Search results for: coding complexity metric mccabe
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2525

Search results for: coding complexity metric mccabe

1355 Algorithm Research on Traffic Sign Detection Based on Improved EfficientDet

Authors: Ma Lei-Lei, Zhou You

Abstract:

Aiming at the problems of low detection accuracy of deep learning algorithm in traffic sign detection, this paper proposes improved EfficientDet based traffic sign detection algorithm. Multi-head self-attention is introduced in the minimum resolution layer of the backbone of EfficientDet to achieve effective aggregation of local and global depth information, and this study proposes an improved feature fusion pyramid with increased vertical cross-layer connections, which improves the performance of the model while introducing a small amount of complexity, the Balanced L1 Loss is introduced to replace the original regression loss function Smooth L1 Loss, which solves the problem of balance in the loss function. Experimental results show, the algorithm proposed in this study is suitable for the task of traffic sign detection. Compared with other models, the improved EfficientDet has the best detection accuracy. Although the test speed is not completely dominant, it still meets the real-time requirement.

Keywords: convolutional neural network, transformer, feature pyramid networks, loss function

Procedia PDF Downloads 99
1354 A Comprehensive Metamodel of an Urbanized Information System: Experimental Case

Authors: Leila Trabelsi

Abstract:

The urbanization of Information Systems (IS) is an effective approach to master the complexity of the organization. It strengthens the coherence of IS and aligns it with the business strategy. Moreover, this approach has significant advantages such as reducing Information Technologies (IT) costs, enhancing the IS position in a competitive environment and ensuring the scalability of the IS through the integration of technological innovations. Therefore, the urbanization is considered as a business strategic decision. Thus, its embedding becomes a necessity in order to improve the IS practice. However, there is a lack of experimental cases studying meta-modelling of Urbanized Information System (UIS). The aim of this paper addresses new urbanization content meta-model which permits modelling, testing and taking into consideration organizational aspects. This methodological framework is structured according to two main abstraction levels, a conceptual level and an operational level. For each of these levels, different models are proposed and presented. The proposed model for has been empirically tested on company. The findings of this paper present an experimental study of urbanization meta-model. The paper points out the significant relationships between dimensions and their evolution.

Keywords: urbanization, information systems, enterprise architecture, meta-model

Procedia PDF Downloads 440
1353 Component Based Testing Using Clustering and Support Vector Machine

Authors: Iqbaldeep Kaur, Amarjeet Kaur

Abstract:

Software Reusability is important part of software development. So component based software development in case of software testing has gained a lot of practical importance in the field of software engineering from academic researcher and also from software development industry perspective. Finding test cases for efficient reuse of test cases is one of the important problems aimed by researcher. Clustering reduce the search space, reuse test cases by grouping similar entities according to requirements ensuring reduced time complexity as it reduce the search time for retrieval the test cases. In this research paper we proposed approach for re-usability of test cases by unsupervised approach. In unsupervised learning we proposed k-mean and Support Vector Machine. We have designed the algorithm for requirement and test case document clustering according to its tf-idf vector space and the output is set of highly cohesive pattern groups.

Keywords: software testing, reusability, clustering, k-mean, SVM

Procedia PDF Downloads 431
1352 Improve Divers Tracking and Classification in Sonar Images Using Robust Diver Wake Detection Algorithm

Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy

Abstract:

Harbor protection systems are so important. The need for automatic protection systems has increased over the last years. Diver detection active sonar has great significance. It used to detect underwater threats such as divers and autonomous underwater vehicle. To automatically detect such threats the sonar image is processed by algorithms. These algorithms used to detect, track and classify of underwater objects. In this work, divers tracking and classification algorithm is improved be proposing a robust wake detection method. To detect objects the sonar images is normalized then segmented based on fixed threshold. Next, the centroids of the segments are found and clustered based on distance metric. Then to track the objects linear Kalman filter is applied. To reduce effect of noise and creation of false tracks, the Kalman tracker is fine tuned. The tuning is done based on our active sonar specifications. After the tracks are initialed and updated they are subjected to a filtering stage to eliminate the noisy and unstable tracks. Also to eliminate object with a speed out of the diver speed range such as buoys and fast boats. Afterwards the result tracks are subjected to a classification stage to deiced the type of the object been tracked. Here the classification stage is to deice wither if the tracked object is an open circuit diver or a close circuit diver. At the classification stage, a small area around the object is extracted and a novel wake detection method is applied. The morphological features of the object with his wake is extracted. We used support vector machine to find the best classifier. The sonar training images and the test images are collected by ARMELSAN Defense Technologies Company using the portable diver detection sonar ARAS-2023. After applying the algorithm to the test sonar data, we get fine and stable tracks of the divers. The total classification accuracy achieved with the diver type is 97%.

