Search results for: context-based fuzzy clustering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1254

Search results for: context-based fuzzy clustering

84 Optimization of Manufacturing Process Parameters: An Empirical Study from Taiwan's Tech Companies

Authors: Chao-Ton Su, Li-Fei Chen

Abstract:

The parameter design is crucial to improving the uniformity of a product or process. In the product design stage, parameter design aims to determine the optimal settings for the parameters of each element in the system, thereby minimizing the functional deviations of the product. In the process design stage, parameter design aims to determine the operating settings of the manufacturing processes so that non-uniformity in manufacturing processes can be minimized. The parameter design, trying to minimize the influence of noise on the manufacturing system, plays an important role in the high-tech companies. Taiwan has many well-known high-tech companies, which show key roles in the global economy. Quality remains the most important factor that enables these companies to sustain their competitive advantage. In Taiwan however, many high-tech companies face various quality problems. A common challenge is related to root causes and defect patterns. In the R&D stage, root causes are often unknown, and defect patterns are difficult to classify. Additionally, data collection is not easy. Even when high-volume data can be collected, data interpretation is difficult. To overcome these challenges, high-tech companies in Taiwan use more advanced quality improvement tools. In addition to traditional statistical methods and quality tools, the new trend is the application of powerful tools, such as neural network, fuzzy theory, data mining, industrial engineering, operations research, and innovation skills. In this study, several examples of optimizing the parameter settings for the manufacturing process in Taiwan’s tech companies will be presented to illustrate proposed approach’s effectiveness. Finally, a discussion of using traditional experimental design versus the proposed approach for process optimization will be made.

Keywords: quality engineering, parameter design, neural network, genetic algorithm, experimental design

Procedia PDF Downloads 146
83 RNA-Seq Analysis of the Wild Barley (H. spontaneum) Leaf Transcriptome under Salt Stress

Authors: Ahmed Bahieldin, Ahmed Atef, Jamal S. M. Sabir, Nour O. Gadalla, Sherif Edris, Ahmed M. Alzohairy, Nezar A. Radhwan, Mohammed N. Baeshen, Ahmed M. Ramadan, Hala F. Eissa, Sabah M. Hassan, Nabih A. Baeshen, Osama Abuzinadah, Magdy A. Al-Kordy, Fotouh M. El-Domyati, Robert K. Jansen

Abstract:

Wild salt-tolerant barley (Hordeum spontaneum) is the ancestor of cultivated barley (Hordeum vulgare or H. vulgare). Although the cultivated barley genome is well studied, little is known about genome structure and function of its wild ancestor. In the present study, RNA-Seq analysis was performed on young leaves of wild barley treated with salt (500 mM NaCl) at four different time intervals. Transcriptome sequencing yielded 103 to 115 million reads for all replicates of each treatment, corresponding to over 10 billion nucleotides per sample. Of the total reads, between 74.8 and 80.3% could be mapped and 77.4 to 81.7% of the transcripts were found in the H. vulgare unigene database (unigene-mapped). The unmapped wild barley reads for all treatments and replicates were assembled de novo and the resulting contigs were used as a new reference genome. This resultedin94.3 to 95.3%oftheunmapped reads mapping to the new reference. The number of differentially expressed transcripts was 9277, 3861 of which were uni gene-mapped. The annotated unigene- and de novo-mapped transcripts (5100) were utilized to generate expression clusters across time of salt stress treatment. Two-dimensional hierarchical clustering classified differential expression profiles into nine expression clusters, four of which were selected for further analysis. Differentially expressed transcripts were assigned to the main functional categories. The most important groups were ‘response to external stimulus’ and ‘electron-carrier activity’. Highly expressed transcripts are involved in several biological processes, including electron transport and exchanger mechanisms, flavonoid biosynthesis, reactive oxygen species (ROS) scavenging, ethylene production, signaling network and protein refolding. The comparisons demonstrated that mRNA-Seq is an efficient method for the analysis of differentially expressed genes and biological processes under salt stress.

Keywords: electron transport, flavonoid biosynthesis, reactive oxygen species, rnaseq

Procedia PDF Downloads 393
82 Optimal Pricing Based on Real Estate Demand Data

Authors: Vanessa Kummer, Maik Meusel

Abstract:

Real estate demand estimates are typically derived from transaction data. However, in regions with excess demand, transactions are driven by supply and therefore do not indicate what people are actually looking for. To estimate the demand for housing in Switzerland, search subscriptions from all important Swiss real estate platforms are used. These data do, however, suffer from missing information—for example, many users do not specify how many rooms they would like or what price they would be willing to pay. In economic analyses, it is often the case that only complete data is used. Usually, however, the proportion of complete data is rather small which leads to most information being neglected. Also, the data might have a strong distortion if it is complete. In addition, the reason that data is missing might itself also contain information, which is however ignored with that approach. An interesting issue is, therefore, if for economic analyses such as the one at hand, there is an added value by using the whole data set with the imputed missing values compared to using the usually small percentage of complete data (baseline). Also, it is interesting to see how different algorithms affect that result. The imputation of the missing data is done using unsupervised learning. Out of the numerous unsupervised learning approaches, the most common ones, such as clustering, principal component analysis, or neural networks techniques are applied. By training the model iteratively on the imputed data and, thereby, including the information of all data into the model, the distortion of the first training set—the complete data—vanishes. In a next step, the performances of the algorithms are measured. This is done by randomly creating missing values in subsets of the data, estimating those values with the relevant algorithms and several parameter combinations, and comparing the estimates to the actual data. After having found the optimal parameter set for each algorithm, the missing values are being imputed. Using the resulting data sets, the next step is to estimate the willingness to pay for real estate. This is done by fitting price distributions for real estate properties with certain characteristics, such as the region or the number of rooms. Based on these distributions, survival functions are computed to obtain the functional relationship between characteristics and selling probabilities. Comparing the survival functions shows that estimates which are based on imputed data sets do not differ significantly from each other; however, the demand estimate that is derived from the baseline data does. This indicates that the baseline data set does not include all available information and is therefore not representative for the entire sample. Also, demand estimates derived from the whole data set are much more accurate than the baseline estimation. Thus, in order to obtain optimal results, it is important to make use of all available data, even though it involves additional procedures such as data imputation.

Keywords: demand estimate, missing-data imputation, real estate, unsupervised learning

Procedia PDF Downloads 289
81 Phenotypic Diversity of the Tomato Germplasm from the Lazio Region in Central Italy, with a Case Study on Molecular Distinctiveness

Authors: Barbara Farinon, Maurizio E. Picarella, Lorenzo Mancini, Andrea Mazzucato

Abstract:

Italy is notoriously a secondary center of diversification for cultivated tomatoes (Solanum lycopersicum L.). The study of phenotypic and genetic diversity in landrace collections is important for germplasm conservation and biodiversity protection. Here, we set up to study the germplasm collected in the region of Lazio in Central Italy with a focus on the distinctiveness among landraces and the attribution of membership to unnamed accessions. Our regional collection included 30 accessions belonging to six different locally recognized landraces and 21 unnamed accessions. All accessions were gathered in Lazio and belonged to the collection held at the Regional Agency for the Development and Innovation of Agriculture in Lazio (ARSIAL, in the application of the Regional Act n. 15/2000, funded by Lazio Rural Development Plan 2014 – 2020 Agro-environmental Measure, Action 10.2.1) and at the University of Tuscia. We included 13 control genotypes as references. The collection showed wide phenotypic variability for several traits, such as fruit weight (range 14-277 g), locule number (2-12), shape index (0.54-2.65), yield (0.24-3.08 kg/plant), and soluble solids (3.4-7.5 °B). A few landraces showed uncommon phenotypes, such as potato leaf, colorless fruit epidermis, or delayed ripening. Multivariate analysis of 25 cardinal phenotypic variables grouped the named varieties and allowed to assign of some of the unnamed to recognized groups. A case study for distinctiveness is presented for the flattened-ribbed types that presented overlapping distribution according to the phenotypic data. Molecular markers retrieved by previous studies revealed differences compared to the phenotyping clustering, indicating that the named varieties “Scatolone di Bolsena” and “Pantano Romanesco” belong to the Marmande group, together with the reference landrace from Tuscany “Costoluto Fiorentino”. Differently, the landrace “Spagnoletta di Formia e Gaeta” was clearly distinct from the former at the molecular level. Therefore, a genotypic analysis of the analyzed collection appears needed to better define the molecular distinctiveness among the flattened-ribbed accessions, as well as to properly attribute the membership group of the unnamed accessions.

