Search results for: Statistical Approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17289

Search results for: Statistical Approach

16119 Satellite Statistical Data Approach for Upwelling Identification and Prediction in South of East Java and Bali Sea

Authors: Hary Aprianto Wijaya Siahaan, Bayu Edo Pratama

Abstract:

Sea fishery's potential to become one of the nation's assets which very contributed to Indonesia's economy. This fishery potential not in spite of the availability of the chlorophyll in the territorial waters of Indonesia. The research was conducted using three methods, namely: statistics, comparative and analytical. The data used include MODIS sea temperature data imaging results in Aqua satellite with a resolution of 4 km in 2002-2015, MODIS data of chlorophyll-a imaging results in Aqua satellite with a resolution of 4 km in 2002-2015, and Imaging results data ASCAT on MetOp and NOAA satellites with 27 km resolution in 2002-2015. The results of the processing of the data show that the incidence of upwelling in the south of East Java Sea began to happen in June identified with sea surface temperature anomaly below normal, the mass of the air that moves from the East to the West, and chlorophyll-a concentrations are high. In July the region upwelling events are increasingly expanding towards the West and reached its peak in August. Chlorophyll-a concentration prediction using multiple linear regression equations demonstrate excellent results to chlorophyll-a concentrations prediction in 2002 until 2015 with the correlation of predicted chlorophyll-a concentration indicate a value of 0.8 and 0.3 with RMSE value. On the chlorophyll-a concentration prediction in 2016 indicate good results despite a decline in the value of the correlation, where the correlation of predicted chlorophyll-a concentration in the year 2016 indicate a value 0.6, but showed improvement in RMSE values with 0.2.

Keywords: satellite, sea surface temperature, upwelling, wind stress

Procedia PDF Downloads 158
16118 Measuring Corporate Brand Loyalties in Business Markets: A Case for Caution

Authors: Niklas Bondesson

Abstract:

Purpose: This paper attempts to examine how different facets of attitudinal brand loyalty are determined by different brand image elements in business markets. Design/Methodology/Approach: Statistical analysis is employed to data from a web survey, covering 226 professional packaging buyers in eight countries. Findings: The results reveal that different brand loyalty facets have different antecedents. Affective brand loyalties (or loyalty 'feelings') are mainly driven by customer associations to service relationships, whereas customers’ loyalty intentions (to purchase and recommend a brand) are triggered by associations to the general reputation of the company. The findings also indicate that willingness to pay a price premium is a distinct form of loyalty, with unique determinants. Research implications: Theoretically, the paper suggests that corporate B2B brand loyalty needs to be conceptualised with more refinement than has been done in extant B2B branding work. Methodologically, the paper highlights that single-item approaches can be fruitful when measuring B2B brand loyalty, and that multi-item scales can conceal important nuances in terms of understanding why customers are loyal. Practical implications: The idea of a loyalty 'silver metric' is an attractive idea, but this study indicates that firms who rely too much on one single type of brand loyalty risk to miss important building blocks. Originality/Value/Contribution: The major contribution is a more multi-faceted conceptualisation, and measurement, of corporate B2B brand loyalty and its brand image determinants than extant work has provided.

Keywords: brand equity, business-to-business branding, industrial marketing, buying behaviour

Procedia PDF Downloads 415
16117 Creation of Processes for a Safety Element Out of Context for an Actuator Circuit Control Module

Authors: Hassan Noun, Christian Urban-Seelmann, Mohamed Abdelfattah, Guillaume Zeller, Rajesh G., Iryna Mozgova, Roland Lachmayer

Abstract:

Several modules in automotive are usually modified and adapted for various project-specific applications. Due to a standardized safety concept, high reusability is accessible. A safety element out of context (SEooC) according to ISO 26262 can be a suitable approach. Based on the same safety concept and analysis, common modules can reach high usability. For developing according to a module out of context, an appropriate and detailed development approach is required. This paper shows how to derive these development processes for platform modules. Therefore, the detailed approach to the safety element out of context is derived. The aim is to create a detailed workflow for all phases of the development and integration of any kind of system modules. As an application example, an automotive project for an actuator control module is considered.

Keywords: functional safety, engineering processes, system engineering, electronic engineering

Procedia PDF Downloads 146
16116 Experiential Learning: A Case Study for Teaching Operating System Using C and Unix

Authors: Shamshuddin K., Nagaraj Vannal, Diwakar Kulkarni, Raghavendra Nakod

Abstract:

In most of the universities and colleges Operating System (OS) course is treated as theoretical and usually taught in a classroom using conventional teaching methods. In this paper we are presenting a new approach of teaching OS through experiential learning, the course is designed to suit the requirement of undergraduate engineering program of Instrumentation Technology. This new approach has benefited us to improve our student’s programming skills, presentation skills and understanding of the operating system concepts.

Keywords: pedagogy, interactive learning, experiential learning, OS, C, UNIX

Procedia PDF Downloads 607
16115 Quality of Care of Medical Male Circumcisions: A Non-Negotiable for Right to Care

Authors: Nelson Igaba, C. Onaga, S. Hlongwane

Abstract:

Background: Medical Male Circumcision (MMC) is part of a comprehensive HIV prevention strategy. The quality of MMC done at Right To Care (RtC) sites is maintained by Continuous Quality Improvement (CQI) based on findings of assessments by internal and independent external assessors who evaluate such parameters as the quality of the surgical procedure, infection control, etc. There are 12 RtC MMC teams in Mpumalanga, two of which are headed by Medical Officers and 10 by Clinical Associates (Clin A). Objectives: To compare the quality (i) of care rendered at doctor headed sites (DHS) versus Clin A headed sites (CHS); (ii) of CQI assessments (external versus internal). Methodology: A retrospective review of data from RightMax™ (a novel RtC data management system) and CQI reports (external and internal) was done. CQI assessment scores of October 2015 and October 2016 were taken as the baseline and latest respectively. Four sites with 745-810 circumcisions per annum were purposively selected; the two DHS (group A) and two CHS (group B). Statistical analyses were conducted using R (2017 version). Results: There were no significant difference in latest CQI scores between the two groups (DHS and CHS) (Anova, F = 1.97, df = 1, P = 0.165); between internal and external CQI assessment scores (Anova, F = 2.251, df = 1, P = 0.139) or among the individual sites (Anova, F = 1.095, df = 2, P = 0.341). Of the total of 16 adverse events reported by the four sites in the 12 months reviewed (all were infections), there was no statistical evidence that the documented severity of the infection was different for DHS and CHS (Fisher’s exact test, p-value = 0.269). Conclusion: At RtC VMMC sites in Mpumalanga, internal and external/independent CQI assessments are comparable, and quality of care of VMMC is standardized with the performance of well-supervised clinical associates comparing well with those of medical officers.

Keywords: adverse events, Right to Care, male medical circumcision, continuous quality improvement

Procedia PDF Downloads 178
16114 Optical Multicast over OBS Networks: An Approach Based on Code-Words and Tunable Decoders

Authors: Maha Sliti, Walid Abdallah, Noureddine Boudriga

Abstract:

In the frame of this work, we present an optical multicasting approach based on optical code-words. Our approach associates, in the edge node, an optical code-word to a group multicast address. In the core node, a set of tunable decoders are used to send a traffic data to multiple destinations based on the received code-word. The use of code-words, which correspond to the combination of an input port and a set of output ports, allows the implementation of an optical switching matrix. At the reception of a burst, it will be delayed in an optical memory. And, the received optical code-word is split to a set of tunable optical decoders. When it matches a configured code-word, the delayed burst is switched to a set of output ports.

Keywords: optical multicast, optical burst switching networks, optical code-words, tunable decoder, virtual optical memory

Procedia PDF Downloads 608
16113 Application of Multilinear Regression Analysis for Prediction of Synthetic Shear Wave Velocity Logs in Upper Assam Basin

Authors: Triveni Gogoi, Rima Chatterjee

Abstract:

Shear wave velocity (Vs) estimation is an important approach in the seismic exploration and characterization of a hydrocarbon reservoir. There are varying methods for prediction of S-wave velocity, if recorded S-wave log is not available. But all the available methods for Vs prediction are empirical mathematical models. Shear wave velocity can be estimated using P-wave velocity by applying Castagna’s equation, which is the most common approach. The constants used in Castagna’s equation vary for different lithologies and geological set-ups. In this study, multiple regression analysis has been used for estimation of S-wave velocity. The EMERGE module from Hampson-Russel software has been used here for generation of S-wave log. Both single attribute and multi attributes analysis have been carried out for generation of synthetic S-wave log in Upper Assam basin. Upper Assam basin situated in North Eastern India is one of the most important petroleum provinces of India. The present study was carried out using four wells of the study area. Out of these wells, S-wave velocity was available for three wells. The main objective of the present study is a prediction of shear wave velocities for wells where S-wave velocity information is not available. The three wells having S-wave velocity were first used to test the reliability of the method and the generated S-wave log was compared with actual S-wave log. Single attribute analysis has been carried out for these three wells within the depth range 1700-2100m, which corresponds to Barail group of Oligocene age. The Barail Group is the main target zone in this study, which is the primary producing reservoir of the basin. A system generated list of attributes with varying degrees of correlation appeared and the attribute with the highest correlation was concerned for the single attribute analysis. Crossplot between the attributes shows the variation of points from line of best fit. The final result of the analysis was compared with the available S-wave log, which shows a good visual fit with a correlation of 72%. Next multi-attribute analysis has been carried out for the same data using all the wells within the same analysis window. A high correlation of 85% has been observed between the output log from the analysis and the recorded S-wave. The almost perfect fit between the synthetic S-wave and the recorded S-wave log validates the reliability of the method. For further authentication, the generated S-wave data from the wells have been tied to the seismic and correlated them. Synthetic share wave log has been generated for the well M2 where S-wave is not available and it shows a good correlation with the seismic. Neutron porosity, density, AI and P-wave velocity are proved to be the most significant variables in this statistical method for S-wave generation. Multilinear regression method thus can be considered as a reliable technique for generation of shear wave velocity log in this study.

Keywords: Castagna's equation, multi linear regression, multi attribute analysis, shear wave logs

Procedia PDF Downloads 232
16112 Measuring Flood Risk concerning with the Flood Protection Embankment in Big Flooding Events of Dhaka Metropolitan Zone

Authors: Marju Ben Sayed, Shigeko Haruyama

Abstract:

Among all kinds of natural disaster, the flood is a common feature in rapidly urbanizing Dhaka city. In this research, assessment of flood risk of Dhaka metropolitan area has been investigated by using an integrated approach of GIS, remote sensing and socio-economic data. The purpose of the study is to measure the flooding risk concerning with the flood protection embankment in big flooding events (1988, 1998 and 2004) and urbanization of Dhaka metropolitan zone. In this research, we considered the Dhaka city into two parts; East Dhaka (outside the flood protection embankment) and West Dhaka (inside the flood protection embankment). Using statistical data, we explored the socio-economic status of the study area population by comparing the density of population, land price and income level. We have drawn the cross section profile of the flood protection embankment into three different points for realizing the flooding risk in the study area, especially in the big flooding year (1988, 1998 and 2004). According to the physical condition of the study area, the land use/land cover map has been classified into five classes. Comparing with each land cover unit, historical weather station data and the socio-economic data, the flooding risk has been evaluated. Moreover, we compared between DEM data and each land cover units to find out the relationship with flood. It is expected that, this study could contribute to effective flood forecasting, relief and emergency management for a future flood event in Dhaka city.