Keywords: harbor protection, diver detection, active sonar, wake detection, diver classification

Procedia PDF Downloads 239
1351 Global Pandemic of Chronic Diseases: Public Health Challenges to Reduce the Development

Authors: Benjamin Poku

Abstract:

Purpose: The purpose of the research is to conduct systematic reviews and synthesis of existing knowledge that addresses the growing incidence and prevalence of chronic diseases across the world and its impact on public health in relation to communicable diseases. Principal results: A careful compilation and summary of 15-20 peer-reviewed publications from reputable databases such as PubMed, MEDLINE, CINAHL, and other peer-reviewed journals indicate that the Global pandemic of Chronic diseases (such as diabetes, high blood pressure, etc.) have become a greater public health burden in proportion as compared to communicable diseases. Significant conclusions: Given the complexity of the situation, efforts and strategies to mitigate the negative effect of the Global Pandemic on chronic diseases within the global community must include not only urgent and binding commitment of all stakeholders but also a multi-sectorial long-term approach to increase the public health educational approach to meet the increasing world population of over 8 billion people and also the aging population as well to meet the complex challenges of chronic diseases.

Keywords: pandemic, chronic disease, public health, health challenges

Procedia PDF Downloads 528
1350 Banking and Accounting Analysis Researches Effect on Environment and Income

Authors: Gerges Samaan Henin Abdalla

Abstract:

New methods of providing banking services to the customer have been introduced, such as online banking. Banks have begun to consider electronic banking (e-banking) as a way to replace some traditional branch functions by using the Internet as a new distribution channel. Some consumers have at least one account at multiple banks and access these accounts through online banking. To check their current net worth, clients need to log into each of their accounts, get detailed information, and work toward consolidation. Not only is it time consuming, but it is also a repeatable activity with a certain frequency. To solve this problem, the concept of account aggregation was added as a solution. Account consolidation in e-banking as a form of electronic banking appears to build a stronger relationship with customers. An account linking service is generally referred to as a service that allows customers to manage their bank accounts held at different institutions via a common online banking platform that places a high priority on security and data protection. The article provides an overview of the account aggregation approach in e-banking as a new service in the area of e-banking.

Keywords: compatibility, complexity, mobile banking, observation, risk banking technology, Internet banks, modernization of banks, banks, account aggregation, security, enterprise development

Procedia PDF Downloads 58
1349 Improved Predictive Models for the IRMA Network Using Nonlinear Optimisation

Authors: Vishwesh Kulkarni, Nikhil Bellarykar

Abstract:

Cellular complexity stems from the interactions among thousands of different molecular species. Thanks to the emerging fields of systems and synthetic biology, scientists are beginning to unravel these regulatory, signaling, and metabolic interactions and to understand their coordinated action. Reverse engineering of biological networks has has several benefits but a poor quality of data combined with the difficulty in reproducing it limits the applicability of these methods. A few years back, many of the commonly used predictive algorithms were tested on a network constructed in the yeast Saccharomyces cerevisiae (S. cerevisiae) to resolve this issue. The network was a synthetic network of five genes regulating each other for the so-called in vivo reverse-engineering and modeling assessment (IRMA). The network was constructed in S. cereviase since it is a simple and well characterized organism. The synthetic network included a variety of regulatory interactions, thus capturing the behaviour of larger eukaryotic gene networks on a smaller scale. We derive a new set of algorithms by solving a nonlinear optimization problem and show how these algorithms outperform other algorithms on these datasets.

