Search results for: critical energy level
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24037

Search results for: critical energy level

22867 Harnessing Earth's Electric Field and Transmission of Electricity

Authors: Vaishakh Medikeri

Abstract:

Energy in this Universe is the most basic characteristic of every particle. Since the birth of life on this planet, there has been a quest undertaken by the living beings to analyze, understand and harness the precious natural facts of the nature. In this quest, one of the greatest undertaken is the process of harnessing the naturally available energy. Scientists around the globe have discovered many ways to harness the freely available energy. But even today we speak of “Power Crisis”. Nikola Tesla once said “Nature has stored up in this universe infinite energy”. Energy is everywhere around us in unlimited quantities; all of it waiting to be harnessed by us. Here in this paper a method has been proposed to harness earth's electric field and transmit the stored electric energy using strong magnetic fields and electric fields. In this paper a new technique has been proposed to harness earth's electric field which is everywhere around the world in infinite quantities. Near the surface of the earth there is an electric field of about 120V/m. This electric field is used to charge a capacitor with high capacitance. Later the energy stored is allowed to pass through a device which converts the DC stored into AC. The AC so produced is then passed through a step down transformer to magnify the incoming current. Later the current passes through the RLC circuit. Later the current can be transmitted wirelessly using the principle of resonant inductive coupling. The proposed apparatus can be placed in most of the required places and any circuit tuned to the frequency of the transmitted current can receive the energy. The new source of renewable energy is of great importance if implemented since the apparatus is not costly and can be situated in most of the required places. And also the receiver which receives the transmitted energy is just an RLC circuit tuned to the resonant frequency of the transmitted energy. By using the proposed apparatus the energy losses can be reduced to a very large extent.

Keywords: capacitor, inductive resonant coupling, RLC circuit, transmission of electricity

Procedia PDF Downloads 373
22866 Performance of Nakagami Fading Channel over Energy Detection Based Spectrum Sensing

Authors: M. Ranjeeth, S. Anuradha

Abstract:

Spectrum sensing is the main feature of cognitive radio technology. Spectrum sensing gives an idea of detecting the presence of the primary users in a licensed spectrum. In this paper we compare the theoretical results of detection probability of different fading environments like Rayleigh, Rician, Nakagami-m fading channels with the simulation results using energy detection based spectrum sensing. The numerical results are plotted as P_f Vs P_d for different SNR values, fading parameters. It is observed that Nakagami fading channel performance is better than other fading channels by using energy detection in spectrum sensing. A MATLAB simulation test bench has been implemented to know the performance of energy detection in different fading channel environment.

Keywords: spectrum sensing, energy detection, fading channels, probability of detection, probability of false alarm

Procedia PDF Downloads 532
22865 Retrofitting Measures for Existing Housing Stock in Kazakhstan

Authors: S. Yessengabulov, A. Uyzbayeva

Abstract:

Residential buildings fund of Kazakhstan was built in the Soviet time about 35-60 years ago without considering energy efficiency measures. Currently, most of these buildings are in a rundown condition and fail to meet the minimum of hygienic, sanitary and comfortable living requirements. The paper aims to examine the reports of recent building energy survey activities in the country and provide a possible solution for retrofitting existing housing stock built before 1989 which could be applicable for building envelope in cold climate. Methodology also includes two-dimensional modeling of possible practical solutions and further recommendations.

Keywords: energy audit, energy efficient buildings in Kazakhstan, retrofit, two-dimensional conduction heat transfer analysis

Procedia PDF Downloads 247
22864 An Electrode Material for Ultracapacitors: Hydrothermal Synthesis of Neodymium Oxide/Manganese Oxide/Nitrogen Doped Reduced Graphene Oxide Ternary Nanocomposites

Authors: K. Saravanan, K. A.Rameshkumar, P. Maadeswaran

Abstract:

The depletion of fossil resources and the rise in global temperatures are two of the most important concerns we confront today. There are numerous renewable energy sources like solar power, tidal power, wind energy, radiant energy, hydroelectricity, geothermal energy, and biomass available to generate the needed energy demand. Engineers and scientists around the world are facing a massive barrier in the development of storage technologies for the energy developed from renewable energy sources. The development of electrochemical capacitors as a future energy storage technology is at the forefront of current research and development. This is due to the fact that the electrochemical capacitors have a significantly higher energy density, a faster charging-discharging rate, and a longer life span than capacitors, and they also have a higher power density than batteries, making them superior to both. In this research, electrochemical capacitors using the Nd2O3/Mn3O4/ N-rGO electrode material is chosen since the of hexagonal and tetragonal crystal structures of Nd2O3 and Mn3O4 and also has cycling stability of 68% over a long time at 50mVs-1 and a high coulombic efficiency of 99.64% at 5 Ag-1. This approach may also be used to create novel electrode materials with improved electrochemical and cyclic stability for high-performance supercapacitors.

