Search results for: data infrastructure
25377 Development of Requirements Analysis Tool for Medical Autonomy in Long-Duration Space Exploration Missions
Authors: Lara Dutil-Fafard, Caroline Rhéaume, Patrick Archambault, Daniel Lafond, Neal W. Pollock
Abstract:
Improving resources for medical autonomy of astronauts in prolonged space missions, such as a Mars mission, requires not only technology development, but also decision-making support systems. The Advanced Crew Medical System - Medical Condition Requirements study, funded by the Canadian Space Agency, aimed to create knowledge content and a scenario-based query capability to support medical autonomy of astronauts. The key objective of this study was to create a prototype tool for identifying medical infrastructure requirements in terms of medical knowledge, skills and materials. A multicriteria decision-making method was used to prioritize the highest risk medical events anticipated in a long-term space mission. Starting with those medical conditions, event sequence diagrams (ESDs) were created in the form of decision trees where the entry point is the diagnosis and the end points are the predicted outcomes (full recovery, partial recovery, or death/severe incapacitation). The ESD formalism was adapted to characterize and compare possible outcomes of medical conditions as a function of available medical knowledge, skills, and supplies in a given mission scenario. An extensive literature review was performed and summarized in a medical condition database. A PostgreSQL relational database was created to allow query-based evaluation of health outcome metrics with different medical infrastructure scenarios. Critical decision points, skill and medical supply requirements, and probable health outcomes were compared across chosen scenarios. The three medical conditions with the highest risk rank were acute coronary syndrome, sepsis, and stroke. Our efforts demonstrate the utility of this approach and provide insight into the effort required to develop appropriate content for the range of medical conditions that may arise.Keywords: decision support system, event-sequence diagram, exploration mission, medical autonomy, scenario-based queries, space medicine
Procedia PDF Downloads 13225376 Smart Water Main Inspection and Condition Assessment Using a Systematic Approach for Pipes Selection
Authors: Reza Moslemi, Sebastien Perrier
Abstract:
Water infrastructure deterioration can result in increased operational costs owing to increased repair needs and non-revenue water and consequently cause a reduced level of service and customer service satisfaction. Various water main condition assessment technologies have been introduced to the market in order to evaluate the level of pipe deterioration and to develop appropriate asset management and pipe renewal plans. One of the challenges for any condition assessment and inspection program is to determine the percentage of the water network and the combination of pipe segments to be inspected in order to obtain a meaningful representation of the status of the entire water network with a desirable level of accuracy. Traditionally, condition assessment has been conducted by selecting pipes based on age or location. However, this may not necessarily offer the best approach, and it is believed that by using a smart sampling methodology, a better and more reliable estimate of the condition of a water network can be achieved. This research investigates three different sampling methodologies, including random, stratified, and systematic. It is demonstrated that selecting pipes based on the proposed clustering and sampling scheme can considerably improve the ability of the inspected subset to represent the condition of a wider network. With a smart sampling methodology, a smaller data sample can provide the same insight as a larger sample. This methodology offers increased efficiency and cost savings for condition assessment processes and projects.Keywords: condition assessment, pipe degradation, sampling, water main
Procedia PDF Downloads 15425375 BigCrypt: A Probable Approach of Big Data Encryption to Protect Personal and Business Privacy
Authors: Abdullah Al Mamun, Talal Alkharobi
Abstract:
As data size is growing up, people are became more familiar to store big amount of secret information into cloud storage. Companies are always required to need transfer massive business files from one end to another. We are going to lose privacy if we transmit it as it is and continuing same scenario repeatedly without securing the communication mechanism means proper encryption. Although asymmetric key encryption solves the main problem of symmetric key encryption but it can only encrypt limited size of data which is inapplicable for large data encryption. In this paper we propose a probable approach of pretty good privacy for encrypt big data using both symmetric and asymmetric keys. Our goal is to achieve encrypt huge collection information and transmit it through a secure communication channel for committing the business and personal privacy. To justify our method an experimental dataset from three different platform is provided. We would like to show that our approach is working for massive size of various data efficiently and reliably.Keywords: big data, cloud computing, cryptography, hadoop, public key