Keywords: land use, land cover change, socio-economic, Dhaka city, GIS, flood

Procedia PDF Downloads 298
16111 Evaluating the Impact of Landscape Values Associated With the Landscape Developemnt Approach of Neighbourhood Gardens; In Tier Two Cities of India; On Users’ Perception Towards the Space. Case: City of Nashik, Maharashtra, India

Authors: Anandi Anant Lale, Pooja Sadananda Patil

Abstract:

Neighbourhood gardens (NGs), in the rapidly growing tier two cities of India, play a pivotal role in maintaining and enhancing the quality of life of the dwellers in terms of mental, physical and socio- cultural well-being. They are the breathing areas which avail the opportunity of accessing nature while being in the close proximity of modern infrastructural provisions of the neighbourhood. In this article, the landscape values (viz. Cultural, Functional, Environmental and Perceptual) associated with the landscape development approach of neighbourhood gardens in the city of Nashik; one of the major tier two cities of Maharashtra; India, are studied through physical survey of selected NGs and the respective neighborhoods. Contextual study of the selected neighbourhood with the emphasis on dwellers' response in terms of physical as well as mental associations with the NGs is recorded through visitors' interviews. Analysis of interrelation of the landscape values and the users' response to the NGs revealed that each landscape value associated with the landscape development approach, has impact of diverse intensity on the users' perception, in different neighbourhoods. Contextual needs of selected neighbourhoods govern the user's perception towards the respective NGs and eventually define the role of landscape value/s associated with the landscape development approach of NG in deciding the competence of the space. The findings of the study can form the basis to redefine the landscape development approach for the future NGs in tier two cities of India that will justify the contextual needs of every neighbourhood through the emphasis of landscape values.

Keywords: neighbourhood garden, landscape value, user’s perception, context, landscape development

Procedia PDF Downloads 118
16110 Bioinformatic Approaches in Population Genetics and Phylogenetic Studies

Authors: Masoud Sheidai

Abstract:

Biologists with a special field of population genetics and phylogeny have different research tasks such as populations’ genetic variability and divergence, species relatedness, the evolution of genetic and morphological characters, and identification of DNA SNPs with adaptive potential. To tackle these problems and reach a concise conclusion, they must use the proper and efficient statistical and bioinformatic methods as well as suitable genetic and morphological characteristics. In recent years application of different bioinformatic and statistical methods, which are based on various well-documented assumptions, are the proper analytical tools in the hands of researchers. The species delineation is usually carried out with the use of different clustering methods like K-means clustering based on proper distance measures according to the studied features of organisms. A well-defined species are assumed to be separated from the other taxa by molecular barcodes. The species relationships are studied by using molecular markers, which are analyzed by different analytical methods like multidimensional scaling (MDS) and principal coordinate analysis (PCoA). The species population structuring and genetic divergence are usually investigated by PCoA and PCA methods and a network diagram. These are based on bootstrapping of data. The Association of different genes and DNA sequences to ecological and geographical variables is determined by LFMM (Latent factor mixed model) and redundancy analysis (RDA), which are based on Bayesian and distance methods. Molecular and morphological differentiating characters in the studied species may be identified by linear discriminant analysis (DA) and discriminant analysis of principal components (DAPC). We shall illustrate these methods and related conclusions by giving examples from different edible and medicinal plant species.

Keywords: GWAS analysis, K-Means clustering, LFMM, multidimensional scaling, redundancy analysis

Procedia PDF Downloads 126
16109 Surveillance of Super-Extended Objects: Bimodal Approach

Authors: Andrey V. Timofeev, Dmitry Egorov

Abstract:

This paper describes an effective solution to the task of a remote monitoring of super-extended objects (oil and gas pipeline, railways, national frontier). The suggested solution is based on the principle of simultaneously monitoring of seismoacoustic and optical/infrared physical fields. The principle of simultaneous monitoring of those fields is not new but in contrast to the known solutions the suggested approach allows to control super-extended objects with very limited operational costs. So-called C-OTDR (Coherent Optical Time Domain Reflectometer) systems are used to monitor the seismoacoustic field. Far-CCTV systems are used to monitor the optical/infrared field. A simultaneous data processing provided by both systems allows effectively detecting and classifying target activities, which appear in the monitored objects vicinity. The results of practical usage had shown high effectiveness of the suggested approach.

Keywords: C-OTDR monitoring system, bimodal processing, LPboost, SVM

Procedia PDF Downloads 471
16108 Modelling the Behavior of Commercial and Test Textiles against Laundering Process by Statistical Assessment of Their Performance

Authors: M. H. Arslan, U. K. Sahin, H. Acikgoz-Tufan, I. Gocek, I. Erdem

Abstract:

Various exterior factors have perpetual effects on textile materials during wear, use and laundering in everyday life. In accordance with their frequency of use, textile materials are required to be laundered at certain intervals. The medium in which the laundering process takes place have inevitable detrimental physical and chemical effects on textile materials caused by the unique parameters of the process inherently existing. Connatural structures of various textile materials result in many different physical, chemical and mechanical characteristics. Because of their specific structures, these materials have different behaviors against several exterior factors. By modeling the behavior of commercial and test textiles as group-wise against laundering process, it is possible to disclose the relation in between these two groups of materials, which will lead to better understanding of their behaviors in terms of similarities and differences against the washing parameters of the laundering. Thus, the goal of the current research is to examine the behavior of two groups of textile materials as commercial textiles and as test textiles towards the main washing machine parameters during laundering process such as temperature, load quantity, mechanical action and level of water amount by concentrating on shrinkage, pilling, sewing defects, collar abrasion, the other defects other than sewing, whitening and overall properties of textiles. In this study, cotton fabrics were preferred as commercial textiles due to the fact that garments made of cotton are the most demanded products in the market by the textile consumers in daily life. Full factorial experimental set-up was used to design the experimental procedure. All profiles always including all of the commercial and the test textiles were laundered for 20 cycles by commercial home laundering machine to investigate the effects of the chosen parameters. For the laundering process, a modified version of ‘‘IEC 60456 Test Method’’ was utilized. The amount of detergent was altered as 0.5% gram per liter depending on varying load quantity levels. Datacolor 650®, EMPA Photographic Standards for Pilling Test and visual examination were utilized to test and characterize the textiles. Furthermore, in the current study the relation in between commercial and test textiles in terms of their performance was deeply investigated by the help of statistical analysis performed by MINITAB® package program modeling their behavior against the parameters of the laundering process. In the experimental work, the behaviors of both groups of textiles towards washing machine parameters were visually and quantitatively assessed in dry state.

Keywords: behavior against washing machine parameters, performance evaluation of textiles, statistical analysis, commercial and test textiles

Procedia PDF Downloads 362
16107 The Per Capita Income, Energy production and Environmental Degradation: A Comprehensive Assessment of the existence of the Environmental Kuznets Curve Hypothesis in Bangladesh

Authors: Ashique Mahmud, MD. Ataul Gani Osmani, Shoria Sharmin

Abstract:

In the first quarter of the twenty-first century, the most substantial global concern is environmental contamination, and it has gained the prioritization of both the national and international community. Keeping in mind this crucial fact, this study conducted different statistical and econometrical methods to identify whether the gross national income of the country has a significant impact on electricity production from nonrenewable sources and different air pollutants like carbon dioxide, nitrous oxide, and methane emissions. Besides, the primary objective of this research was to analyze whether the environmental Kuznets curve hypothesis holds for the examined variables. After analyzing different statistical properties of the variables, this study came to the conclusion that the environmental Kuznets curve hypothesis holds for gross national income and carbon dioxide emission in Bangladesh in the short run as well as the long run. This study comes to this conclusion based on the findings of ordinary least square estimations, ARDL bound tests, short-run causality analysis, the Error Correction Model, and other pre-diagnostic and post-diagnostic tests that have been employed in the structural model. Moreover, this study wants to demonstrate that the outline of gross national income and carbon dioxide emissions is in its initial stage of development and will increase up to the optimal peak. The compositional effect will then force the emission to decrease, and the environmental quality will be restored in the long run.

Keywords: environmental Kuznets curve hypothesis, carbon dioxide emission in Bangladesh, gross national income in Bangladesh, autoregressive distributed lag model, granger causality, error correction model

Procedia PDF Downloads 150
16106 Use of the SWEAT Analysis Approach to Determine the Effectiveness of a School's Implementation of Its Curriculum

Authors: Prakash Singh

Abstract:

The focus of this study is on the use of the SWEAT analysis approach to determine how effectively a school, as an organization, has implemented its curriculum. To gauge the feelings of the teaching staff, unstructured interviews were employed in this study, asking the participants for their ideas and opinions on each of the three identified aspects of the school: instructional materials, media and technology; teachers’ professional competencies; and the curriculum. This investigation was based on the five key components of the SWEAT model: strengths, weaknesses, expectations, abilities, and tensions. The findings of this exploratory study evoke the significance of the SWEAT achievement model as a tool for strategic analysis to be undertaken in any organization. The findings further affirm the usefulness of this analytical tool for human resource development. Employees have expectations, but competency gaps in their professional abilities may hinder them from fulfilling their tasks in terms of their job description. Also, tensions in the working environment can contribute to their experiences of tobephobia (fear of failure). The SWEAT analysis approach detects such shortcomings in any organization and can therefore culminate in the development of programmes to address such concerns. The strategic SWEAT analysis process can provide a clear distinction between success and failure, and between mediocrity and excellence in organizations. However, more research needs to be done on the effectiveness of the SWEAT analysis approach as a strategic analytical tool.

Keywords: SWEAT analysis, strategic analysis, tobephobia, competency gaps

Procedia PDF Downloads 508
16105 Classifier for Liver Ultrasound Images

Authors: Soumya Sajjan

Abstract:

Liver cancer is the most common cancer disease worldwide in men and women, and is one of the few cancers still on the rise. Liver disease is the 4th leading cause of death. According to new NHS (National Health Service) figures, deaths from liver diseases have reached record levels, rising by 25% in less than a decade; heavy drinking, obesity, and hepatitis are believed to be behind the rise. In this study, we focus on Development of Diagnostic Classifier for Ultrasound liver lesion. Ultrasound (US) Sonography is an easy-to-use and widely popular imaging modality because of its ability to visualize many human soft tissues/organs without any harmful effect. This paper will provide an overview of underlying concepts, along with algorithms for processing of liver ultrasound images Naturaly, Ultrasound liver lesion images are having more spackle noise. Developing classifier for ultrasound liver lesion image is a challenging task. We approach fully automatic machine learning system for developing this classifier. First, we segment the liver image by calculating the textural features from co-occurrence matrix and run length method. For classification, Support Vector Machine is used based on the risk bounds of statistical learning theory. The textural features for different features methods are given as input to the SVM individually. Performance analysis train and test datasets carried out separately using SVM Model. Whenever an ultrasonic liver lesion image is given to the SVM classifier system, the features are calculated, classified, as normal and diseased liver lesion. We hope the result will be helpful to the physician to identify the liver cancer in non-invasive method.