Keywords: Nd2O3/Mn3O4/N-rGO, nanocomposites, hydrothermal method, electrode material, specific capacitance, use of supercapacitors

Procedia PDF Downloads 96
22863 Energy Refurbishment of University Building in Cold Italian Climate: Energy Audit and Performance Optimization

Authors: Fabrizio Ascione, Martina Borrelli, Rosa Francesca De Masi, Silvia Ruggiero, Giuseppe Peter Vanoli

Abstract:

The Directive 2010/31/EC 'Directive of the European Parliament and of the Council of 19 may 2010 on the energy performance of buildings' moved the targets of the previous version toward more ambitious targets, for instance by establishing that, by 31 December 2020, all new buildings should demand nearly zero-energy. Moreover, the demonstrative role of public buildings is strongly affirmed so that also the target nearly zero-energy buildings is anticipated, in January 2019. On the other hand, given the very low turn-over rate of buildings (in Europe, it ranges between 1-3%/yearly), each policy that does not consider the renovation of the existing building stock cannot be effective in the short and medium periods. According to this proposal, the study provides a novel, holistic approach to design the refurbishment of educational buildings in colder cities of Mediterranean regions enabling stakeholders to understand the uncertainty to use numerical modelling and the real environmental and economic impacts of adopting some energy efficiency technologies. The case study is a university building of Molise region in the centre of Italy. The proposed approach is based on the application of the cost-optimal methodology as it is shown in the Delegate Regulation 244/2012 and Guidelines of the European Commission, for evaluating the cost-optimal level of energy performance with a macroeconomic approach. This means that the refurbishment scenario should correspond to the configuration that leads to lowest global cost during the estimated economic life-cycle, taking into account not only the investment cost but also the operational costs, linked to energy consumption and polluting emissions. The definition of the reference building has been supported by various in-situ surveys, investigations, evaluations of the indoor comfort. Data collection can be divided into five categories: 1) geometrical features; 2) building envelope audit; 3) technical system and equipment characterization; 4) building use and thermal zones definition; 5) energy building data. For each category, the required measures have been indicated with some suggestions for the identifications of spatial distribution and timing of the measurements. With reference to the case study, the collected data, together with a comparison with energy bills, allowed a proper calibration of a numerical model suitable for the hourly energy simulation by means of EnergyPlus. Around 30 measures/packages of energy, efficiency measure has been taken into account both on the envelope than regarding plant systems. Starting from results, two-point will be examined exhaustively: (i) the importance to use validated models to simulate the present performance of building under investigation; (ii) the environmental benefits and the economic implications of a deep energy refurbishment of the educational building in cold climates.

Keywords: energy simulation, modelling calibration, cost-optimal retrofit, university building

Procedia PDF Downloads 178
22862 Theoretical and Numerical Investigation of a Tri-Stable Nonlinear Energy Harvesting System in Rotational Motion for Low Frequency Environment

Authors: Mei Xutao, Nakano Kimihiko

Abstract:

In order to enhance the energy harvesting efficiency, this paper presents a novel tri-stable energy harvesting system (TEHS), which is realized by the effect of magnetic force, in rotational motion to scavenge vibration energy. The device is meant to provide the power supply for wireless autonomous systems in low-frequency environment. The nonlinear TEHS is composed of the cantilever beam which is mounted on a rotating hub and partially covered by piezoelectric patch, a tip mass magnet in the end and two fixed magnets. A theoretical investigation using the Lagrangian formulation is derived to describe the motion of the energy harvesting system and the output voltage. Additionally, several numerical simulations were carried out to characterize the system under different external excitations and to validate its performance. The results demonstrated that TEHS owns a wide range of frequency of snap-through and high output voltage compared with the bi-stable energy harvesting system (BEHS). Moreover, some sets of experimental validations will be performed in the future work because the experimental setup is in the configuration now.

Keywords: piezoelectric beam, rotational motion, snap-through, tri-stable energy harvester

Procedia PDF Downloads 297
22861 Acoustic Partial Discharge Propagation and Perfectly Matched Layer in Acoustic Detection-Transformer

Authors: Nirav J. Patel, Kalpesh K. Dudani

Abstract:

Partial discharge (PD) is the dissipation of energy caused by localized breakdown of insulation. Power transformers are one of the most important components in the electrical energy network. Insulation degradation of transformer is frequently linked to PD. This is why PD detection is used in power system to monitor the health of high voltage transformer. If such problem are not detected and repaired, the strength and frequency of PD may increase and eventually lead to the catastrophic failure of the transformer. This can further cause external equipment damage, fires and loss of revenue due to an unscheduled outage. Hence, reliable online PD detection is a critical need for power companies to improve personnel safety and decrease the probability of loss of service. The PD phenomenon is manifested in a variety of physically observable signals including Ultra High Frequency (UHF) radiation and Acoustic Disturbances, Electrical pulses. Acoustic method is based on sensing the radiated acoustic emission from discharge sites in the insulation. Propagated wave from the PD fault site are captured sensor are consequently pre-amplified, filtered, recorded and analyze.

Keywords: acoustic, partial discharge, perfectly matched layer, sensor

Procedia PDF Downloads 527
22860 Study of Some Factors Effecting on Productivity of Solar Distillers

Authors: Keshek M.H, Mohamed M.A, El-Shafey M.A

Abstract:

The aim of this research was increasing the productivity of solar distillation. In order to reach this aim, a solar distiller was created with three glass sides sloping 30o at the horizontal level, and the experiments were carried out on the solar distillation unit during the period from 24th August, 2016 till 24th May, 2017 at the Agricultural Engineering and Bio Systems Department, Faculty of Agriculture, Menoufia University. Three gap lengths were used between the water level and the inner glass cover, those were 3, 6, and 9 cm. As the result of change the gap length between the water level and the inner glass cover the total volume of basins were changed from 15.5, 13, and 11 L, respectively. The total basin volume was divided to three sections, to investigate the effect of water volume. The three water volumes were 100%, 75%, and 50%. Every section was supplied with one, two, or three heaters. The one heater power was 15 W. The results showed that, by increasing the distance between the basins edge and the inner edge of the glass cover, an increase occurs in the percentage of temperature difference with maximum value was 52% at distance 9 cm from each edge, an increase occurs in the productivity with maximum productivity was 3.3 L/m2 at distance 9 cm from each edge and an increase occurs in the efficiency with maximum efficiency was 70% at distance 9 cm from each edge.