Procedia PDF Downloads 32425374 Implementation of Big Data Concepts Led by the Business Pressures
Authors: Snezana Savoska, Blagoj Ristevski, Violeta Manevska, Zlatko Savoski, Ilija Jolevski
Abstract:
Big data is widely accepted by the pharmaceutical companies as a result of business demands create through legal pressure. Pharmaceutical companies have many legal demands as well as standards’ demands and have to adapt their procedures to the legislation. To manage with these demands, they have to standardize the usage of the current information technology and use the latest software tools. This paper highlights some important aspects of experience with big data projects implementation in a pharmaceutical Macedonian company. These projects made improvements of their business processes by the help of new software tools selected to comply with legal and business demands. They use IT as a strategic tool to obtain competitive advantage on the market and to reengineer the processes towards new Internet economy and quality demands. The company is required to manage vast amounts of structured as well as unstructured data. For these reasons, they implement projects for emerging and appropriate software tools which have to deal with big data concepts accepted in the company.Keywords: big data, unstructured data, SAP ERP, documentum
Procedia PDF Downloads 27425373 Saving Energy at a Wastewater Treatment Plant through Electrical and Production Data Analysis
Authors: Adriano Araujo Carvalho, Arturo Alatrista Corrales
Abstract:
This paper intends to show how electrical energy consumption and production data analysis were used to find opportunities to save energy at Taboada wastewater treatment plant in Callao, Peru. In order to access the data, it was used independent data networks for both electrical and process instruments, which were taken to analyze under an ISO 50001 energy audit, which considered, thus, Energy Performance Indexes for each process and a step-by-step guide presented in this text. Due to the use of aforementioned methodology and data mining techniques applied on information gathered through electronic multimeters (conveniently placed on substation switchboards connected to a cloud network), it was possible to identify thoroughly the performance of each process and thus, evidence saving opportunities which were previously hidden before. The data analysis brought both costs and energy reduction, allowing the plant to save significant resources and to be certified under ISO 50001.Keywords: energy and production data analysis, energy management, ISO 50001, wastewater treatment plant energy analysis
Procedia PDF Downloads 20125372 Data Clustering in Wireless Sensor Network Implemented on Self-Organization Feature Map (SOFM) Neural Network
Authors: Krishan Kumar, Mohit Mittal, Pramod Kumar
Abstract:
Wireless sensor network is one of the most promising communication networks for monitoring remote environmental areas. In this network, all the sensor nodes are communicated with each other via radio signals. The sensor nodes have capability of sensing, data storage and processing. The sensor nodes collect the information through neighboring nodes to particular node. The data collection and processing is done by data aggregation techniques. For the data aggregation in sensor network, clustering technique is implemented in the sensor network by implementing self-organizing feature map (SOFM) neural network. Some of the sensor nodes are selected as cluster head nodes. The information aggregated to cluster head nodes from non-cluster head nodes and then this information is transferred to base station (or sink nodes). The aim of this paper is to manage the huge amount of data with the help of SOM neural network. Clustered data is selected to transfer to base station instead of whole information aggregated at cluster head nodes. This reduces the battery consumption over the huge data management. The network lifetime is enhanced at a greater extent.Keywords: artificial neural network, data clustering, self organization feature map, wireless sensor network
Procedia PDF Downloads 51925371 Analysis of Threats in Interoperability of Medical Devices
Authors: M. Sandhya, R. M. Madhumitha, Sharmila Sankar
Abstract:
Interoperable medical devices (IMDs) face threats due to the increased attack surface accessible by interoperability and the corresponding infrastructure. Initiating networking and coordination functionalities primarily modify medical systems' security properties. Understanding the threats is a vital first step in ultimately crafting security solutions for such systems. The key to this problem is coming up with some common types of threats or attacks with those of security and privacy, and providing this information as a roadmap. This paper analyses the security issues in interoperability of devices and presents the main types of threats that have to be considered to build a secured system.Keywords: interoperability, threats, attacks, medical devices