Keywords: distinctiveness, flattened-ribbed fruits, regional landraces, tomato

Procedia PDF Downloads 139
80 Comprehensive Longitudinal Multi-omic Profiling in Weight Gain and Insulin Resistance

Authors: Christine Y. Yeh, Brian D. Piening, Sarah M. Totten, Kimberly Kukurba, Wenyu Zhou, Kevin P. F. Contrepois, Gucci J. Gu, Sharon Pitteri, Michael Snyder

Abstract:

Three million deaths worldwide are attributed to obesity. However, the biomolecular mechanisms that describe the link between adiposity and subsequent disease states are poorly understood. Insulin resistance characterizes approximately half of obese individuals and is a major cause of obesity-mediated diseases such as Type II diabetes, hypertension and other cardiovascular diseases. This study makes use of longitudinal quantitative and high-throughput multi-omics (genomics, epigenomics, transcriptomics, glycoproteomics etc.) methodologies on blood samples to develop multigenic and multi-analyte signatures associated with weight gain and insulin resistance. Participants of this study underwent a 30-day period of weight gain via excessive caloric intake followed by a 60-day period of restricted dieting and return to baseline weight. Blood samples were taken at three different time points per patient: baseline, peak-weight and post weight loss. Patients were characterized as either insulin resistant (IR) or insulin sensitive (IS) before having their samples processed via longitudinal multi-omic technologies. This comparative study revealed a wealth of biomolecular changes associated with weight gain after using methods in machine learning, clustering, network analysis etc. Pathways of interest included those involved in lipid remodeling, acute inflammatory response and glucose metabolism. Some of these biomolecules returned to baseline levels as the patient returned to normal weight whilst some remained elevated. IR patients exhibited key differences in inflammatory response regulation in comparison to IS patients at all time points. These signatures suggest differential metabolism and inflammatory pathways between IR and IS patients. Biomolecular differences associated with weight gain and insulin resistance were identified on various levels: in gene expression, epigenetic change, transcriptional regulation and glycosylation. This study was not only able to contribute to new biology that could be of use in preventing or predicting obesity-mediated diseases, but also matured novel biomedical informatics technologies to produce and process data on many comprehensive omics levels.

Keywords: insulin resistance, multi-omics, next generation sequencing, proteogenomics, type ii diabetes

Procedia PDF Downloads 429
79 The Application of Dynamic Network Process to Environment Planning Support Systems

Authors: Wann-Ming Wey

Abstract:

In recent years, in addition to face the external threats such as energy shortages and climate change, traffic congestion and environmental pollution have become anxious problems for many cities. Considering private automobile-oriented urban development had produced many negative environmental and social impacts, the transit-oriented development (TOD) has been considered as a sustainable urban model. TOD encourages public transport combined with friendly walking and cycling environment designs, however, non-motorized modes help improving human health, energy saving, and reducing carbon emissions. Due to environmental changes often affect the planners’ decision-making; this research applies dynamic network process (DNP) which includes the time dependent concept to promoting friendly walking and cycling environmental designs as an advanced planning support system for environment improvements. This research aims to discuss what kinds of design strategies can improve a friendly walking and cycling environment under TOD. First of all, we collate and analyze environment designing factors by reviewing the relevant literatures as well as divide into three aspects of “safety”, “convenience”, and “amenity” from fifteen environment designing factors. Furthermore, we utilize fuzzy Delphi Technique (FDT) expert questionnaire to filter out the more important designing criteria for the study case. Finally, we utilized DNP expert questionnaire to obtain the weights changes at different time points for each design criterion. Based on the changing trends of each criterion weight, we are able to develop appropriate designing strategies as the reference for planners to allocate resources in a dynamic environment. In order to illustrate the approach we propose in this research, Taipei city as one example has been used as an empirical study, and the results are in depth analyzed to explain the application of our proposed approach.

Keywords: environment planning support systems, walking and cycling, transit-oriented development (TOD), dynamic network process (DNP)

Procedia PDF Downloads 345
78 Research on the Ecological Impact Evaluation Index System of Transportation Construction Projects

Authors: Yu Chen, Xiaoguang Yang, Lin Lin

Abstract:

Traffic engineering construction is an important infrastructure for economic and social development. In the process of construction and operation, the ability to make a correct evaluation of the project's environmental impact appears to be crucial to the rational operation of existing transportation projects, the correct development of transportation engineering construction and the adoption of corresponding measures to scientifically carry out environmental protection work. Most of the existing research work on ecological and environmental impact assessment is limited to individual aspects of the environment and less to the overall evaluation of the environmental system; in terms of research conclusions, there are more qualitative analyses from the technical and policy levels, and there is a lack of quantitative research results and quantitative and operable evaluation models. In this paper, a comprehensive analysis of the ecological and environmental impacts of transportation construction projects is conducted, and factors such as the accessibility of data and the reliability of calculation results are comprehensively considered to extract indicators that can reflect the essence and characteristics. The qualitative evaluation indicators were screened using the expert review method, the qualitative indicators were measured using the fuzzy statistics method, the quantitative indicators were screened using the principal component analysis method, and the quantitative indicators were measured by both literature search and calculation. An environmental impact evaluation index system with the general objective layer, sub-objective layer and indicator layer was established, dividing the environmental impact of the transportation construction project into two periods: the construction period and the operation period. On the basis of the evaluation index system, the index weights are determined using the hierarchical analysis method, and the individual indicators to be evaluated are dimensionless, eliminating the influence of the original background and meaning of the indicators. Finally, the thesis uses the above research results, combined with the actual engineering practice, to verify the correctness and operability of the evaluation method.

Keywords: transportation construction projects, ecological and environmental impact, analysis and evaluation, indicator evaluation system

Procedia PDF Downloads 108
77 A Construction Management Tool: Determining a Project Schedule Typical Behaviors Using Cluster Analysis

Authors: Natalia Rudeli, Elisabeth Viles, Adrian Santilli

Abstract:

Delays in the construction industry are a global phenomenon. Many construction projects experience extensive delays exceeding the initially estimated completion time. The main purpose of this study is to identify construction projects typical behaviors in order to develop a prognosis and management tool. Being able to know a construction projects schedule tendency will enable evidence-based decision-making to allow resolutions to be made before delays occur. This study presents an innovative approach that uses Cluster Analysis Method to support predictions during Earned Value Analyses. A clustering analysis was used to predict future scheduling, Earned Value Management (EVM), and Earned Schedule (ES) principal Indexes behaviors in construction projects. The analysis was made using a database with 90 different construction projects. It was validated with additional data extracted from literature and with another 15 contrasting projects. For all projects, planned and executed schedules were collected and the EVM and ES principal indexes were calculated. A complete linkage classification method was used. In this way, the cluster analysis made considers that the distance (or similarity) between two clusters must be measured by its most disparate elements, i.e. that the distance is given by the maximum span among its components. Finally, through the use of EVM and ES Indexes and Tukey and Fisher Pairwise Comparisons, the statistical dissimilarity was verified and four clusters were obtained. It can be said that construction projects show an average delay of 35% of its planned completion time. Furthermore, four typical behaviors were found and for each of the obtained clusters, the interim milestones and the necessary rhythms of construction were identified. In general, detected typical behaviors are: (1) Projects that perform a 5% of work advance in the first two tenths and maintain a constant rhythm until completion (greater than 10% for each remaining tenth), being able to finish on the initially estimated time. (2) Projects that start with an adequate construction rate but suffer minor delays culminating with a total delay of almost 27% of the planned time. (3) Projects which start with a performance below the planned rate and end up with an average delay of 64%, and (4) projects that begin with a poor performance, suffer great delays and end up with an average delay of a 120% of the planned completion time. The obtained clusters compose a tool to identify the behavior of new construction projects by comparing their current work performance to the validated database, thus allowing the correction of initial estimations towards more accurate completion schedules.

