fluidized bed cooler is used to furnish a complete design for a fluidized bed cooler of Sodium Bicarbonate. The total thermal load distribution between the air-solid and water-solid along the cooler is calculated according to the thermal equilibrium. The step by step technique was used to accomplish the thermal design of the fluidized bed cooler. It predicts the load, air, solid and water temperature along the trough. The thermal design for fluidized bed cooler revealed to the installation of a heat exchanger consists of (65) horizontal tubes with (33.4) mm diameter and (4) m length inside the bed trough.Keywords: fluidization, powder technology, thermal design, heat exchangers
Procedia PDF Downloads 51116260 Sustainable Behavior and Design in Chinese Traditional Culture
Authors: Jin Chuhao
Abstract:
Sustainable design is the key for the human to realize the harmonious development. However, sustainable design requires localization that combines their own regional culture’s characteristics, then forms the most common cultural identity. As a result, the concept of sustainable design integrates into social behavior and promotes the harmonious development. Chinese Confucian doctrine is one of the important thoughts of human culture, which is accepted by more and more people. This paper summarizes the sustainable concept from the Chinese traditional culture and local design, discusses how they change the life of human being and produces enlightenment and significance to China and world.Keywords: sustainable design, Chinese traditional culture, harmonious development, Confucianism
Procedia PDF Downloads 68116259 Primary Health Care Vital Signs Profile in Malaysia: Challenges and Opportunities
Authors: Rachel Koshy, Nazrila Hairizan Bt. Nasir, Samsiah Bt. Awang, Kamaliah Bt. Mohamad Noh
Abstract:
Malaysia collaborated as a ‘trailblazer’ country with PHCPI (Primary Health Care Performance Initiative) to populate the Primary Health Care (PHC) Vital Signs Profile (VSP) for the country. The PHC VSP provides an innovative snapshot of the primary health care system's performance. Four domains were assessed: system financing, system capacity, system performance, and system equity, and completed in 2019. There were two phases using a mixed method study design. The first phase involved a quantitative study, utilising existing secondary data from national and international sources. In the case of unavailability of data for any indicators, comparable alternative indicators were used. The second phase was a mixed quantitative-qualitative approach to measure the functional capacity based on governance and leadership, population health needs, inputs, population health management, and facility organisation and management. PHC spending constituted 35% of overall health spending in Malaysia, with a per capita PHC spending of $152. The capacity domain was strong in the three subdomains of governance and leadership, information system, and funds management. The two subdomains of drugs & supplies and facility organisation & management had low scores, but the lowest score was in empanelment of the population under the population health management. The PHC system performed with an access index of 98%, quality index of 84%, and service coverage of 62%. In the equity domain, there was little fluctuation in the coverage of reproductive, maternal, newborn, and child health services by mother’s level of education and under-five child mortality between urban and rural areas. The public sector was stronger in the capacity domain as compared to the private sector. This is due to the different financing, organisational structures, and service delivery mechanism. The VSP has identified areas for improvement in the effort to provide high-quality PHC for the population. The gaps in PHC can be addressed through the system approach and the positioning of public and private primary health care delivery systems.Keywords: primary health care, health system, system domains, vital signs profile
Procedia PDF Downloads 12816258 A Fast Community Detection Algorithm
Authors: Chung-Yuan Huang, Yu-Hsiang Fu, Chuen-Tsai Sun
Abstract:
Community detection represents an important data-mining tool for analyzing and understanding real-world complex network structures and functions. We believe that at least four criteria determine the appropriateness of a community detection algorithm: (a) it produces useable normalized mutual information (NMI) and modularity results for social networks, (b) it overcomes resolution limitation problems associated with synthetic networks, (c) it produces good NMI results and performance efficiency for Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks, and (d) it produces good modularity and performance efficiency for large-scale real-world complex networks. To our knowledge, no existing community detection algorithm meets all four criteria. In this paper, we describe a simple hierarchical arc-merging (HAM) algorithm that uses network topologies and rule-based arc-merging strategies to identify community structures that satisfy the criteria. We used five well-studied social network datasets and eight sets of LFR benchmark networks to validate the ground-truth community correctness of HAM, eight large-scale real-world complex networks to measure its performance efficiency, and two synthetic networks to determine its susceptibility to resolution limitation problems. Our results indicate that the proposed HAM algorithm is capable of providing satisfactory performance efficiency and that HAM-identified communities were close to ground-truth communities in social and LFR benchmark networks while overcoming resolution limitation problems.Keywords: complex network, social network, community detection, network hierarchy