Procedia PDF Downloads 33525370 Review and Comparison of Associative Classification Data Mining Approaches
Authors: Suzan Wedyan
Abstract:
Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction
Procedia PDF Downloads 54125369 Hierarchical Checkpoint Protocol in Data Grids
Authors: Rahma Souli-Jbali, Minyar Sassi Hidri, Rahma Ben Ayed
Abstract:
Grid of computing nodes has emerged as a representative means of connecting distributed computers or resources scattered all over the world for the purpose of computing and distributed storage. Since fault tolerance becomes complex due to the availability of resources in decentralized grid environment, it can be used in connection with replication in data grids. The objective of our work is to present fault tolerance in data grids with data replication-driven model based on clustering. The performance of the protocol is evaluated with Omnet++ simulator. The computational results show the efficiency of our protocol in terms of recovery time and the number of process in rollbacks.Keywords: data grids, fault tolerance, clustering, chandy-lamport
Procedia PDF Downloads 34725368 Criticality Assessment Model for Water Pipelines Using Fuzzy Analytical Network Process
Abstract:
Water networks (WNs) are responsible of providing adequate amounts of safe, high quality, water to the public. As other critical infrastructure systems, WNs are subjected to deterioration which increases the number of breaks and leaks and lower water quality. In Canada, 35% of water assets require critical attention and there is a significant gap between the needed and the implemented investments. Thus, the need for efficient rehabilitation programs is becoming more urgent given the paradigm of aging infrastructure and tight budget. The first step towards developing such programs is to formulate a Performance Index that reflects the current condition of water assets along with its criticality. While numerous studies in the literature have focused on various aspects of condition assessment and reliability, limited efforts have investigated the criticality of such components. Critical water mains are those whose failure cause significant economic, environmental or social impacts on a community. Inclusion of criticality in computing the performance index will serve as a prioritizing tool for the optimum allocating of the available resources and budget. In this study, several social, economic, and environmental factors that dictate the criticality of a water pipelines have been elicited from analyzing the literature. Expert opinions were sought to provide pairwise comparisons of the importance of such factors. Subsequently, Fuzzy Logic along with Analytical Network Process (ANP) was utilized to calculate the weights of several criteria factors. Multi Attribute Utility Theories (MAUT) was then employed to integrate the aforementioned weights with the attribute values of several pipelines in Montreal WN. The result is a criticality index, 0-1, that quantifies the severity of the consequence of failure of each pipeline. A novel contribution of this approach is that it accounts for both the interdependency between criteria factors as well as the inherited uncertainties in calculating the criticality. The practical value of the current study is represented by the automated tool, Excel-MATLAB, which can be used by the utility managers and decision makers in planning for future maintenance and rehabilitation activities where high-level efficiency in use of materials and time resources is required.Keywords: water networks, criticality assessment, asset management, fuzzy analytical network process
Procedia PDF Downloads 15125367 An Observation of the Information Technology Research and Development Based on Article Data Mining: A Survey Study on Science Direct
Authors: Muhammet Dursun Kaya, Hasan Asil
Abstract:
One of the most important factors of research and development is the deep insight into the evolutions of scientific development. The state-of-the-art tools and instruments can considerably assist the researchers, and many of the world organizations have become aware of the advantages of data mining for the acquisition of the knowledge required for the unstructured data. This paper was an attempt to review the articles on the information technology published in the past five years with the aid of data mining. A clustering approach was used to study these articles, and the research results revealed that three topics, namely health, innovation, and information systems, have captured the special attention of the researchers.Keywords: information technology, data mining, scientific development, clustering