Keywords: distillation, solar energy, still productivity, efficiency

Procedia PDF Downloads 102
22859 A Multi-Scale Approach to Space Use: Habitat Disturbance Alters Behavior, Movement and Energy Budgets in Sloths (Bradypus variegatus)

Authors: Heather E. Ewart, Keith Jensen, Rebecca N. Cliffe

Abstract:

Fragmentation and changes in the structural composition of tropical forests – as a result of intensifying anthropogenic disturbance – are increasing pressures on local biodiversity. Species with low dispersal abilities have some of the highest extinction risks in response to environmental change, as even small-scale environmental variation can substantially impact their space use and energetic balance. Understanding the implications of forest disturbance is therefore essential, ultimately allowing for more effective and targeted conservation initiatives. Here, the impact of different levels of forest disturbance on the space use, energetics, movement and behavior of 18 brown-throated sloths (Bradypus variegatus) were assessed in the South Caribbean of Costa Rica. A multi-scale framework was used to measure forest disturbance, including large-scale (landscape-level classifications) and fine-scale (within and surrounding individual home ranges) forest composition. Three landscape-level classifications were identified: primary forests (undisturbed), secondary forests (some disturbance, regenerating) and urban forests (high levels of disturbance and fragmentation). Finer-scale forest composition was determined using measurements of habitat structure and quality within and surrounding individual home ranges for each sloth (home range estimates were calculated using autocorrelated kernel density estimation [AKDE]). Measurements of forest quality included tree connectivity, density, diameter and height, species richness, and percentage of canopy cover. To determine space use, energetics, movement and behavior, six sloths in urban forests, seven sloths in secondary forests and five sloths in primary forests were tracked using a combination of Very High Frequency (VHF) radio transmitters and Global Positioning System (GPS) technology over an average period of 120 days. All sloths were also fitted with micro data-loggers (containing tri-axial accelerometers and pressure loggers) for an average of 30 days to allow for behavior-specific movement analyses (data analysis ongoing for data-loggers and primary forest sloths). Data-loggers included determination of activity budgets, circadian rhythms of activity and energy expenditure (using the vector of the dynamic body acceleration [VeDBA] as a proxy). Analyses to date indicate that home range size significantly increased with the level of forest disturbance. Female sloths inhabiting secondary forests averaged 0.67-hectare home ranges, while female sloths inhabiting urban forests averaged 1.93-hectare home ranges (estimates are represented by median values to account for the individual variation in home range size in sloths). Likewise, home range estimates for male sloths were 2.35 hectares in secondary forests and 4.83 in urban forests. Sloths in urban forests also used nearly double (median = 22.5) the number of trees as sloths in the secondary forest (median = 12). These preliminary data indicate that forest disturbance likely heightens the energetic requirements of sloths, a species already critically limited by low dispersal ability and rates of energy acquisition. Energetic and behavioral analyses from the data-loggers will be considered in the context of fine-scale forest composition measurements (i.e., habitat quality and structure) and are expected to reflect the observed home range and movement constraints. The implications of these results are far-reaching, presenting an opportunity to define a critical index of habitat connectivity for low dispersal species such as sloths.

Keywords: biodiversity conservation, forest disturbance, movement ecology, sloths

Procedia PDF Downloads 113
22858 Reducing Energy Consumption in Architectural Spaces by Optimizing Natural Light Transmission

Authors: Parisa Javid

Abstract:

In architecture, daylight contributes to humans' mental and physical well-being and reduces the consumption of fossil fuels. Accordingly, Iran's rich architecture has valuable achievements and experiences that should be recognized and introduced to the Iranian and international architecture communities. There are many ways to reduce energy consumption in buildings, but electricity accounts for a large part of that consumption. Lighting up spaces with natural light is a significant factor in reducing energy consumption and preventing electricity dissipation. Aside from being expensive, electric lighting systems cause excessive heat and physical injury (eyes). This study is based on library records and documents. Modern lighting systems are used to reduce energy consumption in the interior of a building to allow for optimal transmission of natural light. It discusses how to use natural light in architecture and the benefits of natural light in buildings. Solar energy can be used more efficiently, and electrical power can be saved in residential, administrative, commercial, and educational buildings by using new methods such as light tubes and mirror directors. Modern lighting systems, natural light, and reduced energy consumption are keywords for these systems, which quickly return their investment.

Keywords: modern lighting systems, natural light, reduced energy consumption

Procedia PDF Downloads 98
22857 Efficient Use of Energy through Incorporation of a Gas Turbine in Methanol Plant

Authors: M. Azadi, N. Tahouni, M. H. Panjeshahi

Abstract:

A techno-economic evaluation for efficient use of energy in a large scale industrial plant of methanol is carried out. This assessment is based on integration of a gas turbine with an existing plant of methanol in which the outlet gas products of exothermic reactor is expanded to power generation. Also, it is decided that methanol production rate is constant through addition of power generation system to the existing methanol plant. Having incorporated a gas turbine with the existing plant, the economic results showed total investment of MUSD 16.9, energy saving of 3.6 MUSD/yr with payback period of approximately 4.7 years.