Keywords: segmentation, Support Vector Machine, ultrasound liver lesion, co-occurance Matrix

Procedia PDF Downloads 413
16104 Applying Knowledge Management and Attitude Based on Holistic Approach in Learning Andragogy, as an Effort to Solve Environmental Problems after Mining Activities

Authors: Aloysius Hardoko, Susilo

Abstract:

The root cause of environmental damage post coal mining activities as determined by the province of East Kalimantan as a corridor of economic activity masterplan acceleration of economic development expansion (MP3EI) is the behavior of adults. Adult behavior can be changed through knowledge management and attitude. Based on the root of the problem, the objective of the research is to apply knowledge management and attitude based on holistic approach in learning andragogy as an effort to solve environmental problems after coal mining activities. Research methods to achieve the objective of using quantitative research with pretest posttest group design. Knowledge management and attitudes based on a holistic approach in adult learning are applied through initial learning activities, core and case-based cover of environmental damage. The research instrument is a description of the case of environmental damage. The data analysis uses t-test to see the effect of knowledge management attitude based on holistic approach before and after adult learning. Location and sample of representative research of adults as many as 20 people in Kutai Kertanegara District, one of the districts in East Kalimantan province, which suffered the worst environmental damage. The conclusion of the research result is the application of knowledge management and attitude in adult learning influence to adult knowledge and attitude to overcome environmental problem post coal mining activity.

Keywords: knowledge management and attitude, holistic approach, andragogy learning, environmental damage

Procedia PDF Downloads 242
16103 The Role of Creative Entrepreneurship in the Development of Croatian Economy

Authors: Marko Kolakovic

Abstract:

Creative industries are an important sector of growth and development of knowledge economies. They have a positive impact on employment, economic growth, export and the quality of life in the areas where they are developed. Creative sectors include architecture, design, advertising, publishing, music, film, television and radio, video games, visual and performing arts and heritage. Following the positive trends of development of creative industries on the global and European level, this paper analyzes creative industries in general and specific characteristics of creative entrepreneurship. Special focus in this paper is put on the influence of the information communication technology on the development of new creative business models and protection of the intellectual property rights. One part of the paper is oriented on the analysis of the status of creative industries and creative entrepreneurship in Croatia. The main objective of the paper is by using the statistical analysis of creative industries in Croatia and information gained during the interviews with entrepreneurs, to make conclusions about potentials and development of creative industries in Croatia. Creative industries in Croatia are at the beginning of their development and growth strategy still does not exist at the national level. Statistical analysis pointed out that in 2015 creative enterprises made 9% of all enterprises in Croatia, employed 5,5% of employed people and their share in GDP was 4,01%. Croatian creative entrepreneurs are building competitive advantage using their creative resources and creating specific business models. The main obstacles they meet are lack of business experience and impossibility of focusing on the creative activities only. In their business, they use digital technologies and are focused on export. The conclusion is that creative industries in Croatia have development potential, but it is necessary to take adequate measures to use this potential in a right way.

Keywords: creative entrepreneurship, knowledge economy, business models, intellectual property

Procedia PDF Downloads 210
16102 A Weighted Approach to Unconstrained Iris Recognition

Authors: Yao-Hong Tsai

Abstract:

This paper presents a weighted approach to unconstrained iris recognition. Nowadays, commercial systems are usually characterized by strong acquisition constraints based on the subject’s cooperation. However, it is not always achievable for real scenarios in our daily life. Researchers have been focused on reducing these constraints and maintaining the performance of the system by new techniques at the same time. With large variation in the environment, there are two main improvements to develop the proposed iris recognition system. For solving extremely uneven lighting condition, statistic based illumination normalization is first used on eye region to increase the accuracy of iris feature. The detection of the iris image is based on Adaboost algorithm. Secondly, the weighted approach is designed by Gaussian functions according to the distance to the center of the iris. Furthermore, local binary pattern (LBP) histogram is then applied to texture classification with the weight. Experiment showed that the proposed system provided users a more flexible and feasible way to interact with the verification system through iris recognition.

Keywords: authentication, iris recognition, adaboost, local binary pattern

Procedia PDF Downloads 225
16101 Assessment of the Effects of Urban Development on Urban Heat Islands and Community Perception in Semi-Arid Climates: Integrating Remote Sensing, GIS Tools, and Social Analysis - A Case Study of the Aures Region (Khanchela), Algeria

Authors: Amina Naidja, Zedira Khammar, Ines Soltani

Abstract:

This study investigates the impact of urban development on the urban heat island (UHI) effect in the semi-arid Aures region of Algeria, integrating remote sensing data with statistical analysis and community surveys to examine the interconnected environmental and social dynamics. Using Landsat 8 satellite imagery, temporal variations in the Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and land use/land cover (LULC) changes are analyzed to understand patterns of urbanization and environmental transformation. These environmental metrics are correlated with land surface temperature (LST) data derived from remote sensing to quantify the UHI effect. To incorporate the social dimension, a structured questionnaire survey is conducted among residents in selected urban areas. The survey assesses community perceptions of urban heat, its impacts on daily life, health concerns, and coping strategies. Statistical analysis is employed to analyze survey responses, identifying correlations between demographic factors, socioeconomic status, and perceived heat stress. Preliminary findings reveal significant correlations between built-up areas (NDBI) and higher LST, indicating the contribution of urbanization to local warming. Conversely, areas with higher vegetation cover (NDVI) exhibit lower LST, highlighting the cooling effect of green spaces. Social survey results provide insights into how UHI affects different demographic groups, with vulnerable populations experiencing greater heat-related challenges. By integrating remote sensing analysis with statistical modeling and community surveys, this study offers a comprehensive understanding of the environmental and social implications of urban development in semi-arid climates. The findings contribute to evidence-based urban planning strategies that prioritize environmental sustainability and social well-being. Future research should focus on policy recommendations and community engagement initiatives to mitigate UHI impacts and promote climate-resilient urban development.