Procedia PDF Downloads 28125366 Security in Resource Constraints: Network Energy Efficient Encryption
Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy
Abstract:
Wireless nodes in a sensor network gather and process critical information designed to process and communicate, information flooding through such network is critical for decision making and data processing, the integrity of such data is one of the most critical factors in wireless security without compromising the processing and transmission capability of the network. This paper presents mechanism to securely transmit data over a chain of sensor nodes without compromising the throughput of the network utilizing available battery resources available at the sensor node.Keywords: hybrid protocol, data integrity, lightweight encryption, neighbor based key sharing, sensor node data processing, Z-MAC
Procedia PDF Downloads 14725365 Data Mining Techniques for Anti-Money Laundering
Authors: M. Sai Veerendra
Abstract:
Today, money laundering (ML) poses a serious threat not only to financial institutions but also to the nation. This criminal activity is becoming more and more sophisticated and seems to have moved from the cliché of drug trafficking to financing terrorism and surely not forgetting personal gain. Most of the financial institutions internationally have been implementing anti-money laundering solutions (AML) to fight investment fraud activities. However, traditional investigative techniques consume numerous man-hours. Recently, data mining approaches have been developed and are considered as well-suited techniques for detecting ML activities. Within the scope of a collaboration project on developing a new data mining solution for AML Units in an international investment bank in Ireland, we survey recent data mining approaches for AML. In this paper, we present not only these approaches but also give an overview on the important factors in building data mining solutions for AML activities.Keywords: data mining, clustering, money laundering, anti-money laundering solutions
Procedia PDF Downloads 54325364 SOTM: A New Cooperation Based Trust Management System for VANET
Authors: Amel Ltifi, Ahmed Zouinkhi, Mohamed Salim Bouhlel
Abstract:
Security and trust management in Vehicular Ad-hoc NETworks (VANET) is a crucial research domain which is the scope of many researches and domains. Although, the majority of the proposed trust management systems for VANET are based on specific road infrastructure, which may not be present in all the roads. Therefore, road security should be managed by vehicles themselves. In this paper, we propose a new Self Organized Trust Management system (SOTM). This system has the responsibility to cut with the spread of false warnings in the network through four principal components: cooperation, trust management, communication and security.Keywords: ative vehicle, cooperation, trust management, VANET
Procedia PDF Downloads 44025363 History of Film in the (West/South) Africa-the Emergence of the Film Production Economy
Authors: Sibusiso Mnyanda
Abstract:
Storytelling through motion pictures is a valuable economy. South Africa was one of the first countries in the world to see and hear sound motion pictures With Lingards Waxworks in Durban first showing them in August 1895. This article celebrates and takes a microscopic look into the developments of this industry and its economy, highlighting these fundamentals: Skill levels and talent sets that were displayed in this emergence, the quality of the products that were produced by filmmakers and actors, the level of Administration and quality assurance of production houses and the general infrastructure and resources available to the industry at the time.Keywords: film, Africa, production economy, history
Procedia PDF Downloads 6225362 A New Smart Plug for Home Energy Management
Authors: G. E. Kiral, O. Elma, A. T. Ince, B. Vural, U. S. Selamogullari, M. Uzunoglu
Abstract:
Energy is an indispensable resource to meet the needs of people. Depending on the needs of people, the correct and efficient use of electrical energy has became important nowadays. Besides the need for the electrical energy is also increasing with the rapidly developing technology and continuously changing living standards. Due to the depletion of energy sources and increased demand for electricity, efficient energy use is an important research topic. Recently, ideas like smart cities, smart buildings and smart homes have been widely used under smart grid concept. With smart grid infrastructure, it will be possible to monitor electrical demand of a residential customer and control each electricity generation center for more efficient energy flow. The smallest component of the smart grid can be considered as smart homes. Better utilization of the electrical grid can be achieved through the communication of the smart home with both other customers in the grid and appliances in the house itself since generation can effectively be scheduled by having more precise demand data. Smart Plugs are used for the communication with the household appliances in the house. Smart Plug is an intermediate control element, which can be mounted on the existing outlet, and thus can be used to monitor the energy consumption of the plugged device and also can provide on/off control energy remotely. This study proposes a Smart Plug for energy monitoring and energy management. Proposed design is composed of five subsystems: micro controller embedded system with communication system, metering circuitry, power supply and switching circuitry. The developed smart plug offers efficient use of electrical energy.Keywords: energy efficiency, home energy management, smart home, smart plug