Keywords: energy saving, methanol, gas turbine, power generation

Procedia PDF Downloads 469
22856 Dueling Burnout: The Dual Role Nurse

Authors: Melissa Dorsey

Abstract:

Moral distress and compassion fatigue plague nurses in the Cardiothoracic Intensive Care Unit (CTICU) and cause an unnecessary level of turnover. Dueling Burnout describes an initiative that was implemented in the CTICU to reduce the level of burnout the nurses endure by encouraging dual roles with collaborating departments. Purpose: Critical care nurses are plagued by burnout, moral distress, and compassion fatigue due to the intensity of care provided. The purpose of the dual role program was to decrease these issues by providing relief from the intensity of the critical care environment while maintaining full-time employment. Relevance/Significance: Burnout, moral distress, and compassion fatigue are leading causes of Cardiothoracic Critical Care (CTCU) turnover. A contributing factor to burnout is the workload related to serving as a preceptor for a constant influx of new nurses (RN). As a result of these factors, the CTICU averages 17% nursing turnover/year. The cost, unit disruption, and, most importantly, distress of the clinical nurses required an innovative approach to create an improved work environment and experience. Strategies/Implementation/Methods: In May 2018, a dual role pilot was initiated for nurses. The dual role constitutes .6 full-time equivalent hours (FTE) worked in CTICU in combination with .3 FTE worked in the Emergency Department (ED). ED nurses who expressed an interest in cross-training to CTICU were also offered the dual role opportunity. The initial hypothesis was that full-time employees would benefit from a change in clinical setting leading to increased engagement and job satisfaction. The dual role also presents an opportunity for professional development through the expansion of clinical skills in another specialty. Success of the pilot led to extending the dual role to areas beyond the ED. Evaluation/Outcomes/Results: The number of dual role clinical nurses has grown to 22. From the dual role cohort, only one has transferred out of CTICU. This is a 5% turnover rate for this group of nurses as compared to the average turnover rate of 17%. A role satisfaction survey conducted with the dual role cohort found that because of working in a dual role, 76.5% decreased their intent to leave, 100% decreased their level of burnout, and 100% reported an increase in overall job satisfaction. Nurses reported the ability to develop skills that are transferable between departments. Respondents emphasized the appreciation gained from working in multiple environments; the dual role served to transform their care. Conclusions/Implications: Dual role is an effective strategy to retain experienced nurses, decrease burnout and turnover, improve collaboration, and provide flexibility to meet staffing needs. The dual role offers RNs an expansion of skills, relief from high acuity and orientee demands, while improving job satisfaction.

Keywords: nursing retention, burnout, pandemic, strategic staffing, leadership

Procedia PDF Downloads 183
22855 Experimental Study on the Effect of Storage Conditions on Thermal Hazard of Nitrocellulose

Authors: Hua Chai, Qiangling Duan, Huiqi Cao, Mi Li, Jinhua Sun

Abstract:

Nitrocellulose (NC), a kind of energetic material, has been widely used in the industrial and military fields. However, this material can also cause serious social disasters due to storage conditions. Thermal hazard of nitrocellulose (NC) was experimentally investigated using the CALVET heat flux calorimeter C80, and three kinds of storage conditions were considered in the experiments: (1) drying time, (2) moisture content, (3) cycles. The results showed that the heat flow curves of NC moved to the low-temperature direction firstly and then slightly moved back by increasing the drying hours. Moisture that was responsible for the appearance of small exothermic peaks was proven to be the unfavorable safety factor yet it could increase the onset temperature of the main peak to some extent. And cycles could both lower the onset temperature and the maximum heat flow but enlarged the peak temperature. Besides, relevant kinetic parameters such as the heat of reaction (ΔH) and the activation energy (Ea) were obtained and compared. It was found that all the three conditions could reduce the values of Ea and most of them produced larger reaction heat. In addition, the critical explosion temperature (Tb) of the NC samples were derived. It was clear that not only the drying time but also the cycles would increase the thermal hazard of the NC. Yet, the right amount of water helped to reduce the thermal hazard.

Keywords: C80, nitrocellulose, storage conditions, the critical explosion temperature, thermal hazard

Procedia PDF Downloads 164
22854 Multisource (RF and Solar) Energy Harvesting for Internet of Things (IoT)

Authors: Emmanuel Ekwueme, Anwar Ali

Abstract:

As the Internet of Things (IoT) continues to expand, the demand for battery-free devices is increasing, which is crucial for the efficiency of 5G networks and eco-friendly industrial systems. The solution is a device that operates indefinitely, requires no maintenance, and has no negative impact on the ambient environment. One promising approach to achieve this is energy harvesting, which involves capturing energy from the ambient environment and transferring it to power devices. This method can revolutionize industries. Such as manufacturing, agriculture, and healthcare by enabling real-time data collection and analysis, reducing maintenance costs, improving efficiency, and contributing to a future with lower carbon emissions. This research explores various energy harvesting techniques, focusing on radio frequencies (RF) and multiple energy sources. It examines RF-based and solar methods for powering battery-free sensors, low-power circuits, and IoT devices. The study investigates a hybrid RF-solar harvesting circuit designed for remote sensing devices. The proposed system includes distinct RF and solar energy harvester circuits, with the RF harvester operating at 2.45GHz and the solar harvester utilizing a maximum power point tracking (MPPT) algorithm to maximize efficiency.

Keywords: radio frequency, energy harvesting, Internet of Things (IoT), multisource, solar energy

Procedia PDF Downloads 10
22853 Energy Calculation for Excited Lithium Atom in Position Space

Authors: Khalil H. Al-Bayati, Khalid Omar Al-Baiti

Abstract:

The energy expectation value for Li-like ions systems (Li, Be+ and Be2+) hasbeen calculated and examined within the ground state (1s2sα)^2 S and the excited state (1s3sα)^2 S in position space. The partitioning technique of Hartree-Fock (H-F) has been used for existing wavefnctions.