Keywords: synthetic gene network, network identification, optimization, nonlinear modeling

Procedia PDF Downloads 160
1348 Facilitating Written Biology Assessment in Large-Enrollment Courses Using Machine Learning

Authors: Luanna B. Prevost, Kelli Carter, Margaurete Romero, Kirsti Martinez

Abstract:

Writing is an essential scientific practice, yet, in several countries, the increasing university science class-size limits the use of written assessments. Written assessments allow students to demonstrate their learning in their own words and permit the faculty to evaluate students’ understanding. However, the time and resources required to grade written assessments prohibit their use in large-enrollment science courses. This study examined the use of machine learning algorithms to automatically analyze student writing and provide timely feedback to the faculty about students' writing in biology. Written responses to questions about matter and energy transformation were collected from large-enrollment undergraduate introductory biology classrooms. Responses were analyzed using the LightSide text mining and classification software. Cohen’s Kappa was used to measure agreement between the LightSide models and human raters. Predictive models achieved agreement with human coding of 0.7 Cohen’s Kappa or greater. Models captured that when writing about matter-energy transformation at the ecosystem level, students focused on primarily on the concepts of heat loss, recycling of matter, and conservation of matter and energy. Models were also produced to capture writing about processes such as decomposition and biochemical cycling. The models created in this study can be used to provide automatic feedback about students understanding of these concepts to biology faculty who desire to use formative written assessments in larger enrollment biology classes, but do not have the time or personnel for manual grading.

Keywords: machine learning, written assessment, biology education, text mining

Procedia PDF Downloads 282
1347 Optimization of Multiplier Extraction Digital Filter On FPGA

Authors: Shiksha Jain, Ramesh Mishra

Abstract:

One of the most widely used complex signals processing operation is filtering. The most important FIR digital filter are widely used in DSP for filtering to alter the spectrum according to some given specifications. Power consumption and Area complexity in the algorithm of Finite Impulse Response (FIR) filter is mainly caused by multipliers. So we present a multiplier less technique (DA technique). In this technique, precomputed value of inner product is stored in LUT. Which are further added and shifted with number of iterations equal to the precision of input sample. But the exponential growth of LUT with the order of FIR filter, in this basic structure, makes it prohibitive for many applications. The significant area and power reduction over traditional Distributed Arithmetic (DA) structure is presented in this paper, by the use of slicing of LUT to the desired length. An architecture of 16 tap FIR filter is presented, with different length of slice of LUT. The result of FIR Filter implementation on Xilinx ISE synthesis tool (XST) vertex-4 FPGA Tool by using proposed method shows the increase of the maximum frequency, the decrease of the resources as usage saving in area with more number of slices and the reduction dynamic power.

Keywords: multiplier less technique, linear phase symmetric FIR filter, FPGA tool, look up table

Procedia PDF Downloads 393
1346 Testing the Moderating Effect of Sub Ethnic on Household Investment Behaviour

Authors: Widayat Widayat

Abstract:

Nowday, in the modern investment era, household behavior on investment is a topic that is quite warm. The development of the modern investment, indicated by the emergence of a variety of investment instruments, such as stocks, bonds and various forms of derivatives, affected on the complexity of choosing an investment, especially for traditional societies. Various studies show that there is more than one factor acting as a behavioral antesenden decide to choose an investment instrument. One of the factors, which contribute in determining the investment option is ethnic. Society with a particular sub-culture tend to prefer investing their particular instrument. This is because they have the values, norms and different social environmental. This article is designed to test the impact of sub-cultures between Osing-Java as moderator, in investing. The study was conducted in Banyuwangi, East Java Province of Indonesia. Data were collected using questionnaires, which is given to the head of the household respondents were selected as samples. Sample of households selected by multistage sampling method. The data have been collected processed using SmartPLS software and testing moderating effects using grouped sample test. The result showed that sub-ethnic and has a significant role in determining the investment.

Keywords: investment behaviour, household, moderating, sub ethnic

Procedia PDF Downloads 373
1345 Fusionopolis: The Most Decisive Economic Power Centers of the 21st Century

Authors: Norbert Csizmadia

Abstract:

The 21st Century's main power centers are the cities. More than 52% of the world’s population lives in cities, in particular in the megacities which have a population over 10 million people and is still growing. According to various research and forecasts, the main economic concentration will be in 40 megacities and global centers. Based on various competitiveness analyzes and indices, global city centers, and city networks are outlined, but if we look at other aspects of urban development like complexity, connectivity, creativity, technological development, viability, green cities, pedestrian and child friendly cities, creative and cultural centers, cultural spaces and knowledge centers, we get a city competitiveness index with quite new complex indicators. The research shows this result. In addition to the megacities and the global centers, with the investigation of functionality, we got 64 so-called ‘fusiononopolis’ (i.e., fusion-polis) which stand for the most decisive economic power centers of the 21st century. In this city competition Asian centers considerably rise, as the world's functional city competitiveness index is being formed.