Procedia PDF Downloads 73325361 Development of New Technology Evaluation Model by Using Patent Information and Customers' Review Data
Authors: Kisik Song, Kyuwoong Kim, Sungjoo Lee
Abstract:
Many global firms and corporations derive new technology and opportunity by identifying vacant technology from patent analysis. However, previous studies failed to focus on technologies that promised continuous growth in industrial fields. Most studies that derive new technology opportunities do not test practical effectiveness. Since previous studies depended on expert judgment, it became costly and time-consuming to evaluate new technologies based on patent analysis. Therefore, research suggests a quantitative and systematic approach to technology evaluation indicators by using patent data to and from customer communities. The first step involves collecting two types of data. The data is used to construct evaluation indicators and apply these indicators to the evaluation of new technologies. This type of data mining allows a new method of technology evaluation and better predictor of how new technologies are adopted.Keywords: data mining, evaluating new technology, technology opportunity, patent analysis
Procedia PDF Downloads 38125360 Anomaly Detection Based on System Log Data
Authors: M. Kamel, A. Hoayek, M. Batton-Hubert
Abstract:
With the increase of network virtualization and the disparity of vendors, the continuous monitoring and detection of anomalies cannot rely on static rules. An advanced analytical methodology is needed to discriminate between ordinary events and unusual anomalies. In this paper, we focus on log data (textual data), which is a crucial source of information for network performance. Then, we introduce an algorithm used as a pipeline to help with the pretreatment of such data, group it into patterns, and dynamically label each pattern as an anomaly or not. Such tools will provide users and experts with continuous real-time logs monitoring capability to detect anomalies and failures in the underlying system that can affect performance. An application of real-world data illustrates the algorithm.Keywords: logs, anomaly detection, ML, scoring, NLP
Procedia PDF Downloads 10025359 Integrating Radar Sensors with an Autonomous Vehicle Simulator for an Enhanced Smart Parking Management System
Authors: Mohamed Gazzeh, Bradley Null, Fethi Tlili, Hichem Besbes
Abstract:
The burgeoning global ownership of personal vehicles has posed a significant strain on urban infrastructure, notably parking facilities, leading to traffic congestion and environmental concerns. Effective parking management systems (PMS) are indispensable for optimizing urban traffic flow and reducing emissions. The most commonly deployed systems nowadays rely on computer vision technology. This paper explores the integration of radar sensors and simulation in the context of smart parking management. We concentrate on radar sensors due to their versatility and utility in automotive applications, which extends to PMS. Additionally, radar sensors play a crucial role in driver assistance systems and autonomous vehicle development. However, the resource-intensive nature of radar data collection for algorithm development and testing necessitates innovative solutions. Simulation, particularly the monoDrive simulator, an internal development tool used by NI the Test and Measurement division of Emerson, offers a practical means to overcome this challenge. The primary objectives of this study encompass simulating radar sensors to generate a substantial dataset for algorithm development, testing, and, critically, assessing the transferability of models between simulated and real radar data. We focus on occupancy detection in parking as a practical use case, categorizing each parking space as vacant or occupied. The simulation approach using monoDrive enables algorithm validation and reliability assessment for virtual radar sensors. It meticulously designed various parking scenarios, involving manual measurements of parking spot coordinates, orientations, and the utilization of TI AWR1843 radar. To create a diverse dataset, we generated 4950 scenarios, comprising a total of 455,400 parking spots. This extensive dataset encompasses radar configuration details, ground truth occupancy information, radar detections, and