Keywords: energy expectation value, atomic systems, ground and excited states, Hartree-Fock approximation

Procedia PDF Downloads 617
22852 Scenarios of Digitalization and Energy Efficiency in the Building Sector in Brazil: 2050 Horizon

Authors: Maria Fatima Almeida, Rodrigo Calili, George Soares, João Krause, Myrthes Marcele Dos Santos, Anna Carolina Suzano E. Silva, Marcos Alexandre Da

Abstract:

In Brazil, the building sector accounts for 1/6 of energy consumption and 50% of electricity consumption. A complex sector with several driving actors plays an essential role in the country's economy. Currently, the digitalization readiness in this sector is still low, mainly due to the high investment costs and the difficulty of estimating the benefits of digital technologies in buildings. Nevertheless, the potential contribution of digitalization for increasing energy efficiency in the building sector in Brazil has been pointed out as relevant in the political and sectoral contexts, both in the medium and long-term horizons. To contribute to the debate on the possible evolving trajectories of digitalization in the building sector in Brazil and to subsidize the formulation or revision of current public policies and managerial decisions, three future scenarios were created to anticipate the potential energy efficiency in the building sector in Brazil due to digitalization by 2050. This work aims to present these scenarios as a basis to foresight the potential energy efficiency in this sector, according to different digitalization paces - slow, moderate, or fast in the 2050 horizon. A methodological approach was proposed to create alternative prospective scenarios, combining the Global Business Network (GBN) and the Laboratory for Investigation in Prospective Strategy and Organisation (LIPSOR) methods. This approach consists of seven steps: (i) definition of the question to be foresighted and time horizon to be considered (2050); (ii) definition and classification of a set of key variables, using the prospective structural analysis; (iii) identification of the main actors with an active role in the digital and energy spheres; (iv) characterization of the current situation (2021) and identification of main uncertainties that were considered critical in the development of alternative future scenarios; (v) scanning possible futures using morphological analysis; (vi) selection and description of the most likely scenarios; (vii) foresighting the potential energy efficiency in each of the three scenarios, namely slow digitalization; moderate digitalization, and fast digitalization. Each scenario begins with a core logic and then encompasses potentially related elements, including potential energy efficiency. Then, the first scenario refers to digitalization at a slow pace, with induction by the government limited to public buildings. In the second scenario, digitalization is implemented at a moderate pace, induced by the government in public, commercial, and service buildings, through regulation integrating digitalization and energy efficiency mechanisms. Finally, in the third scenario, digitalization in the building sector is implemented at a fast pace in the country and is strongly induced by the government, but with broad participation of private investments and accelerated adoption of digital technologies. As a result of the slow pace of digitalization in the sector, the potential for energy efficiency stands at levels below 10% of the total of 161TWh by 2050. In the moderate digitalization scenario, the potential reaches 20 to 30% of the total 161TWh by 2050. Furthermore, in the rapid digitalization scenario, it will reach 30 to 40% of the total 161TWh by 2050.

Keywords: building digitalization, energy efficiency, scenario building, prospective structural analysis, morphological analysis

Procedia PDF Downloads 115
22851 The Lateral and Torsional Vibration Analysis of a Rotor-Bearing System Using Transfer Matrix Method

Authors: Mohammad Hadi Jalali, Mostafa Ghayour, Saeed Ziaei-Rad, Behrooz Shahriari

Abstract:

The vibration problems that can be occurred in the operational conditions of rotating machines may cause damage to the machine or even failure of the machine completely. Therefore, dynamic analysis of rotors is vital in the design and development stages of the rotating machines. In this study, the uncoupled torsional and lateral vibration analysis of a rotor-bearing system is carried out using transfer matrix method. The Campbell diagram, critical speed and the mode shape corresponding to the critical speed are obtained in order to evaluate the dynamic behavior of the rotor.

Keywords: transfer matrix method, rotor-bearing system, campbell diagram, critical speed

Procedia PDF Downloads 492
22850 A Proteomic Approach for Discovery of Microbial Cellulolytic Enzymes

Authors: M. S. Matlala, I. Ignatious

Abstract:

Environmental sustainability has taken the center stage in human life all over the world. Energy is the most essential component of our life. The conventional sources of energy are non-renewable and have a detrimental environmental impact. Therefore, there is a need to move from conventional to non-conventional renewable energy sources to satisfy the world’s energy demands. The study aimed at screening for microbial cellulolytic enzymes using a proteomic approach. The objectives were to screen for microbial cellulases with high specific activity and separate the cellulolytic enzymes using a combination of zymography and two-dimensional (2-D) gel electrophoresis followed by tryptic digestion, Matrix-assisted Laser Desorption Ionisation-Time of Flight (MALDI-TOF) and bioinformatics analysis. Fungal and bacterial isolates were cultured in M9 minimal and Mandel media for a period of 168 hours at 60°C and 30°C with cellobiose and Avicel as carbon sources. Microbial cells were separated from supernatants through centrifugation, and the crude enzyme from the cultures was used for the determination of cellulase activity, zymography, SDS-PAGE, and two-dimensional gel electrophoresis. Five isolates, with lytic action on carbon sources studied, were a bacterial strain (BARK) and fungal strains (VCFF1, VCFF14, VCFF17, and VCFF18). Peak cellulase production by the selected isolates was found to be 3.8U/ml, 2.09U/ml, 3.38U/ml, 3.18U/ml, and 1.95U/ml, respectively. Two-dimensional gel protein maps resulted in the separation and quantitative expression of different proteins by the microbial isolates. MALDI-TOF analysis and database search showed that the expressed proteins in this study closely relate to different glycoside hydrolases produced by other microbial species with an acceptable confidence level of 100%.