Keywords: economic geography, human geography, technological development, urbanism

Procedia PDF Downloads 364
1344 Efficient GIS Based Public Health System for Disease Prevention

Authors: K. M. G. T. R. Waidyarathna, S. M. Vidanagamachchi

Abstract:

Public Health System exists in Sri Lanka has a satisfactory complete information flow when compared to other systems in developing countries. The availability of a good health information system contributed immensely to achieve health indices that are in line with the developed countries like US and UK. The health information flow at the moment is completely paper based. In Sri Lanka, the fields like banking, accounting and engineering have incorporated information and communication technology to the same extent that can be observed in any other country. The field of medicine has behind those fields throughout the world mainly due to its complexity, issues like privacy, confidentially and lack of people with knowledge in both fields of Information Technology (IT) and Medicine. Sri Lanka’s situation is much worse and the gap is rapidly increasing with huge IT initiatives by private-public partnerships in all other countries. The major goal of the framework is to support minimizing the spreading diseases. To achieve that a web based framework should be implemented for this application domain with web mapping. The aim of this GIS based public health system is a secure, flexible, easy to maintain environment for creating and maintaining public health records and easy to interact with relevant parties.

Keywords: DHIS2, GIS, public health, Sri Lanka

Procedia PDF Downloads 565
1343 One-Dimension Model for Positive Displacement Pump with Cavitation Algorithm

Authors: Francesco Rizzuto, Matthew Stickland, Stephan Hannot

Abstract:

The simulation of a positive displacement pump system with commercial software for Computer Fluid Dynamics (CFD), will result in an enormous computational effort due to the complexity of the pump system. This drawback restricts the use of it to a specific part of the pump in one simulation. This research focuses on developing an algorithm that provides a suitable result in agreement with experiment data, without that computational effort. The compressible equations are solved with an explicit algorithm. A comparison is presented between the FV method with Monotonic Upwind scheme for Conservative Laws (MUSCL) with slope limiter and experimental results. The source term for cavitation and friction is introduced into the algorithm with a slipping strategy and solved with a 4th order Runge-Kutta scheme (RK4). Different pumps are modeled and analyzed to evaluate the flexibility of the code. The simulation required minimal computation time and resources without compromising the accuracy of the simulation results. Therefore, this algorithm highlights the feasibility of pressure pulsation simulation as a design tool for an industrial purpose.

Keywords: cavitation, diaphragm, DVCM, finite volume, MUSCL, positive displacement pump

Procedia PDF Downloads 156
1342 Impact of Civil Engineering and Economic Growth in the Sustainability of the Environment: Case of Albania

Authors: Rigers Dodaj

Abstract:

Nowadays, the environment is a critical goal for civil engineers, human activity, construction projects, economic growth, and whole national development. Regarding the development of Albania's economy, people's living standards are increasing, and the requirements for the living environment are also increasing. Under these circumstances, environmental protection and sustainability this is the critical issue. The rising industrialization, urbanization, and energy demand affect the environment by emission of carbon dioxide gas (CO2), a significant parameter known to impact air pollution directly. Consequently, many governments and international organizations conducted policies and regulations to address environmental degradation in the pursuit of economic development, for instance in Albania, the CO2 emission calculated in metric tons per capita has increased by 23% in the last 20 years. This paper analyzes the importance of civil engineering and economic growth in the sustainability of the environment focusing on CO2 emission. The analyzed data are time series 2001 - 2020 (with annual frequency), based on official publications of the World Bank. The statistical approach with vector error correction model and time series forecasting model are used to perform the parameter’s estimations and long-run equilibrium. The research in this paper adds a new perspective to the evaluation of a sustainable environment in the context of carbon emission reduction. Also, it provides reference and technical support for the government toward green and sustainable environmental policies. In the context of low-carbon development, effectively improving carbon emission efficiency is an inevitable requirement for achieving sustainable economic and environmental protection. Also, the study reveals that civil engineering development projects impact greatly the environment in the long run, especially in areas of flooding, noise pollution, water pollution, erosion, ecological disorder, natural hazards, etc. The potential for reducing industrial carbon emissions in recent years indicates that reduction is becoming more difficult, it needs another economic growth policy and more civil engineering development, by improving the level of industrialization and promoting technological innovation in industrial low-carbonization.