associated object attributes such as range, azimuth, elevation, radar cross-section, and velocity data. The paper also addresses the intricacies and challenges of real-world radar data collection, highlighting the advantages of simulation in producing radar data for parking lot applications. We developed classification models based on Support Vector Machines (SVM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), exclusively trained and evaluated on simulated data. Subsequently, we applied these models to real-world data, comparing their performance against the monoDrive dataset. The study demonstrates the feasibility of transferring models from a simulated environment to real-world applications, achieving an impressive accuracy score of 92% using only one radar sensor. This finding underscores the potential of radar sensors and simulation in the development of smart parking management systems, offering significant benefits for improving urban mobility and reducing environmental impact. The integration of radar sensors and simulation represents a promising avenue for enhancing smart parking management systems, addressing the challenges posed by the exponential growth in personal vehicle ownership. This research contributes valuable insights into the practicality of using simulated radar data in real-world applications and underscores the role of radar technology in advancing urban sustainability.Keywords: autonomous vehicle simulator, FMCW radar sensors, occupancy detection, smart parking management, transferability of models
Procedia PDF Downloads 9025358 Mix Design Curves for High Volume Fly Ash Concrete
Authors: S. S. Awanti, Aravindakumar B. Harwalkar
Abstract:
Concrete construction in future has to be environmental friendly apart from being safe so that society at large is benefited by the huge investments made in the infrastructure projects. To achieve this, component materials of the concrete system have to be optimized with reference to sustainability. This paper presents a study on development of mix proportions of high volume fly ash concrete (HFC). A series of HFC mixtures with cement replacement levels varying between 50% and 65% were prepared with water/binder ratios of 0.3 and 0.35. Compressive strength values were obtained at different ages. From the experimental results, pozzolanic efficiency ratios and mix design curves for HFC were established.Keywords: age factor, compressive strength, high volume fly ash concrete, pozolanic efficiency ratio
Procedia PDF Downloads 31725357 Efficient Sources and Methods of Extracting Water for Irrigation
Authors: Anthony Iyenjamu, Josiah Adeyemo
Abstract:
Due to the increasing water scarcity in South Africa, the prime focus of irrigation in South Africa shifts to creating feasible water sources and the efficient use of these sources. These irrigation systems in South Africa are implemented because of low and erratic rainfall and high evaporative demand. Irrigation contributes significantly to crop production in South Africa, as the mean annual precipitation for the country is usually less than 500mm. This is considered to be the minimum required for rain fed cropping. Even though the rainfall is low, a lot of the water in various areas in South Africa is lost due to runoff into storm water systems that run to the rivers and eventually into the sea. This study reviews the irrigation systems in South Africa which can be vastly improved by creating irrigation dams. A method of which may seem costly at first but rewarding with time. The study investigates the process of creating dam capacity capable of sustaining a suitable area size of land to be irrigated and thus diverting all runoff into these dams. This type of infrastructure method vastly improves various sectors in our irrigation systems. Extensive research is carried out in the surrounding area in which the dam should be constructed. Rainfall patterns and rainfall data is used for calculations of which period the dam will be at its optimum using rainfall. The size of the area irrigated was used to calculate the size of the irrigation dam to be constructed. The location of the dam must be situated as close to the river as possible to minimize the excessive use of pipelines to the dam. This study also investigated all existing resources to alleviate the cost. It was found that irrigation dams could solve the erratic distribution of rainfall in South Africa for irrigation purposes.Keywords: irrigation, rainfed, rain harvesting, reservoir
Procedia PDF Downloads 28525356 Cloud Computing: Major Issues and Solutions
Authors: S. Adhirai Subramaniyam, Paramjit Singh
Abstract:
This paper presents major issues in cloud computing. The paper describes different cloud computing deployment models and cloud service models available in the field of cloud computing. The paper then concentrates on various issues in the field. The issues such as cloud compatibility, compliance of the cloud, standardizing cloud technology, monitoring while on the cloud and cloud security are described. The paper suggests solutions for these issues and concludes that hybrid cloud infrastructure is a real boon for organizations.Keywords: cloud, cloud computing, mobile cloud computing, private cloud, public cloud, hybrid cloud, SAAS, PAAS, IAAS, cloud security