Keywords: cellulases, energy, two-dimensional gel electrophoresis, matrix-assisted laser desorption ionisation-time of flight, MALDI-TOF MS

Procedia PDF Downloads 134
22849 Optimal and Critical Path Analysis of State Transportation Network Using Neo4J

Authors: Pallavi Bhogaram, Xiaolong Wu, Min He, Onyedikachi Okenwa

Abstract:

A transportation network is a realization of a spatial network, describing a structure which permits either vehicular movement or flow of some commodity. Examples include road networks, railways, air routes, pipelines, and many more. The transportation network plays a vital role in maintaining the vigor of the nation’s economy. Hence, ensuring the network stays resilient all the time, especially in the face of challenges such as heavy traffic loads and large scale natural disasters, is of utmost importance. In this paper, we used the Neo4j application to develop the graph. Neo4j is the world's leading open-source, NoSQL, a native graph database that implements an ACID-compliant transactional backend to applications. The Southern California network model is developed using the Neo4j application and obtained the most critical and optimal nodes and paths in the network using centrality algorithms. The edge betweenness centrality algorithm calculates the critical or optimal paths using Yen's k-shortest paths algorithm, and the node betweenness centrality algorithm calculates the amount of influence a node has over the network. The preliminary study results confirm that the Neo4j application can be a suitable tool to study the important nodes and the critical paths for the major congested metropolitan area.

Keywords: critical path, transportation network, connectivity reliability, network model, Neo4j application, edge betweenness centrality index

Procedia PDF Downloads 134
22848 Calculating All Dark Energy and Dark Matter Effects through Dynamic Gravity Theory

Authors: Sean Michael Kinney

Abstract:

In 1666, Newton created the Law of Universal Gravitation. And in 1915, Einstein improved it to incorporate factors such as time dilation and gravitational lensing. But currently, there is a problem with this “universal” law. The math doesn’t work outside the confines of our solar system. And something is missing; any evidence of what gravity actually is and how it manifests. This paper explores the notion that gravity must obey the law of conservation of energy as all other forces in this universe have been shown to do. Explaining exactly what gravity is and how it manifests itself. And looking at many different implications that would be created are explained. And finally, use the math of Dynamic gravity to calculate Dark Energy and Dark Matter effects to explain all observations without the need for exotic measures.

Keywords: dynamic gravity, gravity, dark matter, dark energy

Procedia PDF Downloads 78
22847 Expression Level of Dehydration-Responsive Element Binding/DREB Gene of Some Local Corn Cultivars from Kisar Island-Maluku Indonesia Using Quantitative Real-Time PCR

Authors: Hermalina Sinay, Estri L. Arumingtyas

Abstract:

The research objective was to determine the expression level of dehydration responsive element binding/DREB gene of local corn cultivars from Kisar Island Maluku. The study design was a randomized block design with single factor consist of six local corn cultivars obtained from farmers in Kisar Island and one reference varieties wich has been released by the government as a drought-tolerant varieties and obtained from Cereal Crops Research Institute (ICERI) Maros South Sulawesi. Leaf samples were taken is the second leaf after the flag leaf at the 65 days after planting. Isolation of total RNA from leaf samples was carried out according to the protocols of the R & A-BlueTM Total RNA Extraction Kit and was used as a template for cDNA synthesis. The making of cDNA from total RNA was carried out according to the protocol of One-Step Reverse Transcriptase PCR Premix Kit. Real Time-PCR was performed on cDNA from reverse transcription followed the procedures of Real MODTM Green Real-Time PCR Master Mix Kit. Data obtained from the real time-PCR results were analyzed using relative quantification method based on the critical point / Cycle Threshold (CP / CT). The results of gene expression analysis of DREB gene showed that the expression level of the gene was highest obtained at Deep Yellow local corn cultivar, and the lowest one was obtained at the Rubby Brown Cob cultivar. It can be concluded that the expression level of DREB gene of Deep Yellow local corn cultivar was highest than other local corn cultivars and Srikandi variety as a reference variety.

Keywords: expression, level, DREB gene, local corn cultivars, Kisar Island, Maluku

Procedia PDF Downloads 299
22846 Worth of Sick Building Syndrome and Enhance the Quality of Life in Green Building

Authors: Kamyar Kabirifar, Majid Azarniush, Behbood Maashkar

Abstract:

A proper house is a suitable residential area which provides comfort, proper accessibility, security, stability and permanence of structure, enough lighting, Proper initial infrastructures and ventilation for its inhabitants and the most important of all, it should be proportional to the family’s financial power. Saving energy and making optimal usage of it and also taking advantage of stable energies are the bases of green buildings. Making green building will help the health of a person living in it and in its surrounding. It will support the people and provoke their satisfaction. Not only it will bring about the raise of level of the quality of life for building inhabitants, but also it will cause the promotion of quality level of life of the people living in the surrounding area and the society.

Keywords: quality of life, green building, environment pollution, sick building

Procedia PDF Downloads 524
22845 Development of Energy Management System Based on Internet of Things Technique

Authors: Wen-Jye Shyr, Chia-Ming Lin, Hung-Yun Feng

Abstract:

The purpose of this study was to develop an energy management system for university campuses based on the Internet of Things (IoT) technique. The proposed IoT technique based on WebAccess is used via network browser Internet Explore and applies TCP/IP protocol. The case study of IoT for lighting energy usage management system was proposed. Structure of proposed IoT technique included perception layer, equipment layer, control layer, application layer and network layer.