Keywords: urban heat island, remote sensing, social analysis, NDVI, NDBI, LST, community perception

Procedia PDF Downloads 43
16100 Wasting Human and Computer Resources

Authors: Mária Csernoch, Piroska Biró

Abstract:

The legends about “user-friendly” and “easy-to-use” birotical tools (computer-related office tools) have been spreading and misleading end-users. This approach has led us to the extremely high number of incorrect documents, causing serious financial losses in the creating, modifying, and retrieving processes. Our research proved that there are at least two sources of this underachievement: (1) The lack of the definition of the correctly edited, formatted documents. Consequently, end-users do not know whether their methods and results are correct or not. They are not aware of their ignorance. They are so ignorant that their ignorance does not allow them to realize their lack of knowledge. (2) The end-users’ problem-solving methods. We have found that in non-traditional programming environments end-users apply, almost exclusively, surface approach metacognitive methods to carry out their computer related activities, which are proved less effective than deep approach methods. Based on these findings we have developed deep approach methods which are based on and adapted from traditional programming languages. In this study, we focus on the most popular type of birotical documents, the text-based documents. We have provided the definition of the correctly edited text, and based on this definition, adapted the debugging method known in programming. According to the method, before the realization of text editing, a thorough debugging of already existing texts and the categorization of errors are carried out. With this method in advance to real text editing users learn the requirements of text-based documents and also of the correctly formatted text. The method has been proved much more effective than the previously applied surface approach methods. The advantages of the method are that the real text handling requires much less human and computer sources than clicking aimlessly in the GUI (Graphical User Interface), and the data retrieval is much more effective than from error-prone documents.

Keywords: deep approach metacognitive methods, error-prone birotical documents, financial losses, human and computer resources

Procedia PDF Downloads 382
16099 River Stage-Discharge Forecasting Based on Multiple-Gauge Strategy Using EEMD-DWT-LSSVM Approach

Authors: Farhad Alizadeh, Alireza Faregh Gharamaleki, Mojtaba Jalilzadeh, Houshang Gholami, Ali Akhoundzadeh

Abstract:

This study presented hybrid pre-processing approach along with a conceptual model to enhance the accuracy of river discharge prediction. In order to achieve this goal, Ensemble Empirical Mode Decomposition algorithm (EEMD), Discrete Wavelet Transform (DWT) and Mutual Information (MI) were employed as a hybrid pre-processing approach conjugated to Least Square Support Vector Machine (LSSVM). A conceptual strategy namely multi-station model was developed to forecast the Souris River discharge more accurately. The strategy used herein was capable of covering uncertainties and complexities of river discharge modeling. DWT and EEMD was coupled, and the feature selection was performed for decomposed sub-series using MI to be employed in multi-station model. In the proposed feature selection method, some useless sub-series were omitted to achieve better performance. Results approved efficiency of the proposed DWT-EEMD-MI approach to improve accuracy of multi-station modeling strategies.

Keywords: river stage-discharge process, LSSVM, discrete wavelet transform, Ensemble Empirical Decomposition Mode, multi-station modeling

Procedia PDF Downloads 175
16098 Comparison of Methods of Estimation for Use in Goodness of Fit Tests for Binary Multilevel Models

Authors: I. V. Pinto, M. R. Sooriyarachchi

Abstract:

It can be frequently observed that the data arising in our environment have a hierarchical or a nested structure attached with the data. Multilevel modelling is a modern approach to handle this kind of data. When multilevel modelling is combined with a binary response, the estimation methods get complex in nature and the usual techniques are derived from quasi-likelihood method. The estimation methods which are compared in this study are, marginal quasi-likelihood (order 1 & order 2) (MQL1, MQL2) and penalized quasi-likelihood (order 1 & order 2) (PQL1, PQL2). A statistical model is of no use if it does not reflect the given dataset. Therefore, checking the adequacy of the fitted model through a goodness-of-fit (GOF) test is an essential stage in any modelling procedure. However, prior to usage, it is also equally important to confirm that the GOF test performs well and is suitable for the given model. This study assesses the suitability of the GOF test developed for binary response multilevel models with respect to the method used in model estimation. An extensive set of simulations was conducted using MLwiN (v 2.19) with varying number of clusters, cluster sizes and intra cluster correlations. The test maintained the desirable Type-I error for models estimated using PQL2 and it failed for almost all the combinations of MQL. Power of the test was adequate for most of the combinations in all estimation methods except MQL1. Moreover, models were fitted using the four methods to a real-life dataset and performance of the test was compared for each model.