Procedia PDF Downloads 34725355 EnumTree: An Enumerative Biclustering Algorithm for DNA Microarray Data
Authors: Haifa Ben Saber, Mourad Elloumi
Abstract:
In a number of domains, like in DNA microarray data analysis, we need to cluster simultaneously rows (genes) and columns (conditions) of a data matrix to identify groups of constant rows with a group of columns. This kind of clustering is called biclustering. Biclustering algorithms are extensively used in DNA microarray data analysis. More effective biclustering algorithms are highly desirable and needed. We introduce a new algorithm called, Enumerative tree (EnumTree) for biclustering of binary microarray data. is an algorithm adopting the approach of enumerating biclusters. This algorithm extracts all biclusters consistent good quality. The main idea of EnumLat is the construction of a new tree structure to represent adequately different biclusters discovered during the process of enumeration. This algorithm adopts the strategy of all biclusters at a time. The performance of the proposed algorithm is assessed using both synthetic and real DNA micryarray data, our algorithm outperforms other biclustering algorithms for binary microarray data. Biclusters with different numbers of rows. Moreover, we test the biological significance using a gene annotation web tool to show that our proposed method is able to produce biologically relevent biclusters.Keywords: DNA microarray, biclustering, gene expression data, tree, datamining.
Procedia PDF Downloads 37425354 The Impact of Financial Reporting on Sustainability
Authors: Lynn Ruggieri
Abstract:
The worldwide pandemic has only increased sustainability awareness. The public is demanding that businesses be held accountable for their impact on the environment. While financial data enjoys uniformity in reporting requirements, there are no uniform reporting requirements for non-financial data. Europe is leading the way with some standards being implemented for reporting non-financial sustainability data; however, there is no uniformity globally. And without uniformity, there is not a clear understanding of what information to include and how to disclose it. Sustainability reporting will provide important information to stakeholders and will enable businesses to understand their impact on the environment. Therefore, there is a crucial need for this data. This paper looks at the history of sustainability reporting in the countries of the European Union and throughout the world and makes a case for worldwide reporting requirements for sustainability.Keywords: financial reporting, non-financial data, sustainability, global financial reporting
Procedia PDF Downloads 18325353 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies
Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk
Abstract:
Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, this project proposes AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project presents the best-in-school techniques used to preserve the data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptographic techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures and identifies potential correction/mitigation measures.Keywords: data privacy, artificial intelligence (AI), healthcare AI, data sharing, healthcare organizations (HCOs)
Procedia PDF Downloads 10025352 Mapping Tunnelling Parameters for Global Optimization in Big Data via Dye Laser Simulation
Authors: Sahil Imtiyaz
Abstract:
One of the biggest challenges has emerged from the ever-expanding, dynamic, and instantaneously changing space-Big Data; and to find a data point and inherit wisdom to this space is a hard task. In this paper, we reduce the space of big data in Hamiltonian formalism that is in concordance with Ising Model. For this formulation, we simulate the system using dye laser in FORTRAN and analyse the dynamics of the data point in energy well of rhodium atom. After mapping the photon intensity and pulse width with energy and potential we concluded that as we increase the energy there is also increase in probability of tunnelling up to some point and then it starts decreasing and then shows a randomizing behaviour. It is due to decoherence with the environment and hence there is a loss of ‘quantumness’. This interprets the efficiency parameter and the extent of quantum evolution. The results are strongly encouraging in favour of the use of ‘Topological Property’ as a source of information instead of the qubit.Keywords: big data, optimization, quantum evolution, hamiltonian, dye laser, fermionic computations
Procedia PDF Downloads 19825351 Applying Different Stenography Techniques in Cloud Computing Technology to Improve Cloud Data Privacy and Security Issues