Keywords: cluster analysis, construction management, earned value, schedule

Procedia PDF Downloads 266
76 The Extent of Virgin Olive-Oil Prices' Distribution Revealing the Behavior of Market Speculators

Authors: Fathi Abid, Bilel Kaffel

Abstract:

The olive tree, the olive harvest during winter season and the production of olive oil better known by professionals under the name of the crushing operation have interested institutional traders such as olive-oil offices and private companies such as food industry refining and extracting pomace olive oil as well as export-import public and private companies specializing in olive oil. The major problem facing producers of olive oil each winter campaign, contrary to what is expected, it is not whether the harvest will be good or not but whether the sale price will allow them to cover production costs and achieve a reasonable margin of profit or not. These questions are entirely legitimate if we judge by the importance of the issue and the heavy complexity of the uncertainty and competition made tougher by a high level of indebtedness and the experience and expertise of speculators and producers whose objectives are sometimes conflicting. The aim of this paper is to study the formation mechanism of olive oil prices in order to learn about speculators’ behavior and expectations in the market, how they contribute by their industry knowledge and their financial alliances and the size the financial challenge that may be involved for them to build private information hoses globally to take advantage. The methodology used in this paper is based on two stages, in the first stage we study econometrically the formation mechanisms of olive oil price in order to understand the market participant behavior by implementing ARMA, SARMA, GARCH and stochastic diffusion processes models, the second stage is devoted to prediction purposes, we use a combined wavelet- ANN approach. Our main findings indicate that olive oil market participants interact with each other in a way that they promote stylized facts formation. The unstable participant’s behaviors create the volatility clustering, non-linearity dependent and cyclicity phenomena. By imitating each other in some periods of the campaign, different participants contribute to the fat tails observed in the olive oil price distribution. The best prediction model for the olive oil price is based on a back propagation artificial neural network approach with input information based on wavelet decomposition and recent past history.

Keywords: olive oil price, stylized facts, ARMA model, SARMA model, GARCH model, combined wavelet-artificial neural network, continuous-time stochastic volatility mode

Procedia PDF Downloads 340
75 Risk Assessment of Natural Gas Pipelines in Coal Mined Gobs Based on Bow-Tie Model and Cloud Inference

Authors: Xiaobin Liang, Wei Liang, Laibin Zhang, Xiaoyan Guo

Abstract:

Pipelines pass through coal mined gobs inevitably in the mining area, the stability of which has great influence on the safety of pipelines. After extensive literature study and field research, it was found that there are a few risk assessment methods for coal mined gob pipelines, and there is a lack of data on the gob sites. Therefore, the fuzzy comprehensive evaluation method is widely used based on expert opinions. However, the subjective opinions or lack of experience of individual experts may lead to inaccurate evaluation results. Hence the accuracy of the results needs to be further improved. This paper presents a comprehensive approach to achieve this purpose by combining bow-tie model and cloud inference. The specific evaluation process is as follows: First, a bow-tie model composed of a fault tree and an event tree is established to graphically illustrate the probability and consequence indicators of pipeline failure. Second, the interval estimation method can be scored in the form of intervals to improve the accuracy of the results, and the censored mean algorithm is used to remove the maximum and minimum values of the score to improve the stability of the results. The golden section method is used to determine the weight of the indicators and reduce the subjectivity of index weights. Third, the failure probability and failure consequence scores of the pipeline are converted into three numerical features by using cloud inference. The cloud inference can better describe the ambiguity and volatility of the results which can better describe the volatility of the risk level. Finally, the cloud drop graphs of failure probability and failure consequences can be expressed, which intuitively and accurately illustrate the ambiguity and randomness of the results. A case study of a coal mine gob pipeline carrying natural gas has been investigated to validate the utility of the proposed method. The evaluation results of this case show that the probability of failure of the pipeline is very low, the consequences of failure are more serious, which is consistent with the reality.

Keywords: bow-tie model, natural gas pipeline, coal mine gob, cloud inference

Procedia PDF Downloads 251
74 The Relationship between Violence against Women in the Family and Common Mental Disorders in Urban Informal Settlements of Mumbai, India: A Cross-Sectional Study

Authors: Abigail Bentley, Audrey Prost, Nayreen Daruwalla, Apoorwa Gupta, David Osrin

Abstract:

BACKGROUND: Intimate partner violence (IPV) can impact a woman’s physical, reproductive and mental health, including common mental disorders such as anxiety and depression. However, people other than an intimate partner may also perpetrate violence against women in the family, particularly in India. This study aims to investigate the relationship between experiences of violence perpetrated by the husband and other members of the wider household and symptoms of common mental disorders in women residing in informal settlement (slum) areas of Mumbai. METHODS: Experiences of violence were assessed through a detailed cross-sectional survey of 598 women, including questions about specific acts of emotional, economic, physical and sexual violence across different time points in the woman’s life and the main perpetrator of each act. Symptoms of common mental disorders were assessed using the 12-item General Health Questionnaire (GHQ-12). The GHQ-12 scores were divided into four groups and the relationship between experiences of each type of violence in the last 12 months and GHQ-12 score group was analyzed using ordinal logistic regression, adjusted for the woman’s age and clustering. RESULTS: 482 (81%) women consented to interview. On average, they were 28.5 years old, had completed 7 years of education and had been married 9 years. 88% were Muslim and 47% lived in joint and 53% in nuclear families. 44% of women had experienced at least one act of violence in their lifetime (33% emotional, 22% economic, 23% physical, 12% sexual). 7% had a high GHQ-12 score (6 or above). For violence experiences in the last 12 months, the odds of being in the highest GHQ-12 score group versus the lower groups combined were 13.1 for emotional violence, 6.5 for economic, 5.7 for physical and 6.3 for sexual (p<0.001 for all outcomes). DISCUSSION: The high level of violence reported across the lifetime could be due to the detailed assessment of violent acts at multiple time points and the inclusion of perpetrators within the family other than the husband. Each type of violence was associated with greater odds of a higher GHQ-12 score and therefore more symptoms of common mental disorders. Emotional violence was far more strongly associated with symptoms of common mental disorders than physical or sexual violence. However, it is not possible to attribute causal directionality to the association. Further work to investigate the relationship between differing severity of violence experiences and women’s mental health and the components of emotional violence that make it so strongly associated with symptoms of common mental disorders would be beneficial.