Procedia PDF Downloads 22616257 Decision Support System for Diagnosis of Breast Cancer
Authors: Oluwaponmile D. Alao
Abstract:
In this paper, two models have been developed to ascertain the best network needed for diagnosis of breast cancer. Breast cancer has been a disease that required the attention of the medical practitioner. Experience has shown that misdiagnose of the disease has been a major challenge in the medical field. Therefore, designing a system with adequate performance for will help in making diagnosis of the disease faster and accurate. In this paper, two models: backpropagation neural network and support vector machine has been developed. The performance obtained is also compared with other previously obtained algorithms to ascertain the best algorithms.Keywords: breast cancer, data mining, neural network, support vector machine
Procedia PDF Downloads 34516256 Classifying Students for E-Learning in Information Technology Course Using ANN
Authors: Sirilak Areerachakul, Nat Ployong, Supayothin Na Songkla
Abstract:
This research’s objective is to select the model with most accurate value by using Neural Network Technique as a way to filter potential students who enroll in IT course by electronic learning at Suan Suanadha Rajabhat University. It is designed to help students selecting the appropriate courses by themselves. The result showed that the most accurate model was 100 Folds Cross-validation which had 73.58% points of accuracy.Keywords: artificial neural network, classification, students, e-learning
Procedia PDF Downloads 42416255 Design Elements: Examining Product Design Attribute That Make Sweets Appear More Delicious to Foreign Patrons
Authors: Kazuko Sakamoto, Keiichiro Kawarabayashi, Yoji Kitani
Abstract:
Japanese sweets are one of the important elements of the Chur Japan strategy. In this research, we investigated what kind of sweets are liked to the Chinese tourist. What is generally eaten is influenced by culture, a sense of values, and business practice. Therefore, what was adapted there is sold. However, when traveling, what its country does not have is called for. Then, how far should we take in Chinese people's taste in a design? This time, the design attribute (a color and a form) which leads to sweets "being delicious" was clarified by rough aggregate theory.As a result, the difference in the taste of Chinese people and Japanese people became clear.Keywords: design attribute, international comparison, taste by appearance, design attribute
Procedia PDF Downloads 42216254 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection
Authors: Ashkan Zakaryazad, Ekrem Duman
Abstract:
A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent
Procedia PDF Downloads 47316253 A Summary-Based Text Classification Model for Graph Attention Networks
Authors: Shuo Liu
Abstract:
In Chinese text classification tasks, redundant words and phrases can interfere with the formation of extracted and analyzed text information, leading to a decrease in the accuracy of the classification model. To reduce irrelevant elements, extract and utilize text content information more efficiently and improve the accuracy of text classification models. In this paper, the text in the corpus is first extracted using the TextRank algorithm for abstraction, the words in the abstract are used as nodes to construct a text graph, and then the graph attention network (GAT) is used to complete the task of classifying the text. Testing on a Chinese dataset from the network, the classification accuracy was improved over the direct method of generating graph structures using text.Keywords: Chinese natural language processing, text classification, abstract extraction, graph attention network
Procedia PDF Downloads 9916252 A Type-2 Fuzzy Model for Link Prediction in Social Network
Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi
Abstract:
Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.Keywords: social network, link prediction, granular computing, type-2 fuzzy sets
Procedia PDF Downloads 32516251 Fault Detection of Pipeline in Water Distribution Network System
Authors: Shin Je Lee, Go Bong Choi, Jeong Cheol Seo, Jong Min Lee, Gibaek Lee
Abstract:
Water pipe network is installed underground and once equipped; it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using Matlab. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.Keywords: fault detection, water pipeline model, fast Fourier transform, discrete wavelet transform
Procedia PDF Downloads 51016250 Identifying Critical Links of a Transport Network When Affected by a Climatological Hazard
Authors: Beatriz Martinez-Pastor, Maria Nogal, Alan O'Connor
Abstract:
During the last years, the number of extreme weather events has increased. A variety of extreme weather events, including river floods, rain-induced landslides, droughts, winter storms, wildfire, and hurricanes, have threatened and damaged many different regions worldwide. These events have a devastating impact on critical infrastructure systems resulting in high social, economical and environmental costs. These events have a huge impact in transport systems. Since, transport networks are completely exposed to every kind of climatological perturbations, and its performance is closely related with these events. When a traffic network is affected by a climatological hazard, the quality of its service is threatened, and the level of the traffic conditions usually decreases. With the aim of understanding this process, the concept of resilience has become most popular in the area of transport. Transport resilience analyses the behavior of a traffic network when a perturbation takes place. This holistic concept studies the complete process, from the beginning of the perturbation until the total recovery of the system, when the perturbation has finished. Many concepts are included in the definition of resilience, such as vulnerability, redundancy, adaptability, and safety. Once the resilience of a transport network can be evaluated, in this case, the methodology used is a dynamic equilibrium-restricted assignment model that allows the quantification of the concept, the next step is its improvement. Through the improvement of this concept, it will be possible to create transport networks that are able to withstand and have a better performance under the presence of climatological hazards. Analyzing the impact of a perturbation in a traffic network, it is observed that the response of the different links, which are part of the network, can be completely different from one to another. Consequently and due to this effect, many questions arise, as what makes a link more critical before an extreme weather event? or how is it possible to identify these critical links? With this aim, and knowing that most of the times the owners or managers of the transport systems have limited resources, the identification of the critical links of a transport network before extreme weather events, becomes a crucial objective. For that reason, using the available resources in the areas that will generate a higher improvement of the resilience, will contribute to the global development of the network. Therefore, this paper wants to analyze what kind of characteristic makes a link a critical one when an extreme weather event damages a transport network and finally identify them.Keywords: critical links, extreme weather events, hazard, resilience, transport network
Procedia PDF Downloads 28516249 Scaling Siamese Neural Network for Cross-Domain Few Shot Learning in Medical Imaging
Authors: Jinan Fiaidhi, Sabah Mohammed
Abstract:
Cross-domain learning in the medical field is a research challenge as many conditions, like in oncology imaging, use different imaging modalities. Moreover, in most of the medical learning applications, the sample training size is relatively small. Although few-shot learning (FSL) through the use of a Siamese neural network was able to be trained on a small sample with remarkable accuracy, FSL fails to be effective for use in multiple domains as their convolution weights are set for task-specific applications. In this paper, we are addressing this problem by enabling FSL to possess the ability to shift across domains by designing a two-layer FSL network that can learn individually from each domain and produce a shared features map with extra modulation to be used at the second layer that can recognize important targets from mix domains. Our initial experimentations based on mixed medical datasets like the Medical-MNIST reveal promising results. We aim to continue this research to perform full-scale analytics for testing our cross-domain FSL learning.Keywords: Siamese neural network, few-shot learning, meta-learning, metric-based learning, thick data transformation and analytics
Procedia PDF Downloads 5516248 Optimization of a Convolutional Neural Network for the Automated Diagnosis of Melanoma
Authors: Kemka C. Ihemelandu, Chukwuemeka U. Ihemelandu
Abstract:
The incidence of melanoma has been increasing rapidly over the past two decades, making melanoma a current public health crisis. Unfortunately, even as screening efforts continue to expand in an effort to ameliorate the death rate from melanoma, there is a need to improve diagnostic accuracy to decrease misdiagnosis. Artificial intelligence (AI) a new frontier in patient care has the ability to improve the accuracy of melanoma diagnosis. Convolutional neural network (CNN) a form of deep neural network, most commonly applied to analyze visual imagery, has been shown to outperform the human brain in pattern recognition. However, there are noted limitations with the accuracy of the CNN models. Our aim in this study was the optimization of convolutional neural network algorithms for the automated diagnosis of melanoma. We hypothesized that Optimal selection of the momentum and batch hyperparameter increases model accuracy. Our most successful model developed during this study, showed that optimal selection of momentum of 0.25, batch size of 2, led to a superior performance and a faster model training time, with an accuracy of ~ 83% after nine hours of training. We did notice a lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone. Training set image transformations did not result in a superior model performance in our study.Keywords: melanoma, convolutional neural network, momentum, batch hyperparameter
Procedia PDF Downloads 99