Authors: Muhammad Muhammad Suleiman
Abstract:
Cloud Computing is a versatile concept that refers to a service that allows users to outsource their data without having to worry about local storage issues. However, the most pressing issues to be addressed are maintaining a secure and reliable data repository rather than relying on untrustworthy service providers. In this study, we look at how stenography approaches and collaboration with Digital Watermarking can greatly improve the system's effectiveness and data security when used for Cloud Computing. The main requirement of such frameworks, where data is transferred or exchanged between servers and users, is safe data management in cloud environments. Steganography is the cloud is among the most effective methods for safe communication. Steganography is a method of writing coded messages in such a way that only the sender and recipient can safely interpret and display the information hidden in the communication channel. This study presents a new text steganography method for hiding a loaded hidden English text file in a cover English text file to ensure data protection in cloud computing. Data protection, data hiding capability, and time were all improved using the proposed technique.Keywords: cloud computing, steganography, information hiding, cloud storage, security
Procedia PDF Downloads 19825350 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics
Authors: Farhad Asadi, Mohammad Javad Mollakazemi
Abstract:
In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.Keywords: time series, fluctuation in statistical characteristics, optimal learning, change-point algorithm
Procedia PDF Downloads 43025349 Determination of the Risks of Heart Attack at the First Stage as Well as Their Control and Resource Planning with the Method of Data Mining
Authors: İbrahi̇m Kara, Seher Arslankaya
Abstract:
Frequently preferred in the field of engineering in particular, data mining has now begun to be used in the field of health as well since the data in the health sector have reached great dimensions. With data mining, it is aimed to reveal models from the great amounts of raw data in agreement with the purpose and to search for the rules and relationships which will enable one to make predictions about the future from the large amount of data set. It helps the decision-maker to find the relationships among the data which form at the stage of decision-making. In this study, it is aimed to determine the risk of heart attack at the first stage, to control it, and to make its resource planning with the method of data mining. Through the early and correct diagnosis of heart attacks, it is aimed to reveal the factors which affect the diseases, to protect health and choose the right treatment methods, to reduce the costs in health expenditures, and to shorten the durations of patients’ stay at hospitals. In this way, the diagnosis and treatment costs of a heart attack will be scrutinized, which will be useful to determine the risk of the disease at the first stage, to control it, and to make its resource planning.Keywords: data mining, decision support systems, heart attack, health sector
Procedia PDF Downloads 35825348 Bayesian Borrowing Methods for Count Data: Analysis of Incontinence Episodes in Patients with Overactive Bladder
Authors: Akalu Banbeta, Emmanuel Lesaffre, Reynaldo Martina, Joost Van Rosmalen
Abstract:
Including data from previous studies (historical data) in the analysis of the current study may reduce the sample size requirement and/or increase the power of analysis. The most common example is incorporating historical control data in the analysis of a current clinical trial. However, this only applies when the historical control dataare similar enough to the current control data. Recently, several Bayesian approaches for incorporating historical data have been proposed, such as the meta-analytic-predictive (MAP) prior and the modified power prior (MPP) both for single control as well as for multiple historical control arms. Here, we examine the performance of the MAP and the MPP approaches for the analysis of (over-dispersed) count data. To this end, we propose a computational method for the MPP approach for the Poisson and the negative binomial models. We conducted an extensive simulation study to assess the performance of Bayesian approaches. Additionally, we illustrate our approaches on an overactive bladder data set. For similar data across the control arms, the MPP approach outperformed the MAP approach with respect to thestatistical power. When the means across the control arms are different, the MPP yielded a slightly inflated type I error (TIE) rate, whereas the MAP did not. In contrast, when the dispersion parameters are different, the MAP gave an inflated TIE rate, whereas the MPP did not.We conclude that the MPP approach is more promising than the MAP approach for incorporating historical count data.Keywords: count data, meta-analytic prior, negative binomial, poisson
Procedia PDF Downloads 123