Keywords: common mental disorders, family violence, India, informal settlements, mental health, violence against women

Procedia PDF Downloads 360
73 Using Serious Games to Integrate the Potential of Mass Customization into the Fuzzy Front-End of New Product Development

Authors: Michael N. O'Sullivan, Con Sheahan

Abstract:

Mass customization is the idea of offering custom products or services to satisfy the needs of each individual customer while maintaining the efficiency of mass production. Technologies like 3D printing and artificial intelligence have many start-ups hoping to capitalize on this dream of creating personalized products at an affordable price, and well established companies scrambling to innovate and maintain their market share. However, the majority of them are failing as they struggle to understand one key question – where does customization make sense? Customization and personalization only make sense where the value of the perceived benefit outweighs the cost to implement it. In other words, will people pay for it? Looking at the Kano Model makes it clear that it depends on the product. In products where customization is an inherent need, like prosthetics, mass customization technologies can be highly beneficial. However, for products that already sell as a standard, like headphones, offering customization is likely only an added bonus, and so the product development team must figure out if the customers’ perception of the added value of this feature will outweigh its premium price tag. This can be done through the use of a ‘serious game,’ whereby potential customers are given a limited budget to collaboratively buy and bid on potential features of the product before it is developed. If the group choose to buy customization over other features, then the product development team should implement it into their design. If not, the team should prioritize the features on which the customers have spent their budget. The level of customization purchased can also be translated to an appropriate production method, for example, the most expensive type of customization would likely be free-form design and could be achieved through digital fabrication, while a lower level could be achieved through short batch production. Twenty-five teams of final year students from design, engineering, construction and technology tested this methodology when bringing a product from concept through to production specification, and found that it allowed them to confidently decide what level of customization, if any, would be worth offering for their product, and what would be the best method of producing it. They also found that the discussion and negotiations between players during the game led to invaluable insights, and often decided to play a second game where they offered customers the option to buy the various customization ideas that had been discussed during the first game.

Keywords: Kano model, mass customization, new product development, serious game

Procedia PDF Downloads 136
72 Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data

Authors: M. Kharrat, G. Moreau, Z. Aboura

Abstract:

The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals.

Keywords: acoustic emission, classifier, damage mechanisms, first damage threshold, interlock composite materials, pattern recognition

Procedia PDF Downloads 156
71 Robust Electrical Segmentation for Zone Coherency Delimitation Base on Multiplex Graph Community Detection

Authors: Noureddine Henka, Sami Tazi, Mohamad Assaad

Abstract:

The electrical grid is a highly intricate system designed to transfer electricity from production areas to consumption areas. The Transmission System Operator (TSO) is responsible for ensuring the efficient distribution of electricity and maintaining the grid's safety and quality. However, due to the increasing integration of intermittent renewable energy sources, there is a growing level of uncertainty, which requires a faster responsive approach. A potential solution involves the use of electrical segmentation, which involves creating coherence zones where electrical disturbances mainly remain within the zone. Indeed, by means of coherent electrical zones, it becomes possible to focus solely on the sub-zone, reducing the range of possibilities and aiding in managing uncertainty. It allows faster execution of operational processes and easier learning for supervised machine learning algorithms. Electrical segmentation can be applied to various applications, such as electrical control, minimizing electrical loss, and ensuring voltage stability. Since the electrical grid can be modeled as a graph, where the vertices represent electrical buses and the edges represent electrical lines, identifying coherent electrical zones can be seen as a clustering task on graphs, generally called community detection. Nevertheless, a critical criterion for the zones is their ability to remain resilient to the electrical evolution of the grid over time. This evolution is due to the constant changes in electricity generation and consumption, which are reflected in graph structure variations as well as line flow changes. One approach to creating a resilient segmentation is to design robust zones under various circumstances. This issue can be represented through a multiplex graph, where each layer represents a specific situation that may arise on the grid. Consequently, resilient segmentation can be achieved by conducting community detection on this multiplex graph. The multiplex graph is composed of multiple graphs, and all the layers share the same set of vertices. Our proposal involves a model that utilizes a unified representation to compute a flattening of all layers. This unified situation can be penalized to obtain (K) connected components representing the robust electrical segmentation clusters. We compare our robust segmentation to the segmentation based on a single reference situation. The robust segmentation proves its relevance by producing clusters with high intra-electrical perturbation and low variance of electrical perturbation. We saw through the experiences when robust electrical segmentation has a benefit and in which context.

Keywords: community detection, electrical segmentation, multiplex graph, power grid

Procedia PDF Downloads 79
70 MicroRNA-1246 Expression Associated with Resistance to Oncogenic BRAF Inhibitors in Mutant BRAF Melanoma Cells

Authors: Jae-Hyeon Kim, Michael Lee

Abstract:

Intrinsic and acquired resistance limits the therapeutic benefits of oncogenic BRAF inhibitors in melanoma. MicroRNAs (miRNA) regulate the expression of target mRNAs by repressing their translation. Thus, we investigated miRNA expression patterns in melanoma cell lines to identify candidate biomarkers for acquired resistance to BRAF inhibitor. Here, we used Affymetrix miRNA V3.0 microarray profiling platform to compare miRNA expression levels in three cell lines containing BRAF inhibitor-sensitive A375P BRAF V600E cells, their BRAF inhibitor-resistant counterparts (A375P/Mdr), and SK-MEL-2 BRAF-WT cells with intrinsic resistance to BRAF inhibitor. The miRNAs with at least a two-fold change in expression between BRAF inhibitor-sensitive and –resistant cell lines, were identified as differentially expressed. Averaged intensity measurements identified 138 and 217 miRNAs that were differentially expressed by 2 fold or more between: 1) A375P and A375P/Mdr; 2) A375P and SK-MEL-2, respectively. The hierarchical clustering revealed differences in miRNA expression profiles between BRAF inhibitor-sensitive and –resistant cell lines for miRNAs involved in intrinsic and acquired resistance to BRAF inhibitor. In particular, 43 miRNAs were identified whose expression was consistently altered in two BRAF inhibitor-resistant cell lines, regardless of intrinsic and acquired resistance. Twenty five miRNAs were consistently upregulated and 18 downregulated more than 2-fold. Although some discrepancies were detected when miRNA microarray data were compared with qPCR-measured expression levels, qRT-PCR for five miRNAs (miR-3617, miR-92a1, miR-1246, miR-1936-3p, and miR-17-3p) results showed excellent agreement with microarray experiments. To further investigate cellular functions of miRNAs, we examined effects on cell proliferation. Synthetic oligonucleotide miRNA mimics were transfected into three cell lines, and proliferation was quantified using a colorimetric assay. Of the 5 miRNAs tested, only miR-1246 altered cell proliferation of A375P/Mdr cells. The transfection of miR-1246 mimic strongly conferred PLX-4720 resistance to A375P/Mdr cells, implying that miR-1246 upregulation confers acquired resistance to BRAF inhibition. We also found that PLX-4720 caused much greater G2/M arrest in A375P/Mdr cells transfected with miR-1246mimic than that seen in scrambled RNA-transfected cells. Additionally, miR-1246 mimic partially caused a resistance to autophagy induction by PLX-4720. These results indicate that autophagy does play an essential death-promoting role inPLX-4720-induced cell death. Taken together, these results suggest that miRNA expression profiling in melanoma cells can provide valuable information for a network of BRAF inhibitor resistance-associated miRNAs.

Keywords: microRNA, BRAF inhibitor, drug resistance, autophagy

Procedia PDF Downloads 327
69 “A Watched Pot Never Boils.” Exploring the Impact of Job Autonomy on Organizational Commitment among New Employees: A Comprehensive Study of How Empowerment and Independence Influence Workplace Loyalty and Engagement in Early Career Stages

Authors: Atnafu Ashenef Wondim

Abstract:

In today’s highly competitive business environment, employees are considered a source of competitive advantage. Researchers have looked into job autonomy's effect on organizational commitment and declared superior organizational performance strongly depends on the effort and commitment of employees. The purpose of this study was to explore the relationship between job autonomy and organizational commitment from newcomer’s point of view. The mediation role of employee engagement (physical, emotional, and cognitive) was also examined in the case of Ethiopian Commercial Banks. An exploratory survey research design with mixed-method approach that included partial least squares structural equation modeling and Fuzzy-Set Qualitative Comparative Analysis technique were using to address the sample size of 348 new employees. In-depth interviews with purposive and convenientsampling techniques are conducted with new employees (n=43). The results confirmed that job autonomy had positive, significant direct effects on physical engagement, emotional engagement, and cognitive engagement (path coeffs. = 0.874, 0.931, and 0.893).The results showed thatthe employee engagement driver, physical engagement, had a positive significant influence on affective commitment (path coeff. = 0.187) and normative commitment (path coeff. = 0.512) but no significant effect on continuance commitment. Employee engagement partially mediates the relationship between job autonomy and organizational commitment, which means supporting the indirect effects of job autonomy on affective, continuance, and normative commitment through physical engagement. The findings of this study add new perspectives by positioning it within a complex organizational African setting and by expanding the job autonomy and organizational commitment literature, which will benefit future research. Much of the literature on job autonomy and organizational commitment has been conducted within a well-established organizational business context in Western developed countries.The findings lead to fresh information on job autonomy and organizational commitment implementation enablers that can assist in the formulation of a better policy/strategy to efficiently adopt job autonomy and organizational commitment.