Keywords: CO₂ emission, civil engineering, economic growth, environmental sustainability

Procedia PDF Downloads 89
1341 Fast and Accurate Model to Detect Ictal Waveforms in Electroencephalogram Signals

Authors: Piyush Swami, Bijaya Ketan Panigrahi, Sneh Anand, Manvir Bhatia, Tapan Gandhi

Abstract:

Visual inspection of electroencephalogram (EEG) signals to detect epileptic signals is very challenging and time-consuming task even for any expert neurophysiologist. This problem is most challenging in under-developed and developing countries due to shortage of skilled neurophysiologists. In the past, notable research efforts have gone in trying to automate the seizure detection process. However, due to high false alarm detections and complexity of the models developed so far, have vastly delimited their practical implementation. In this paper, we present a novel scheme for epileptic seizure detection using empirical mode decomposition technique. The intrinsic mode functions obtained were then used to calculate the standard deviations. This was followed by probability density based classifier to discriminate between non-ictal and ictal patterns in EEG signals. The model presented here demonstrated very high classification rates ( > 97%) without compromising the statistical performance. The computation timings for each testing phase were also very low ( < 0.029 s) which makes this model ideal for practical applications.

Keywords: electroencephalogram (EEG), epilepsy, ictal patterns, empirical mode decomposition

Procedia PDF Downloads 408
1340 Commercialization of Technologies, Productivity and Problems of Technological Audit in the Russian Economy

Authors: E. A. Tkachenko, E. M. Rogova, A. S. Osipenko

Abstract:

The problems of technological development for the Russian Federation take on special significance in the context of modernization of the production base. The complexity of the position of the Russian economy is that it cannot be attributed fully to developing ones. Russia is a strong industrial power that has gone through the processes of destructive de-industrialization in the conditions of changing its economic and political structure. The need to find ways for re-industrialization is not a unique task for the economies of industrially developed countries. Under the influence of production outsourcing for 20 years, the industrial potential of leading economies of the world was regressed against the backdrop of the ascent of China, a new industrial giant. Therefore, methods, tools, and techniques utilized for industrial renaissance in EU may be used to achieve a technological leap in the Russian Federation, especially since the temporary gap of 5-7 years makes it possible to analyze best practices and use those technological transfer tools that have shown the greatest efficiency. In this article, methods of technological transfer are analyzed, the role of technological audit is justified, and factors are analyzed that influence the successful process of commercialization of technologies.

Keywords: technological transfer, productivity, technological audit, commercialization of technologies

Procedia PDF Downloads 216
1339 A Method To Assess Collaboration Using Perception of Risk from the Architectural Engineering Construction Industry

Authors: Sujesh F. Sujan, Steve W. Jones, Arto Kiviniemi

Abstract:

The use of Building Information Modelling (BIM) in the Architectural-Engineering-Construction (AEC) industry is a form of systemic innovation. Unlike incremental innovation, (such as the technological development of CAD from hand based drawings to 2D electronically printed drawings) any form of systemic innovation in Project-Based Inter-Organisational Networks requires complete collaboration and results in numerous benefits if adopted and utilised properly. Proper use of BIM involves people collaborating with the use of interoperable BIM compliant tools. The AEC industry globally has been known for its adversarial and fragmented nature where firms take advantage of one another to increase their own profitability. Due to the industry’s nature, getting people to collaborate by unifying their goals is critical to successful BIM adoption. However, this form of innovation is often being forced artificially in the old ways of working which do not suit collaboration. This may be one of the reasons for its low global use even though the technology was developed more than 20 years ago. Therefore, there is a need to develop a metric/method to support and allow industry players to gain confidence in their investment into BIM software and workflow methods. This paper departs from defining systemic risk as a risk that affects all the project participants at a given stage of a project and defines categories of systemic risks. The need to generalise is to allow method applicability to any industry where the category will be the same, but the example of the risk will depend on the industry the study is done in. The method proposed seeks to use individual perception of an example of systemic risk as a key parameter. The significance of this study lies in relating the variance of individual perception of systemic risk to how much the team is collaborating. The method bases its notions on the claim that a more unified range of individual perceptions would mean a higher probability that the team is collaborating better. Since contracts and procurement devise how a project team operates, the method could also break the methodological barrier of highly subjective findings that case studies inflict, which has limited the possibility of generalising between global industries. Since human nature applies in all industries, the authors’ intuition is that perception can be a valuable parameter to study collaboration which is essential especially in projects that utilise systemic innovation such as BIM.