Keywords: goodness-of-fit test, marginal quasi-likelihood, multilevel modelling, penalized quasi-likelihood, power, quasi-likelihood, type-I error

Procedia PDF Downloads 143
16097 Relative Effectiveness of Inquiry: Approach and Expository Instructional Methods in Fostering Students’ Retention in Chemistry

Authors: Joy Johnbest Egbo

Abstract:

The study was designed to investigate the relative effectiveness of inquiry role approach and expository instructional methods in fostering students’ retention in chemistry. Two research questions were answered and three null hypotheses were formulated and tested at 0.05 level of significance. A quasi-experimental (the non-equivalent pretest, posttest control group) design was adopted for the study. The population for the study comprised all senior secondary school class two (SS II) students who were offering Chemistry in single sex schools in Enugu Education Zone. The instrument for data collection was a self-developed Chemistry Retention Test (CRT). Relevant data were collected from a sample of one hundred and forty–one (141) students drawn from two secondary schools (1 male and 1 female schools) using simple random sampling technique. A reliability co-efficient of 0.82 was obtained for the instrument using Kuder Richardson formular20 (K-R20). Mean and Standard deviation scores were used to answer the research questions while two–way analysis of covariance (ANCOVA) was used to test the hypotheses. The findings showed that the students taught with Inquiry role approach retained the chemistry concept significantly higher than their counterparts taught with expository method. Female students retained slightly higher than their male counterparts. There is significant interaction between instructional packages and gender on Chemistry students’ retention. It was recommended, among others, that teachers should be encouraged to employ the use of Inquiry-role approach more in the teaching of chemistry and other subjects in general. By so doing, students’ retention of the subject could be increased.

Keywords: inquiry role approach, retention, exposition method, chemistry

Procedia PDF Downloads 513
16096 Medication Side Effects: Implications on the Mental Health and Adherence Behaviour of Patients with Hypertension

Authors: Irene Kretchy, Frances Owusu-Daaku, Samuel Danquah

Abstract:

Hypertension is the leading risk factor for cardiovascular diseases, and a major cause of death and disability worldwide. This study examined whether psychosocial variables influenced patients’ perception and experience of side effects of their medicines, how they coped with these experiences and the impact on mental health and medication adherence to conventional hypertension therapies. Methods: A hospital-based mixed methods study, using quantitative and qualitative approaches was conducted on hypertensive patients. Participants were asked about side effects, medication adherence, common psychological symptoms, and coping mechanisms with the aid of standard questionnaires. Information from the quantitative phase was analyzed with the Statistical Package for Social Sciences (SPSS) version 20. The interviews from the qualitative study were audio-taped with a digital audio recorder, manually transcribed and analyzed using thematic content analysis. The themes originated from participant interviews a posteriori. Results: The experiences of side effects – such as palpitations, frequent urination, recurrent bouts of hunger, erectile dysfunction, dizziness, cough, physical exhaustion - were categorized as no/low (39.75%), moderate (53.0%) and high (7.25%). Significant relationships between depression (x 2 = 24.21, P < 0.0001), anxiety (x 2 = 42.33, P < 0.0001), stress (x 2 = 39.73, P < 0.0001) and side effects were observed. A logistic regression model using the adjusted results for this association are reported – depression [OR = 1.9 (1.03 – 3.57), p = 0.04], anxiety [OR = 1.5 (1.22 – 1.77), p = < 0.001], and stress [OR = 1.3 (1.02 – 1.71), p = 0.04]. Side effects significantly increased the probability of individuals to be non-adherent [OR = 4.84 (95% CI 1.07 – 1.85), p = 0.04] with social factors, media influences and attitudes of primary caregivers further explaining this relationship. The personal adoption of medication modifying strategies, espousing the use of complementary and alternative treatments, and interventions made by clinicians were the main forms of coping with side effects. Conclusions: Results from this study show that contrary to a biomedical approach, the experience of side effects has biological, social and psychological interrelations. The result offers more support for the need for a multi-disciplinary approach to healthcare where all forms of expertise are incorporated into health provision and patient care. Additionally, medication side effects should be considered as a possible cause of non-adherence among hypertensive patients, thus addressing this problem from a Biopsychosocial perspective in any intervention may improve adherence and invariably control blood pressure.

Keywords: biopsychosocial, hypertension, medication adherence, psychological disorders

Procedia PDF Downloads 372
16095 Assessment of E-Readiness in Libraries of Public Sector Universities Khyber Pakhtunkhwa-Pakistan

Authors: Saeed Ullah Jan

Abstract:

This study has examined the e-readiness in libraries of public sector universities in Khyber Pakhtunkhwa. Efforts were made to evaluate the availability of human resources, electronic infrastructure, and network services and programs in the public sector university libraries. The population of the study was the twenty-seven public sector university libraries of Khyber Pakhtunkhwa. A quantitative approach was adopted, and a questionnaire-based survey was conducted to collect data from the librarian/in charge of public sector university libraries. The collected data were analyzed using Statistical Package for Social Sciences version 22 (SPSS). The mean score of the knowledge component interpreted magnitudes below three which indicates that the respondents are poorly or moderately satisfied regards knowledge of libraries. The satisfaction level of the respondents about the other components, such as electronic infrastructure, network services and programs, and enhancers of the networked world, was rated as average or below. The study suggested that major aspects of existing public-sector university libraries require significant transformation. For this purpose, the government should provide all the required resources and facilities to meet the population's informational and recreational demands. The Information Communication Technology (ICT) infrastructure of public university libraries needs improvement in terms of the availability of computer equipment, databases, network servers, multimedia projectors, digital cameras, uninterruptible power supply, scanners, and backup devices such as hard discs and Digital Video Disc/Compact Disc.