Keywords: employee engagement, job autonomy, organizational commitment, social exchange theory

Procedia PDF Downloads 33
68 Applying GIS Geographic Weighted Regression Analysis to Assess Local Factors Impeding Smallholder Farmers from Participating in Agribusiness Markets: A Case Study of Vihiga County, Western Kenya

Authors: Mwehe Mathenge, Ben G. J. S. Sonneveld, Jacqueline E. W. Broerse

Abstract:

Smallholder farmers are important drivers of agriculture productivity, food security, and poverty reduction in Sub-Saharan Africa. However, they are faced with myriad challenges in their efforts at participating in agribusiness markets. How the geographic explicit factors existing at the local level interact to impede smallholder farmers' decision to participates (or not) in agribusiness markets is not well understood. Deconstructing the spatial complexity of the local environment could provide a deeper insight into how geographically explicit determinants promote or impede resource-poor smallholder farmers from participating in agribusiness. This paper’s objective was to identify, map, and analyze local spatial autocorrelation in factors that impede poor smallholders from participating in agribusiness markets. Data were collected using geocoded researcher-administered survey questionnaires from 392 households in Western Kenya. Three spatial statistics methods in geographic information system (GIS) were used to analyze data -Global Moran’s I, Cluster and Outliers Analysis (Anselin Local Moran’s I), and geographically weighted regression. The results of Global Moran’s I reveal the presence of spatial patterns in the dataset that was not caused by spatial randomness of data. Subsequently, Anselin Local Moran’s I result identified spatially and statistically significant local spatial clustering (hot spots and cold spots) in factors hindering smallholder participation. Finally, the geographically weighted regression results unearthed those specific geographic explicit factors impeding market participation in the study area. The results confirm that geographically explicit factors are indispensable in influencing the smallholder farming decisions, and policymakers should take cognizance of them. Additionally, this research demonstrated how geospatial explicit analysis conducted at the local level, using geographically disaggregated data, could help in identifying households and localities where the most impoverished and resource-poor smallholder households reside. In designing spatially targeted interventions, policymakers could benefit from geospatial analysis methods in understanding complex geographic factors and processes that interact to influence smallholder farmers' decision-making processes and choices.

Keywords: agribusiness markets, GIS, smallholder farmers, spatial statistics, disaggregated spatial data

Procedia PDF Downloads 139
67 Magnetic Navigation in Underwater Networks

Authors: Kumar Divyendra

Abstract:

Underwater Sensor Networks (UWSNs) have wide applications in areas such as water quality monitoring, marine wildlife management etc. A typical UWSN system consists of a set of sensors deployed randomly underwater which communicate with each other using acoustic links. RF communication doesn't work underwater, and GPS too isn't available underwater. Additionally Automated Underwater Vehicles (AUVs) are deployed to collect data from some special nodes called Cluster Heads (CHs). These CHs aggregate data from their neighboring nodes and forward them to the AUVs using optical links when an AUV is in range. This helps reduce the number of hops covered by data packets and helps conserve energy. We consider the three-dimensional model of the UWSN. Nodes are initially deployed randomly underwater. They attach themselves to the surface using a rod and can only move upwards or downwards using a pump and bladder mechanism. We use graph theory concepts to maximize the coverage volume while every node maintaining connectivity with at least one surface node. We treat the surface nodes as landmarks and each node finds out its hop distance from every surface node. We treat these hop-distances as coordinates and use them for AUV navigation. An AUV intending to move closer to a node with given coordinates moves hop by hop through nodes that are closest to it in terms of these coordinates. In absence of GPS, multiple different approaches like Inertial Navigation System (INS), Doppler Velocity Log (DVL), computer vision-based navigation, etc., have been proposed. These systems have their own drawbacks. INS accumulates error with time, vision techniques require prior information about the environment. We propose a method that makes use of the earth's magnetic field values for navigation and combines it with other methods that simultaneously increase the coverage volume under the UWSN. The AUVs are fitted with magnetometers that measure the magnetic intensity (I), horizontal inclination (H), and Declination (D). The International Geomagnetic Reference Field (IGRF) is a mathematical model of the earth's magnetic field, which provides the field values for the geographical coordinateson earth. Researchers have developed an inverse deep learning model that takes the magnetic field values and predicts the location coordinates. We make use of this model within our work. We combine this with with the hop-by-hop movement described earlier so that the AUVs move in such a sequence that the deep learning predictor gets trained as quickly and precisely as possible We run simulations in MATLAB to prove the effectiveness of our model with respect to other methods described in the literature.

Keywords: clustering, deep learning, network backbone, parallel computing

Procedia PDF Downloads 99
66 Retrieving Iconometric Proportions of South Indian Sculptures Based on Statistical Analysis

Authors: M. Bagavandas

Abstract:

Introduction: South Indian stone sculptures are known for their elegance and history. They are available in large numbers in different monuments situated different parts of South India. These art pieces have been studied using iconography details, but this pioneering study introduces a novel method known as iconometry which is a quantitative study that deals with measurements of different parts of icons to find answers for important unanswered questions. The main aim of this paper is to compare iconometric measurements of the sculptures with canonical proportion to determine whether the sculptors of the past had followed any of the canonical proportions prescribed in the ancient text. If not, this study recovers the proportions used for carving sculptures which is not available to us now. Also, it will be interesting to see how these sculptural proportions of different monuments belonging to different dynasties differ from one another in terms these proportions. Methods and Materials: As Indian sculptures are depicted in different postures, one way of making measurements independent of size, is to decode on a suitable measurement and convert the other measurements as proportions with respect to the chosen measurement. Since in all canonical texts of Indian art, all different measurements are given in terms of face length, it is chosen as the required measurement for standardizing the measurements. In order to compare these facial measurements with measurements prescribed in Indian canons of Iconography, the ten facial measurements like face length, morphological face length, nose length, nose-to-chin length, eye length, lip length, face breadth, nose breadth, eye breadth and lip breadth were standardized using the face length and the number of measurements reduced to nine. Each measurement was divided by the corresponding face length and multiplied by twelve and given in angula unit used in the canonical texts. The reason for multiplying by twelve is that the face length is given as twelve angulas in the canonical texts for all figures. Clustering techniques were used to determine whether the sculptors of the past had followed any of the proportions prescribed in the canonical texts of the past to carve sculptures and also to compare the proportions of sculptures of different monuments. About one hundred twenty-seven stone sculptures from four monuments belonging to the Pallava, the Chola, the Pandya and the Vijayanagar dynasties were taken up for this study. These art pieces belong to a period ranging from the eighth to the sixteenth century A.D. and all of them adorning different monuments situated in different parts of Tamil Nadu State, South India. Anthropometric instruments were used for taking measurements and the author himself had measured all the sample pieces of this study. Result: Statistical analysis of sculptures of different centers of art from different dynasties shows a considerable difference in facial proportions and many of these proportions differ widely from the canonical proportions. The retrieved different facial proportions indicate that the definition of beauty has been changing from period to period and region to region.