Keywords: energy management, IoT technique, sensor, WebAccess

Procedia PDF Downloads 334
22844 Local Energy and Flexibility Markets to Foster Demand Response Services within the Energy Community

Authors: Eduardo Rodrigues, Gisela Mendes, José M. Torres, José E. Sousa

Abstract:

In the sequence of the liberalisation of the electricity sector a progressive engagement of consumers has been considered and targeted by sector regulatory policies. With the objective of promoting market competition while protecting consumers interests, by transferring some of the upstream benefits to the end users while reaching a fair distribution of system costs, different market models to value consumers’ demand flexibility at the energy community level are envisioned. Local Energy and Flexibility Markets (LEFM) involve stakeholders interested in providing or procure local flexibility for community, services and markets’ value. Under the scope of DOMINOES, a European research project supported by Horizon 2020, the local market concept developed is expected to: • Enable consumers/prosumers empowerment, by allowing them to value their demand flexibility and Distributed Energy Resources (DER); • Value local liquid flexibility to support innovative distribution grid management, e.g., local balancing and congestion management, voltage control and grid restoration; • Ease the wholesale market uptake of DER, namely small-scale flexible loads aggregation as Virtual Power Plants (VPPs), facilitating Demand Response (DR) service provision; • Optimise the management and local sharing of Renewable Energy Sources (RES) in Medium Voltage (MV) and Low Voltage (LV) grids, trough energy transactions within an energy community; • Enhance the development of energy markets through innovative business models, compatible with ongoing policy developments, that promote the easy access of retailers and other service providers to the local markets, allowing them to take advantage of communities’ flexibility to optimise their portfolio and subsequently their participation in external markets. The general concept proposed foresees a flow of market actions, technical validations, subsequent deliveries of energy and/or flexibility and balance settlements. Since the market operation should be dynamic and capable of addressing different requests, either prioritising balancing and prosumer services or system’s operation, direct procurement of flexibility within the local market must also be considered. This paper aims to highlight the research on the definition of suitable DR models to be used by the Distribution System Operator (DSO), in case of technical needs, and by the retailer, mainly for portfolio optimisation and solve unbalances. The models to be proposed and implemented within relevant smart distribution grid and microgrid validation environments, are focused on day-ahead and intraday operation scenarios, for predictive management and near-real-time control respectively under the DSO’s perspective. At local level, the DSO will be able to procure flexibility in advance to tackle different grid constrains (e.g., demand peaks, forecasted voltage and current problems and maintenance works), or during the operating day-to-day, to answer unpredictable constraints (e.g., outages, frequency deviations and voltage problems). Due to the inherent risks of their active market participation retailers may resort to DR models to manage their portfolio, by optimising their market actions and solve unbalances. The interaction among the market actors involved in the DR activation and in flexibility exchange is explained by a set of sequence diagrams for the DR modes of use from the DSO and the energy provider perspectives. • DR for DSO’s predictive management – before the operating day; • DR for DSO’s real-time control – during the operating day; • DR for retailer’s day-ahead operation; • DR for retailer’s intraday operation.

Keywords: demand response, energy communities, flexible demand, local energy and flexibility markets

Procedia PDF Downloads 99
22843 Evaluating Factors Influencing Information Quality in Large Firms

Authors: B. E. Narkhede, S. K. Mahajan, B. T. Patil, R. D. Raut

Abstract:

Information quality is a major performance measure for an Enterprise Resource Planning (ERP) system of any firm. This study identifies various critical success factors of information quality. The effect of various critical success factors like project management, reengineering efforts and interdepartmental communications on information quality is analyzed using a multiple regression model. Here quantitative data are collected from respondents from various firms through structured questionnaire for assessment of the information quality, project management, reengineering efforts and interdepartmental communications. The validity and reliability of the data are ensured using techniques like factor analysis, computing of Cronbach’s alpha. This study gives relative importance of each of the critical success factors. The findings suggest that among the various factors influencing information quality careful reengineering efforts are the most influencing factor. This paper gives clear insight to managers and practitioners regarding the relative importance of critical success factors influencing information quality so that they can formulate a strategy at the beginning of ERP system implementation.

Keywords: Enterprise Resource Planning (ERP), information systems (IS), multiple regression, information quality

Procedia PDF Downloads 333
22842 Feasibility Conditions for Wind and Hydraulic Energy Coupling

Authors: Antonin Jolly, Bertrand Aubry, Corentin Michel, Rebecca Freva

Abstract:

Wind energy depends on wind strength and varies largely in time. When it is above the demand, it generates a loss while in the opposite case; energy needs are not fully satisfied. To overcome this problem specific to irregular energies, the process of pumped-storage hydroelectricity (PSH) is studied in present paper. A combination of wind turbine and pumped storage system is more predictable and is more compliant to provide electricity supply according to daily demand. PSH system is already used in several countries to accumulate electricity by pumping water during off-peak times into a storage reservoir, and to use it during peak times to produce energy. Present work discusses a feasibility study on size and financial productivity of PSH system actuated with wind turbines specific power.