Keywords: building information modelling, perception of risk, systemic innovation, team collaboration

Procedia PDF Downloads 186
1338 Investigating the Application of Social Sustainability: A Case Study in the Egyptian Retailing Sector

Authors: Lobna Hafez, Eman Elakkad

Abstract:

Sustainability is no longer a choice for firms. To achieve sustainable supply chain, all three dimensions of sustainability should be considered. Unlike the economic and environmental aspects, social sustainability has been rarely given attention. The problem surrounding social sustainability and employees’ welfare in Egypt is complex and remains unsolved. The aim of this study is to qualitatively assess the current level of application of social sustainability in the retailing sector in Egypt through using the social sustainability indicators identified in the literature. The purpose of this investigation is to gain knowledge about the complexity of the system involved. A case study is conducted on one of the largest retailers in Egypt. Data were collected through semi-structured interviews with managers and employees to determine the level of application and identify the major obstacles affecting the social sustainability in the retailing context. The work developed gives insights about the details and complexities of the application of social sustainability in developing countries, from the retailing perspective. The outcomes of this study will help managers to understand the enablers of social sustainability and will direct them to methods of sound implementation.

Keywords: developing countries, Egyptian retailing sector, sustainability, social sustainability

Procedia PDF Downloads 141
1337 Implementation of a Novel Modified Multilevel Inverter Topology for Grid Connected PV System

Authors: Dhivya Balakrishnan, Dhamodharan Shanmugam

Abstract:

Multilevel converters offer high power capability, associated with lower output harmonics and lower commutation losses. Their main disadvantage is their complexity requiring a great number of power devices and passive components, and a rather complex control circuitry. This paper proposes a single-phase seven-level inverter for grid connected PV systems, With a novel pulse width-modulated (PWM) control scheme. Three reference signals that are identical to each other with an offset that is equivalent to the amplitude of the triangular carrier signal were used to generate the PWM signals. The inverter is capable of producing seven levels of output-voltage levels from the dc supply voltage. This paper proposes a new multilevel inverter topology using an H-bridge output stage with two bidirectional auxiliary switches. The new topology produces a significant reduction in the number of power devices and capacitors required to implement a multilevel output using the asymmetric cascade configuration.

Keywords: asymmetric cascade configuration, H-Bridge, multilevel inverter, Pulse Width Modulation (PWM)

Procedia PDF Downloads 359
1336 Movement Optimization of Robotic Arm Movement Using Soft Computing

Authors: V. K. Banga

Abstract:

Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.

Keywords: artificial intelligence, kinematics, robotic arm, neural networks, fuzzy logic

Procedia PDF Downloads 299
1335 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization

Authors: Yihao Kuang, Bowen Ding

Abstract:

With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graph and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improve strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain better and more efficient inference effect by introducing PPO into knowledge inference technology.

Keywords: reinforcement learning, PPO, knowledge inference, supervised learning

Procedia PDF Downloads 68
1334 Deep Learning for SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network

Procedia PDF Downloads 72
1333 Investigation of Dynamic Characteristic of Planetary Gear Set Based On Three-Axes Torque Measurement

Authors: Masao Nakagawa, Toshiki Hirogaki, Eiichi Aoyama, Mohamed Ali Ben Abbes

Abstract:

A planetary gear set is widely used in hybrid vehicles as the power distribution system or in electric vehicles as the high reduction system, but due to its complexity with planet gears, its dynamic characteristic is not fully understood. There are many reports on two-axes driving or displacement of the planet gears under these conditions, but only few reports deal with three-axes driving. A three-axes driving condition is tested using three-axes torque measurement and focuses on the dynamic characteristic around the planet gears in this report. From experimental result, it was confirmed that the transition forces around the planet gears were balanced and the torques were also balanced around the instantaneous rotation center. The meshing frequency under these conditions was revealed to be the harmonics of two meshing frequencies; meshing frequency of the ring gear and that of the planet gears. The input power of the ring gear is distributed to the carrier and the sun gear in the dynamic sequential change of three fixed conditions; planet, star and solar modes.