Keywords: iconometry, proportions, sculptures, statistics

Procedia PDF Downloads 154
65 Clustering Locations of Textile and Garment Industries to Compare with the Future Industrial Cluster in Thailand

Authors: Kanogkan Leerojanaprapa

Abstract:

Textile and garment industry is used to a major exporting industry of Thailand. According to lacking of the nation's price-competitiveness by stopping the EU's GSP (Generalised Scheme of Preferences) and ‘Nationwide Minimum Wage Policy’ that Thailand’s employers must pay all employees at least 300 baht (about $10) a day, the supply chains of the Thai textile and garment industry is affected and need to be reformed. Therefore, either Thai textile or garment industry will be existed or not would be concerned. This is also challenged for the government to decide which industries should be promoted the future industries of Thailand. Recently Thai government launch The Cluster-based Special Economic Development Zones Policy for promoting business cluster (effect on September 16, 2015). They define a cluster as the concentration of interconnected businesses and related institutions that operate within the same geographic areas and textiles and garment is one of target industrial clusters and 9 provinces are targeted (Bangkok, Kanchanaburi, Nakhon Pathom, Ratchaburi, Samut Sakhon, Chonburi, Chachoengsao, Prachinburi, and Sa Kaeo). The cluster zone are defined to link west-east corridor connected to manufacturing source in Cambodia and Mynmar to Bangkok where are promoted to be design, sourcing, and trading hub. The Thai government will provide tax and non-tax incentives for targeted industries within the clusters and expects these businesses are scattered to where they can get the most benefit which will identify future industrial cluster. This research will show the difference between the current cluster and future cluster following the target provinces of the textile and garment. The current cluster is analysed from secondary data. The four characteristics of the numbers of plants in Spinning, weaving and finishing of textiles, Manufacture of made-up textile articles, except apparel, Manufacture of knitted and crocheted fabrics, and Manufacture of other textiles, not elsewhere classified in particular 77 provinces (in total) are clustered by K-means cluster analysis and Hierarchical Cluster Analysis. In addition, the cluster can be confirmed and showed which variables contribute the most to defined cluster solution with ANOVA test. The results of analysis can identify 22 provinces (which the textile or garment plants are located) into 3 clusters. Plants in cluster 1 tend to be large numbers of plants which is only Bangkok, Next plants in cluster 2 tend to be moderate numbers of plants which are Samut Prakan, Samut Sakhon and Nakhon Pathom. Finally plants in cluster 3 tend to be little numbers of plants which are other 18 provinces. The same methodology can be implemented in other industries for future study.

Keywords: ANOVA, hierarchical cluster analysis, industrial clusters, K -means cluster analysis, textile and garment industry

Procedia PDF Downloads 213
64 Spatial Economic Attributes of O. R. Tambo Airport, South Africa

Authors: Masilonyane Mokhele

Abstract:

Across the world, different planning models of the so-called airport-led developments are becoming bandwagons hailed as key to the future of cities. However, in the existing knowledge, there is paucity of empirically informed description and explanation of the economic fundamentals driving the forces of attraction of airports. This void is arguably a result of the absence of an appropriate theoretical framework to guide the analyses. Given this paucity, the aim of the paper is to contribute towards a theoretical framework that could be used to describe and explain forces that drive the location and mix of airport-centric developments. Towards achieving this aim, the objectives of the paper are: one, to establish the type of economic activities that are located on and around O.R. Tambo International Airport (ORTIA), and analyse the reasons for locating there; two, to establish changes that have occurred over time in the form of the airport-centric development of ORTIA; three, to identify the propulsive economic qualities of ORTIA; four, to analyse the spatial, economic and structural linkages within the airport-centric development of ORTIA, between the airport-centric development and the airport, as well as the airport-centric development’s linkages with their metropolitan area and other regional, national and international airport-centric developments and locations. To address the objectives above, the study adopted a case study approach, centred on ORTIA in South Africa: Africa’s busiest airport in terms of passengers and airfreight handled. Using a lens of location theory, a survey was adopted as a main research method, wherein telephonic interviews were conducted with a representative number of firms on and around ORTIA. Other data collection methods encompassed in-depth qualitative interviews (to augment the information obtained through the survey) and analysis of secondary information, particularly as regards establishing changes that have occurred in the form of ORTIA and surrounds. From the empirical findings, ORTIA was discovered to have propulsive economic qualities that act as significant forces of attraction in the clustering of firms. Together with its airport-centric development, ORTIA was discovered to have growth pole properties because of the linkages that occur within the study area, and the linkages that exist between the airport-centric firms and the airport. It was noted that the transport-oriented firms (typified by couriers and freight carriers) act as anchors in some fellow airport-centric firms making use of elements of urbanisation economies, particularly as regards the use of the airport for airfreight services. The empirical findings presented in the paper (in conjunction with results from other airport-centric development case studies) could be used as contribution towards extending theory that describes and explains forces that drive the location and mix of airport-centric developments.

Keywords: airports, airport-centric development, O. R. Tambo international airport, South Africa

Procedia PDF Downloads 273
63 Computational Study of Composite Films

Authors: Rudolf Hrach, Stanislav Novak, Vera Hrachova

Abstract:

Composite and nanocomposite films represent the class of promising materials and are often objects of the study due to their mechanical, electrical and other properties. The most interesting ones are probably the composite metal/dielectric structures consisting of a metal component embedded in an oxide or polymer matrix. Behaviour of composite films varies with the amount of the metal component inside what is called filling factor. The structures contain individual metal particles or nanoparticles completely insulated by the dielectric matrix for small filling factors and the films have more or less dielectric properties. The conductivity of the films increases with increasing filling factor and finally a transition into metallic state occurs. The behaviour of composite films near a percolation threshold, where the change of charge transport mechanism from a thermally-activated tunnelling between individual metal objects to an ohmic conductivity is observed, is especially important. Physical properties of composite films are given not only by the concentration of metal component but also by the spatial and size distributions of metal objects which are influenced by a technology used. In our contribution, a study of composite structures with the help of methods of computational physics was performed. The study consists of two parts: -Generation of simulated composite and nanocomposite films. The techniques based on hard-sphere or soft-sphere models as well as on atomic modelling are used here. Characterizations of prepared composite structures by image analysis of their sections or projections follow then. However, the analysis of various morphological methods must be performed as the standard algorithms based on the theory of mathematical morphology lose their sensitivity when applied to composite films. -The charge transport in the composites was studied by the kinetic Monte Carlo method as there is a close connection between structural and electric properties of composite and nanocomposite films. It was found that near the percolation threshold the paths of tunnel current forms so-called fuzzy clusters. The main aim of the present study was to establish the correlation between morphological properties of composites/nanocomposites and structures of conducting paths in them in the dependence on the technology of composite films.