Keywords: ICT-libraries, e-readiness-libraries, e-readiness-university libraries, e-readiness-Pakistan

Procedia PDF Downloads 89
16094 Animal Welfare Violations during Treatment at Different Level of Veterinary Hospitals

Authors: Aparna Datta, Mahabub Alam

Abstract:

Animal welfare is comparatively new area of research in Bangladesh and welfare concern for animal is increasing day by day. The study was conducted to investigate the animal welfare violations during treatment at different level of hospitals in Bangladesh and India. This study was conducted between January and May, 2017. The recorded data (N=180) were categorized into eight major types of violation like - delay in starting treatment, non-specific treatment, surgery without anesthesia, use of unsterilized needle, rough and painful handling, fearful approach, multiple pricking during injection and use of blunt needle. Categorized groups were analyzed according to different hospitals like Upazila Veterinary Hospitals, Bangladesh (UVHs), SAQ-Teaching Veterinary Hospital, Bangladesh (SAQTVH) and Veterinary College and Research Institute, India (VCRI). Among all hospitals, violation during treatment more frequently occurred in UVH. Among all violations, surgery without anesthesia was only found in UVH (80%) and it was belong to considerable number of cases (80%). In the view of other major violations like - non-specific treatment was 69% in UVHs, 13% in SAQTVH and 5% in VCRI. Use of unsterilized instruments during treatment was also higher in UVHs (65%) than SAQTVH (5%) and VCRI (1%). But delay in starting treatment varied insignificantly and it was 26-42% across the different levels of hospitals. Although multiple pricking during injection was found 30% cases in UVH, but statistical variations with other level of hospitals were unnoticed (p>0.05). The findings of this study will help to take necessary steps to control violation against animal welfare during treatment. A comprehensive study considering all levels of hospitals including field treatment is also recommended to find out the welfare violations during treatment.

Keywords: animal welfare, treatment, veterinary hospitals, violations

Procedia PDF Downloads 157
16093 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 232
16092 Classification Earthquake Distribution in the Banda Sea Collision Zone with Point Process Approach

Authors: H. J. Wattimanela, U. S. Passaribu, N. T. Puspito, S. W. Indratno

Abstract:

Banda Sea collision zone (BSCZ) of is the result of the interaction and convergence of Indo-Australian plate, Eurasian plate and Pacific plate. This location in the eastern part of Indonesia. This zone has a very high seismic activity. In this research, we will be calculated rate (λ) and Mean Square Eror (MSE). By this result, we will identification of Poisson distribution of earthquakes in the BSCZ with the point process approach. Chi-square test approach and test Anscombe made in the process of identifying a Poisson distribution in the partition area. The data used are earthquakes with Magnitude ≥ 6 SR and its period 1964-2013 and sourced from BMKG Jakarta. This research is expected to contribute to the Moluccas Province and surrounding local governments in performing spatial plan document related to disaster management.

Keywords: molluca banda sea collision zone, earthquakes, mean square error, poisson distribution, chi-square test, anscombe test

Procedia PDF Downloads 301
16091 Statistical Modelling of Maximum Temperature in Rwanda Using Extreme Value Analysis

Authors: Emmanuel Iyamuremye, Edouard Singirankabo, Alexis Habineza, Yunvirusaba Nelson

Abstract:

Temperature is one of the most important climatic factors for crop production. However, severe temperatures cause drought, feverish and cold spells that have various consequences for human life, agriculture, and the environment in general. It is necessary to provide reliable information related to the incidents and the probability of such extreme events occurring. In the 21st century, the world faces a huge number of threats, especially from climate change, due to global warming and environmental degradation. The rise in temperature has a direct effect on the decrease in rainfall. This has an impact on crop growth and development, which in turn decreases crop yield and quality. Countries that are heavily dependent on agriculture use to suffer a lot and need to take preventive steps to overcome these challenges. The main objective of this study is to model the statistical behaviour of extreme maximum temperature values in Rwanda. To achieve such an objective, the daily temperature data spanned the period from January 2000 to December 2017 recorded at nine weather stations collected from the Rwanda Meteorological Agency were used. The two methods, namely the block maxima (BM) method and the Peaks Over Threshold (POT), were applied to model and analyse extreme temperature. Model parameters were estimated, while the extreme temperature return periods and confidence intervals were predicted. The model fit suggests Gumbel and Beta distributions to be the most appropriate models for the annual maximum of daily temperature. The results show that the temperature will continue to increase, as shown by estimated return levels.

Keywords: climate change, global warming, extreme value theory, rwanda, temperature, generalised extreme value distribution, generalised pareto distribution

Procedia PDF Downloads 185
16090 Laser Registration and Supervisory Control of neuroArm Robotic Surgical System

Authors: Hamidreza Hoshyarmanesh, Hosein Madieh, Sanju Lama, Yaser Maddahi, Garnette R. Sutherland, Kourosh Zareinia

Abstract:

This paper illustrates the concept of an algorithm to register specified markers on the neuroArm surgical manipulators, an image-guided MR-compatible tele-operated robot for microsurgery and stereotaxy. Two range-finding algorithms, namely time-of-flight and phase-shift, are evaluated for registration and supervisory control. The time-of-flight approach is implemented in a semi-field experiment to determine the precise position of a tiny retro-reflective moving object. The moving object simulates a surgical tool tip. The tool is a target that would be connected to the neuroArm end-effector during surgery inside the magnet bore of the MR imaging system. In order to apply flight approach, a 905-nm pulsed laser diode and an avalanche photodiode are utilized as the transmitter and receiver, respectively. For the experiment, a high frequency time to digital converter was designed using a field-programmable gate arrays. In the phase-shift approach, a continuous green laser beam with a wavelength of 530 nm was used as the transmitter. Results showed that a positioning error of 0.1 mm occurred when the scanner-target point distance was set in the range of 2.5 to 3 meters. The effectiveness of this non-contact approach exhibited that the method could be employed as an alternative for conventional mechanical registration arm. Furthermore, the approach is not limited by physical contact and extension of joint angles.

Keywords: 3D laser scanner, intraoperative MR imaging, neuroArm, real time registration, robot-assisted surgery, supervisory control

Procedia PDF Downloads 287