Keywords: dynamic characteristic, gear, planetary gear set, torque measuring

Procedia PDF Downloads 383
1332 The Application of Active Learning to Develop Creativity in General Education

Authors: Chalermwut Wijit

Abstract:

This research is conducted in order to 1) study the result of applying “Active Learning” in general education subject to develop creativity 2) explore problems and obstacles in applying Active Learning in general education subject to improve the creativity in 1780 undergraduate students who registered this subject in the first semester 2013. The research is implemented by allocating the students into several groups of 10 -15 students and assigning them to design the activities for society under the four main conditions including 1) require no financial resources 2) practical 3) can be attended by every student 4) must be accomplished within 2 weeks. The researcher evaluated the creativity prior and after the study. Ultimately, the problems and obstacles from creating activity are evaluated from the open-ended questions in the questionnaires. The study result states that overall average scores on students’ ability increased significantly in terms of creativity, analytical ability and the synthesis, the complexity of working plan and team working. It can be inferred from the outcome that active learning is one of the most efficient methods in developing creativity in general education.

Keywords: creative thinking, active learning, general education, social sustainability

Procedia PDF Downloads 186
1331 Role of Internal and External Factors in Preventing Risky Sexual Behavior, Drug and Alcohol Abuse

Authors: Veronika Sharok

Abstract:

Research relevance on psychological determinants of risky behaviors is caused by high prevalence of such behaviors, particularly among youth. Risky sexual behavior, including unprotected and casual sex, frequent change of sexual partners, drug and alcohol use lead to negative social consequences and contribute to the spread of HIV infection and other sexually transmitted diseases. Data were obtained from 302 respondents aged 15-35 which were divided into 3 empirical groups: persons prone to risky sexual behavior, drug users and alcohol users; and 3 control groups: the individuals who are not prone to risky sexual behavior, persons who do not use drugs and the respondents who do not use alcohol. For processing, we used the following methods: Qualitative method for nominative data (Chi-squared test) and quantitative methods for metric data (student's t-test, Fisher's F-test, Pearson's r correlation test). Statistical processing was performed using Statistica 6.0 software. The study identifies two groups of factors that prevent risky behaviors. Internal factors, which include the moral and value attitudes; significance of existential values: love, life, self-actualization and search for the meaning of life; understanding independence as a responsibility for the freedom and ability to get attached to someone or something up to a point when this relationship starts restricting the freedom and becomes vital; awareness of risky behaviors as dangerous for the person and for others; self-acknowledgement. External factors (prevent risky behaviors in case of absence of the internal ones): absence of risky behaviors among friends and relatives; socio-demographic characteristics (middle class, marital status); awareness about the negative consequences of risky behaviors; inaccessibility to psychoactive substances. These factors are common for proneness to each type of risky behavior, because it usually caused by the same reasons. It should be noted that if prevention of risky behavior is based only on elimination of external factors, it is not as effective as it may be if we pay more attention to internal factors. The results obtained in the study can be used to develop training programs and activities for prevention of risky behaviors, for using values preventing such behaviors and promoting healthy lifestyle.

Keywords: existential values, prevention, psychological features, risky behavior

Procedia PDF Downloads 257
1330 Machine Learning Techniques in Bank Credit Analysis

Authors: Fernanda M. Assef, Maria Teresinha A. Steiner

Abstract:

The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.

Keywords: artificial neural networks (ANNs), classifier algorithms, credit risk assessment, logistic regression, machine Learning, support vector machines

Procedia PDF Downloads 104
1329 Analytical Performance of Cobas C 8000 Analyzer Based on Sigma Metrics

Authors: Sairi Satari

Abstract:

Introduction: Six-sigma is a metric that quantifies the performance of processes as a rate of Defects-Per-Million Opportunities. Sigma methodology can be applied in chemical pathology laboratory for evaluating process performance with evidence for process improvement in quality assurance program. In the laboratory, these methods have been used to improve the timeliness of troubleshooting, reduce the cost and frequency of quality control and minimize pre and post-analytical errors. Aim: The aim of this study is to evaluate the sigma values of the Cobas 8000 analyzer based on the minimum requirement of the specification. Methodology: Twenty-one analytes were chosen in this study. The analytes were alanine aminotransferase (ALT), albumin, alkaline phosphatase (ALP), Amylase, aspartate transaminase (AST), total bilirubin, calcium, chloride, cholesterol, HDL-cholesterol, creatinine, creatinine kinase, glucose, lactate dehydrogenase (LDH), magnesium, potassium, protein, sodium, triglyceride, uric acid and urea. Total error was obtained from Clinical Laboratory Improvement Amendments (CLIA). The Bias was calculated from end cycle report of Royal College of Pathologists of Australasia (RCPA) cycle from July to December 2016 and coefficient variation (CV) from six-month internal quality control (IQC). The sigma was calculated based on the formula :Sigma = (Total Error - Bias) / CV. The analytical performance was evaluated based on the sigma, sigma > 6 is world class, sigma > 5 is excellent, sigma > 4 is good and sigma < 4 is satisfactory and sigma < 3 is poor performance. Results: Based on the calculation, we found that, 96% are world class (ALT, albumin, ALP, amylase, AST, total bilirubin, cholesterol, HDL-cholesterol, creatinine, creatinine kinase, glucose, LDH, magnesium, potassium, triglyceride and uric acid. 14% are excellent (calcium, protein and urea), and 10% ( chloride and sodium) require more frequent IQC performed per day. Conclusion: Based on this study, we found that IQC should be performed frequently for only Chloride and Sodium to ensure accurate and reliable analysis for patient management.

Keywords: sigma matrics, analytical performance, total error, bias

Procedia PDF Downloads 172
1328 Estimation of Fourier Coefficients of Flux Density for Surface Mounted Permanent Magnet (SMPM) Generators by Direct Search Optimization

Authors: Ramakrishna Rao Mamidi

Abstract:

It is essential for Surface Mounted Permanent Magnet (SMPM) generators to determine the performance prediction and analyze the magnet’s air gap flux density wave shape. The flux density wave shape is neither a pure sine wave or square wave nor a combination. This is due to the variation of air gap reluctance between the stator and permanent magnets. The stator slot openings and the number of slots make the wave shape highly complicated. To reduce the complexity of analysis, approximations are made to the wave shape using Fourier analysis. In contrast to the traditional integration method, the Fourier coefficients, an and bn, are obtained by direct search method optimization. The wave shape with optimized coefficients gives a wave shape close to the desired wave shape. Harmonics amplitudes are worked out and compared with initial values. It can be concluded that the direct search method can be used for estimating Fourier coefficients for irregular wave shapes.

Keywords: direct search, flux plot, fourier analysis, permanent magnets

Procedia PDF Downloads 217
1327 Through Integrated Project Management and Systems Engineering to Support System Design Development: A Project Management-based Systems Engineering Approach

Authors: Xiaojing Gao, James Njuguna

Abstract:

This paper emphasizes the importance of integrating project management and systems engineering for innovative system design and production development. The research highlights the need for a flexible approach that unifies these disciplines, as their isolation often leads to communication challenges and complexity within multidisciplinary teams. The paper aims to elucidate the intricate relationship between project management and systems engineering, recommending the consolidation of engineering disciplines into a single lifecycle for improved support of the design and development process. The research identifies a synergy between these disciplines, focusing on streamlining information communication during product design and development. The insights gained from this process can lead to product design optimization. Additionally, the paper introduces a proposed Project Management-Based Systems Engineering (PMBSE) framework, emphasizing effective communication, efficient processes, and advanced tools to enhance product development outcomes within the product lifecycle.

Keywords: system engineering, product design and development, project management, cross-disciplinary

Procedia PDF Downloads 81
1326 Dynamic Log Parsing and Intelligent Anomaly Detection Method Combining Retrieval Augmented Generation and Prompt Engineering

Authors: Liu Linxin

Abstract:

As system complexity increases, log parsing and anomaly detection become more and more important in ensuring system stability. However, traditional methods often face the problems of insufficient adaptability and decreasing accuracy when dealing with rapidly changing log contents and unknown domains. To this end, this paper proposes an approach LogRAG, which combines RAG (Retrieval Augmented Generation) technology with Prompt Engineering for Large Language Models, applied to log analysis tasks to achieve dynamic parsing of logs and intelligent anomaly detection. By combining real-time information retrieval and prompt optimisation, this study significantly improves the adaptive capability of log analysis and the interpretability of results. Experimental results show that the method performs well on several public datasets, especially in the absence of training data, and significantly outperforms traditional methods. This paper provides a technical path for log parsing and anomaly detection, demonstrating significant theoretical value and application potential.

Keywords: log parsing, anomaly detection, retrieval-augmented generation, prompt engineering, LLMs

Procedia PDF Downloads 32