Keywords: wind turbine, hydroelectricity, energy storage, pumped-storage hydroelectricity

Procedia PDF Downloads 379
22841 A Modular Reactor for Thermochemical Energy Storage Examination of Ettringite-Based Materials

Authors: B. Chen, F. Kuznik, M. Horgnies, K. Johannes, V. Morin, E. Gengembre

Abstract:

More attention on renewable energy has been done after the achievement of Paris Agreement against climate change. Solar-based technology is supposed to be one of the most promising green energy technologies for residential buildings since its widely thermal usage for hot water and heating. However, the seasonal mismatch between its production and consumption makes buildings need an energy storage system to improve the efficiency of renewable energy use. Indeed, there exist already different kinds of energy storage systems using sensible or latent heat. With the consideration of energy dissipation during storage and low energy density for above two methods, thermochemical energy storage is then recommended. Recently, ettringite (3CaO∙Al₂O₃∙3CaSO₄∙32H₂O) based materials have been reported as potential thermochemical storage materials because of high energy density (~500 kWh/m³), low material cost (700 €/m³) and low storage temperature (~60-70°C), compared to reported salt hydrates like SrBr₂·6H₂O (42 k€/m³, ~80°C), LaCl₃·7H₂O (38 k€/m³, ~100°C) and MgSO₄·7H₂O (5 k€/m³, ~150°C). Therefore, they have the possibility to be largely used in building sector with being coupled to normal solar panel systems. On the other side, the lack in terms of extensive examination leads to poor knowledge on their thermal properties and limit maturity of this technology. The aim of this work is to develop a modular reactor adapting to thermal characterizations of ettringite-based material particles of different sizes. The filled materials in the reactor can be self-compacted vertically to ensure hot air or humid air goes through homogenously. Additionally, quick assembly and modification of reactor, like LEGO™ plastic blocks, make it suitable to distinct thermochemical energy storage material samples with different weights (from some grams to several kilograms). In our case, quantity of stored and released energy, best work conditions and even chemical durability of ettringite-based materials have been investigated.

Keywords: dehydration, ettringite, hydration, modular reactor, thermochemical energy storage

Procedia PDF Downloads 138
22840 Windcatcher as Sustainable Solution for Natural Ventilation in Hot Arid Regions: A Case Study of Saudi Arabia

Authors: Payam Nejat, Fatemeh Jomehzadeh, Muhamad Zaimi Abd. Majid, Mohd.Badruddin Yusof, Hasrul Haidar Ismail

Abstract:

Currently, building energy consumption has become an international issue especially in developing countries such as Saudi Arabia. In Saudi Arabia 14% of total final energy consumption is utilized in the building sector. Due to hot arid climate, 60% of total building energy consumption in this country is associated with cooling systems. In addition in 2011, this country was one of top ten CO2 emitting countries which illustrate the significance of renewable resources to sustaining the energy consumption. Wind as an important renewable energy can play a prominent role to supply natural ventilation inside the building and windcatcher as a traditional technique can be implemented for this purpose. In this paper the different types of windcatchers, its performance and function was reviewed. It can be concluded due high temperature and low humidity in most area of Saudi Arabia this technique can be successfully be employed and help to reduce fossil energy consumption and related CO2 emissions.

Keywords: natural ventilation, windcatcher, wind, badgir

Procedia PDF Downloads 593
22839 A Sustainable Energy Portfolio for Greater Kampala Metropolitan Area by the Mid-Century

Authors: Ismail Kimuli

Abstract:

With a steadfast economic development, the Greater Kampala metropolitan area (GKMA) faces increasing pressures to increasetheshare of low-carbon electricity in the energy balance, abate CO2 emissions and also restructure the transportation sector for a sustainable 2050. GKMA, is Uganda’s commercial, political, social, and industrial hub with a population of 4.1 million, contributing 60% tothe nation’s GDP and accounts for 80% of Uganda’s industrial sector.However, with the rampant anthropogenic interference that causes climate change, CO2 emissions in the metropolitan are contributing to global warming. Many economies across the globe are addressing this challengethrough development and analysis of sustainable energy portfolios.A sustainable energy portfolio is a low-carbon scenario. The study reviews the literature to establish the current energy management situation of GKMA and finds it wanting in addressing the immediate challenges associated with energy management of the metropolitan. Then, the study develops and examines a sustainable energy portfolio for GKMA using TIMES-VEDA and then presents it as an investigative low-carbon energy scenario that could propel the metropolitan sustainably towards 2050.Sustainability is plausible by optimizing the total primary energy supply, generating low-carbon electricity from hydropower and PV-solar renewables, improving heating technologies for residential & commercial sectors, and switching 90% of land passengers from road to a Kampala metro for a sustainable mid-century.

Keywords: GKMA, sustainability, TIMES-VEDA, low-carbon scenario

Procedia PDF Downloads 107
22838 Sustainable Building Design for Energy Efficiency and Healthier Electromagnetic Environment

Authors: Riadh Habash, Kristina Djukic, Gandhi Habash

Abstract:

Sustainable design is one of the emerging milestones in building construction. This concept is defined as buildings that on a yearly average consume as much energy as they generate using renewable energy sources. Realization of sustainable buildings requires a wide range of technologies, systems and solutions with varying degrees of complexity and sophistication, depending upon the location and surrounding environmental conditions. This paper will address not only the role of the above technologies and solutions but will provide solutions to reduce the electromagnetic fields (EMFs) in the building as much as possible so that the occupiers can recover from electro-hyper-sensitivity, if any. The objective is to maximize energy efficiency, optimize occupant comfort, reduce dependency on the grid and provide safer and healthier EMF environment especially for hypersensitive people. Creative architectural and engineering solutions that capitalize on the design of energy efficient technologies; combined cooling, heating and power (CCHP) microgrid (MG); and EMF mitigation will be presented.

Keywords: sustainable buildings, energy efficiency, thermal simulation, electromagnetic environment

Procedia PDF Downloads 302