Keywords: composite films, computer modelling, image analysis, nanocomposite films

Procedia PDF Downloads 393
62 The Dynamics of Planktonic Crustacean Populations in an Open Access Lagoon, Bordered by Heavy Industry, Southwest, Nigeria

Authors: E. O. Clarke, O. J. Aderinola, O. A. Adeboyejo, M. A. Anetekhai

Abstract:

Aims: The study is aimed at establishing the influence of some physical and chemical parameters on the abundance, distribution pattern and seasonal variations of the planktonic crustacean populations. Place and Duration of Study: A premier investigation into the dynamics of planktonic crustacean populations in Ologe lagoon was carried out from January 2011 to December 2012. Study Design: The study covered identification, temporal abundance, spatial distribution and diversity of the planktonic crustacea. Methodology: Standard techniques were used to collect samples from eleven stations covering five proximal satellite towns (Idoluwo, Oto, Ibiye, Obele, and Gbanko) bordering the lagoon. Data obtained were statistically analyzed using linear regression and hierarchical clustering. Results:Thirteen (13) planktonic crustacean populations were identified. Total percentage abundance was highest for Bosmina species (20%) and lowest for Polyphemus species (0.8%). The Pearson’s correlation coefficient (“r” values) between total planktonic crustacean population and some physical and chemical parameters showed that positive correlations having low level of significance occurred with salinity (r = 0.042) (sig = 0.184) and with surface water dissolved oxygen (r = 0.299) (sig = 0.155). Linear regression plots indicated that, the total population of planktonic crustacea were mainly influenced and only increased with an increase in value of surface water temperature (Rsq = 0.791) and conductivity (Rsq = 0.589). The total population of planktonic crustacea had a near neutral (zero correlation) with the surface water dissolved oxygen and thus, does not significantly change with the level of the surface water dissolved oxygen. The correlations were positive with NO3-N (midstream) at Ibiye (Rsq =0.022) and (downstream) Gbanko (Rsq =0.013), PO4-P at Ibiye (Rsq =0.258), K at Idoluwo (Rsq =0.295) and SO4-S at Oto (Rsq = 0.094) and Gbanko (Rsq = 0.457). The Berger-Parker Dominance Index (BPDI) showed that the most dominant species was Bosmina species (BPDI = 1.000), followed by Calanus species (BPDI = 1.254). Clusters by squared Euclidan distances using average linkage between groups showed proximities, transcending the borders of genera. Conclusion: The results revealed that planktonic crustacean population in Ologe lagoon undergo seasonal perturbations, were highly influenced by nutrient, metal and organic matter inputs from river Owoh, Agbara industrial estate and surrounding farmlands and were patchy in spatial distribution.

Keywords: diversity, dominance, perturbations, richness, crustacea, lagoon

Procedia PDF Downloads 723
61 Sustainable Business Model Archetypes – A Systematic Review and Application to the Plastic Industry

Authors: Felix Schumann, Giorgia Carratta, Tobias Dauth, Liv Jaeckel

Abstract:

In the last few decades, the rapid growth of the use and disposal of plastic items has led to their overaccumulation in the environment. As a result, plastic pollution has become a subject of global concern. Today plastics are used as raw materials in almost every industry. While the recognition of the ecological, social, and economic impact of plastics in academic research is on the rise, the potential role of the ‘plastic industry’ in dealing with such issues is still largely underestimated. Therefore, the literature on sustainable plastic management is still nascent and fragmented. Working towards sustainability requires a fundamental shift in the way companies employ plastics in their day-to-day business. For that reason, the applicability of the business model concept has recently gained momentum in environmental research. Business model innovation is increasingly recognized as an important driver to re-conceptualize the purpose of the firm and to readily integrate sustainability in their business. It can serve as a starting point to investigate whether and how sustainability can be realized under industry- and firm-specific circumstances. Yet, there is no comprehensive view in the plastic industry on how firms start refining their business models to embed sustainability in their operations. Our study addresses this gap, looking primarily at the industrial sectors responsible for the production of the largest amount of plastic waste today: plastic packaging, consumer goods, construction, textile, and transport. Relying on the archetypes of sustainable business models and applying them to the aforementioned sectors, we try to identify companies’ current strategies to make their business models more sustainable. Based on the thematic clustering, we can develop an integrative framework for the plastic industry. The findings are underpinned and illustrated by a variety of relevant plastic management solutions that the authors have identified through a systematic literature review and analysis of existing, empirically grounded research in this field. Using the archetypes, we can promote options for business model innovations for the most important sectors in which plastics are used. Moreover, by linking the proposed business model archetypes to the plastic industry, our research approach guides firms in exploring sustainable business opportunities. Likewise, researchers and policymakers can utilize our classification to identify best practices. The authors believe that the study advances the current knowledge on sustainable plastic management through its broad empirical industry analyses. Hence, the application of business model archetypes in the plastic industry will be useful for shaping companies’ transformation to create and deliver more sustainability and provides avenues for future research endeavors.

Keywords: business models, environmental economics, plastic management, plastic pollution, sustainability

Procedia PDF Downloads 100
60 The Relationship between Violence against Women and Levels of Self-Esteem in Urban Informal Settlements of Mumbai, India: A Cross-Sectional Study

Authors: A. Bentley, A. Prost, N. Daruwalla, D. Osrin

Abstract:

Background: This study aims to investigate the relationship between experiences of violence against women in the family, and levels of self-esteem in women residing in informal settlement (slum) areas of Mumbai, India. The authors hypothesise that violence against women in Indian households extends beyond that of intimate partner violence (IPV), to include other members of the family and that experiences of violence are associated with lower levels of self-esteem. Methods: Experiences of violence were assessed through a cross-sectional survey of 598 women, including questions about specific acts of emotional, economic, physical and sexual violence across different time points, and the main perpetrator of each. Self-esteem was assessed using the Rosenberg self-esteem questionnaire. A global score for self-esteem was calculated and the relationship between violence in the past year and Rosenberg self-esteem score was assessed using multivariable linear regression models, adjusted for years of education completed, and clustering using robust standard errors. Results: 482 (81%) women consented to interview. On average, they were 28.5 years old, had completed 6 years of education and had been married 9.5 years. 88% were Muslim and 46% lived in joint families. 44% of women had experienced at least one act of violence in their lifetime (33% emotional, 22% economic, 24% physical, 12% sexual). Of the women who experienced violence after marriage, 70% cited a perpetrator other than the husband for at least one of the acts. 5% had low self-esteem (Rosenberg score < 15). For women who experienced emotional violence in the past year, the Rosenberg score was 2.6 points lower (p < 0.001). It was 1.2 points lower (p = 0.03) for women who experienced economic violence. For physical or sexual violence in the past year, no statistically significant relationship with Rosenberg score was seen. However, for a one-unit increase in the number of different acts of each type of violence experienced in the past year, a decrease in Rosenberg score was seen (-0.62 for emotional, -0.76 for economic, -0.53 for physical and -0.47 for sexual; p < 0.05 for all). Discussion: The high prevalence of violence experiences across the lifetime was likely due to the detailed assessment of violence and the inclusion of perpetrators within the family other than the husband. Experiences of emotional or economic violence in the past year were associated with lower Rosenberg scores and therefore lower self-esteem, but no relationship was seen between experiences of physical or sexual violence and Rosenberg score overall. For all types of violence in the past year, a greater number of different acts were associated with a decrease in Rosenberg score. Emotional violence showed the strongest relationship with self-esteem, but for all types of violence the more complex the pattern of perpetration with different methods used, the lower the levels of self-esteem. Due to the cross-sectional nature of the study causal directionality cannot be attributed. Further work to investigate the relationship between severity of violence and self-esteem and whether self-esteem mediates relationships between violence and poorer mental health would be beneficial.

Keywords: family violence, India, informal settlements, Rosenberg self-esteem scale, self-esteem, violence against women

Procedia PDF Downloads 126
59 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.

Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine

Procedia PDF Downloads 12
58 Quantification of Lawsone and Adulterants in Commercial Henna Products

Authors: Ruchi B. Semwal, Deepak K. Semwal, Thobile A. N. Nkosi, Alvaro M. Viljoen

Abstract:

The use of Lawsonia inermis L. (Lythraeae), commonly known as henna, has many medicinal benefits and is used as a remedy for the treatment of diarrhoea, cancer, inflammation, headache, jaundice and skin diseases in folk medicine. Although widely used for hair dyeing and temporary tattooing, henna body art has popularized over the last 15 years and changed from being a traditional bridal and festival adornment to an exotic fashion accessory. The naphthoquinone, lawsone, is one of the main constituents of the plant and responsible for its dyeing property. Henna leaves typically contain 1.8–1.9% lawsone, which is used as a marker compound for the quality control of henna products. Adulteration of henna with various toxic chemicals such as p-phenylenediamine, p-methylaminophenol, p-aminobenzene and p-toluenodiamine to produce a variety of colours, is very common and has resulted in serious health problems, including allergic reactions. This study aims to assess the quality of henna products collected from different parts of the world by determining the lawsone content, as well as the concentrations of any adulterants present. Ultra high performance liquid chromatography-mass spectrometry (UPLC-MS) was used to determine the lawsone concentrations in 172 henna products. Separation of the chemical constituents was achieved on an Acquity UPLC BEH C18 column using gradient elution (0.1% formic acid and acetonitrile). The results from UPLC-MS revealed that of 172 henna products, 11 contained 1.0-1.8% lawsone, 110 contained 0.1-0.9% lawsone, whereas 51 samples did not contain detectable levels of lawsone. High performance thin layer chromatography was investigated as a cheaper, more rapid technique for the quality control of henna in relation to the lawsone content. The samples were applied using an automatic TLC Sampler 4 (CAMAG) to pre-coated silica plates, which were subsequently developed with acetic acid, acetone and toluene (0.5: 1.0: 8.5 v/v). A Reprostar 3 digital system allowed the images to be captured. The results obtained corresponded to those from UPLC-MS analysis. Vibrational spectroscopy analysis (MIR or NIR) of the powdered henna, followed by chemometric modelling of the data, indicates that this technique shows promise as an alternative quality control method. Principal component analysis (PCA) was used to investigate the data by observing clustering and identifying outliers. Partial least squares (PLS) multivariate calibration models were constructed for the quantification of lawsone. In conclusion, only a few of the samples analysed contain lawsone in high concentrations, indicating that they are of poor quality. Currently, the presence of adulterants that may have been added to enhance the dyeing properties of the products, is being investigated.

Keywords: Lawsonia inermis, paraphenylenediamine, temporary tattooing, lawsone

Procedia PDF Downloads 460
57 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring

Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti

Abstract:

Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by density-based time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., mean value, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one class classifier (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, a new anomaly detector strategy is proposed, namely one class classifier neural network two (OCCNN2), which exploit the classification capability of standard classifiers in an anomaly detection problem, finding the standard class (the boundary of the features space in normal operating conditions) through a two-step approach: coarse and fine boundary estimation. The coarse estimation uses classics OCC techniques, while the fine estimation is performed through a feedforward neural network (NN) trained that exploits the boundaries estimated in the coarse step. The detection algorithms vare then compared with known methods based on principal component analysis (PCA), kernel principal component analysis (KPCA), and auto-associative neural network (ANN). In many cases, the proposed solution increases the performance with respect to the standard OCC algorithms in terms of F1 score and accuracy. In particular, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 96% with the proposed method.

Keywords: anomaly detection, frequencies selection, modal analysis, neural network, sensor network, structural health monitoring, vibration measurement

Procedia PDF Downloads 124
56 Variation among East Wollega Coffee (Coffea arabica L.) Landraces for Quality Attributes

Authors: Getachew Weldemichael, Sentayehu Alamerew, Leta Tulu, Gezahegn Berecha

Abstract:

Coffee quality improvement program is becoming the focus of coffee research, as the world coffee consumption pattern shifted to high-quality coffee. However, there is limited information on the genetic variation of C. Arabica for quality improvement in potential specialty coffee growing areas of Ethiopia. Therefore, this experiment was conducted with the objectives of determining the magnitude of variation among 105 coffee accessions collected from east Wollega coffee growing areas and assessing correlations between the different coffee qualities attributes. It was conducted in RCRD with three replications. Data on green bean physical characters (shape and make, bean color and odor) and organoleptic cup quality traits (aromatic intensity, aromatic quality, acidity, astringency, bitterness, body, flavor, and overall standard of the liquor) were recorded. Analysis of variance, clustering, genetic divergence, principal component and correlation analysis was performed using SAS software. The result revealed that there were highly significant differences (P<0.01) among the accessions for all quality attributes except for odor and bitterness. Among the tested accessions, EW104 /09, EW101 /09, EW58/09, EW77/09, EW35/09, EW71/09, EW68/09, EW96 /09, EW83/09 and EW72/09 had the highest total coffee quality values (the sum of bean physical and cup quality attributes). These genotypes could serve as a source of genes for green bean physical characters and cup quality improvement in Arabica coffee. Furthermore, cluster analysis grouped the coffee accessions into five clusters with significant inter-cluster distances implying that there is moderate diversity among the accessions and crossing accessions from these divergent inter-clusters would result in hetrosis and recombinants in segregating generations. The principal component analysis revealed that the first three principal components with eigenvalues greater than unity accounted for 83.1% of the total variability due to the variation of nine quality attributes considered for PC analysis, indicating that all quality attributes equally contribute to a grouping of the accessions in different clusters. Organoleptic cup quality attributes showed positive and significant correlations both at the genotypic and phenotypic levels, demonstrating the possibility of simultaneous improvement of the traits. Path coefficient analysis revealed that acidity, flavor, and body had a high positive direct effect on overall cup quality, implying that these traits can be used as indirect criteria to improve overall coffee quality. Therefore, it was concluded that there is considerable variation among the accessions, which need to be properly conserved for future improvement of the coffee quality. However, the variability observed for quality attributes must be further verified using biochemical and molecular analysis.

Keywords: accessions, Coffea arabica, cluster analysis, correlation, principal component

Procedia PDF Downloads 166
55 Approaches to Valuing Ecosystem Services in Agroecosystems From the Perspectives of Ecological Economics and Agroecology

Authors: Sandra Cecilia Bautista-Rodríguez, Vladimir Melgarejo

Abstract:

Climate change, loss of ecosystems, increasing poverty, increasing marginalization of rural communities and declining food security are global issues that require urgent attention. In this regard, a great deal of research has focused on how agroecosystems respond to these challenges as they provide ecosystem services (ES) that lead to higher levels of resilience, adaptation, productivity and self-sufficiency. Hence, the valuing of ecosystem services plays an important role in the decision-making process for the design and management of agroecosystems. This paper aims to define the link between ecosystem service valuation methods and ES value dimensions in agroecosystems from ecological economics and agroecology. The method used to identify valuation methodologies was a literature review in the fields of Agroecology and Ecological Economics, based on a strategy of information search and classification. The conceptual framework of the work is based on the multidimensionality of value, considering the social, ecological, political, technological and economic dimensions. Likewise, the valuation process requires consideration of the ecosystem function associated with ES, such as regulation, habitat, production and information functions. In this way, valuation methods for ES in agroecosystems can integrate more than one value dimension and at least one ecosystem function. The results allow correlating the ecosystem functions with the ecosystem services valued, and the specific tools or models used, the dimensions and valuation methods. The main methodologies identified are multi-criteria valuation (1), deliberative - consultative valuation (2), valuation based on system dynamics modeling (3), valuation through energy or biophysical balances (4), valuation through fuzzy logic modeling (5), valuation based on agent-based modeling (6). Amongst the main conclusions, it is highlighted that the system dynamics modeling approach has a high potential for development in valuation processes, due to its ability to integrate other methods, especially multi-criteria valuation and energy and biophysical balances, to describe through causal cycles the interrelationships between ecosystem services, the dimensions of value in agroecosystems, thus showing the relationships between the value of ecosystem services and the welfare of communities. As for methodological challenges, it is relevant to achieve the integration of tools and models provided by different methods, to incorporate the characteristics of a complex system such as the agroecosystem, which allows reducing the limitations in the processes of valuation of ES.

Keywords: ecological economics, agroecosystems, ecosystem services, valuation of ecosystem services

Procedia PDF Downloads 125